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ABSTRACT

A static mooring model is developed for use in the design and
analysis of moored instrument arrays. The model incorporates the steady two-
dimensional hydrodynamic forces exerted by a space-varying velocity field
on a surface or subsurface buoy and on a flexible, extensible cable and
instruments supported beneath the buoy. Suitable equations for the normal
and longitudinal components of cable drag are provided from an examination of
existing data. The model behaviour is verified using an analytical solution
for a free-streaming cable. An example is given of the model applied to a
mooring which consists of a toroidal surface float, an extensible synthetic
plastic cable, five instrument packages and a heavy chain anchor..
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introduction

The Coastal Zone Oceanography Group at the Institute of Ocean
Sciences, Patricia Bay, makes widespread use of moored instrument arrays for
the measurement of seawater properties. The moorings are usually single-point
taut-1ine types, supported by either a surface or a subsurface buoy, with a
Tength of heavy chain or a clump of railway wheels and a Danforth anchor at
the Tower end. The moorings are normally made in fairly protected waters,
so the response to wave action is not often a problem. However, questions
have arisen from time to time concerning the actual depths of the instruments.
For subsurface buoys, drag forces on the whole system can result in a
considerable. reduction in the elevation above bottom of any point in the
system. For surface buoys, where synthetic lines are normally used, the
stretch of the line can cause uncertainties in instrument positions. The
elevations could be determined, after the fact, by using depth sensors, but
it was desirable to have some.means of estimating the instrument positions,
for a given set of conditions, before deploying an array. Thus a theoretical
investigation of the static behaviour of taut-1ine moorings was indicated.

A survey. of available literature (e.g. McCormick, 1973; Schram,
1968) 1ndicated there were some existing mooring models, most of them not as
comprehensive as one might desire, and none of them completely suitable for
our needs. Therefore, we decided to develop a mooring system model
specifically oriented to the requirements of the group. It would incorporate
such:-details as.a varying velocity profile, elastic cable, varying cable
types, surface or subsurface buoy, attached instruments and slack or taut line
into one computer program. A two-dimensional model was deemed sufficient for
our purposes The 1nformat1on available from such a model includes:

~ the’ 1ength to which an elastic line should be cut for a taut-Tine
surface mooring in a given water depth;

~ - the attachment points along the unstretched cable for instruments
to end up at the required depths;

- the differences in a taut-line surface mooring configuration
for Tow and high tide situations;

- the required buoyancy to attain or maintain a particular
depth with a subsurface buoy;

- the tension in the mooring line;
- the required minimum anchor weight;
- the horizontal excursion of the mooring;

- the excursions through depth of instruments suspended below a
subsurface buoy for various velocity profiles;

- the 1ine angle at any po{nt along its length.

The mooring model development is outlined in the following sections.
The engineering system of units (ft-l1b-sec) is used throughout the model,
in preference to the metric system, because of the present utility of the

engineering force unit in connection with the purchase and use of cables,
buoys and anchors,



Theoretical Analysis of a Buoy-Cable System

A. The‘Buoy

Several types of buoys, having various shapes, are used in moor1ngs
The toroidal buoy has been the most commonly ‘used type for surface floats. It
supports a tripod superstructure for increased visibility. The small amount
of wind drag on the superstructure, and on the exposed portion of the buoy,
will be 1gnored here, as will the effect.of buoy tilt due to waves. Sub-
surface moorings are usually effected with spherical buoys, or with ¢ylindri-
cal buoys having a horizontal axis. The latter include tail fins-to provide -
stability. If such a buoy develops a large degree of tilt, then an analysis
of the forces involved can become very comp11cated For example, the ,
separate 1ift and drag forces of the 'main body and the fins , together with
their moments about the centre of gravity (CG), must be considered. The
1ift and drag coefficients, and their points of action, will be functions
of the angle of tilt. The buoyancy, weight and tens11e forces will be
unlikely ‘to act through the same point, creating additional moments to
complicate the problem. For such a case, the obvious solution is to redesign
the buoy for adequaté 1ong1tud1na1 stab111ty at small tilt angles.
Principally, this requires tail fins of sufficient size to respond to small
disturbances, suitably placed to avoid a loss of efficiency if separation of
flow occurs over any portion of the buoy. Surface or subsurface buoys which
are symmetr1ca1 about a vertical axis present no problems due to tilt,
provided that the 1ift and drag coefficients do not change by any substant1a1
amount over the range of tilt ang1es There will be moments involved if the
tensile force in the cablé doesn't act along the axis (unless the cable is ~
attached at the CG position), and if the centre of buoyancy (CB) doesn't
correspond approximately with the CG. The simplest case will be considered
here, the basic assumptions being:: .

1. The Tine of action of the cable tension is through the CG of
the buoy.

2. The point of cable attachment is at the lower surface of the
buoy.

3. There is no change in drag coefficient with a change in buoy
aspect.

4. There is no fluid dynamic 1ift force.
5. There is no wind drag. |

6. The water drag is proportional to the greatest immersed cross-
sectional area in a vertical plane normal to the flow direction.

7. There is no buoy tilt 1nsofar as buoyancy and drag calculations
are concerned.

The justification for the éimp]ifications made in these éssumptions
is that the buoy drag will seldom be as important as cable drag in determining
the system configuration, and that small tilt angles will not much affect the



buoyant force. Appendix A contains the immersed area and volume calculations
for several buoy types.

A free-body diagram of a-simple buoy is shown in Figure 1. ‘A
summation of forces in static equilibrium gives:

B - W - Tgsin ¢g = 0 (1)

D - Tgcos ¢g = 0 (2)

Here, B is the buoyancy force, obtained from the immersed volume. W is the
weight force, Tg is the cable tension and ¢p is the cable angle. The drag
force, D, is represented by:

D =Cp 5 AV|V| (3)

where Cp is the drag coefficient for the shape under consideration, p is the
fluid density, A is the immersed area (Appendix A) and V is the fluid
velocity. Solving equations (1) and (2) simultaneously, one obtains:

TB2 = (B-W)2 + D2 (4)

¢g = tan”! (Eﬁw} (5)

Tg and ¢p form the boundary conditions at the upper end of the cable.

B. The Cable

Cables used for mooring are of two principal types - synthetic
(plastic) rope and wire rope. Occasionally, a section of chain may be
included. Cables are probably the most difficult part of the system to
analyze accurately since some of their characteristics are ill-defined.
Further paragraphs of this section will examine the problem in more detail.
For the present, it is sufficient to assume the following:

1. The cable is flexible and extensible.

2. The cable diameter is not significantly reduced when stretching
occurs, i.e., the radial strain is neglected for the purpose
of calculating the drag cross-sectional area.

3. The drag on the cable can be separated into normal and
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longitudinal components.

4. There are no side forces on the cable and no vortices are shed
in the wake (thus, there is no possibility of "strumming").

5. The cable 1ies in a vertical plane and the flow is coplanar
with the cable.

A free-body diagram of a cable segment is shown in Figure 2. The
unstretched case is illustrated for simplicity. The independent variable is
taken to be the length S along the cable. The dependent variables are then
the cable angle ¢ and tension T, and the x and z coordinates for any point on
the cable. An elemental length of the cable is represented by AS. The
weight force and buoyant force of the cable are, respectively, w and b pounds
per unit length. The drag force D¢ is also in pounds per unit length and is
shown resolved into normal and longitudinal components, Fy and F|,
respectively. The appropriate form for these components, especially F, is
open to some conjecture and will be considered in detail in the next section.

Resolving all of the forces into components, and summing in the
normal and longitudinal directions, respectively, one obtains:

2T sin é§-= {Fy + (w=-b) cos ¢}aS (6)
aT cos & = (- F + (w-b) sin ¢}aS (7)

Taking these equations to the infinitesimal limit, and negiecting second order
quantities, gives:

%%—= %-{FN + (w-b) cos ¢} (8)
%g-= -F_ + (w-b) sin ¢ (9)

In addition, there are two parametric equations (directional derivatives)
describing the cable shape, namely:

%% = COS ¢ (10)
%§-= sin ¢ (11)

The preceding four equations are all that are necessary to describe
an inextensible cable. They can be solved simultaneously, obtaining the
boundary conditions from the buoy equations and from a condition on the water
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depth, to provide the configuration of the cable and the tension in the cable.
However, if the cable is extensible, with an elongation per unit length
represented by e, an additional relationship is required to relate this
strain to the tension in the cable. For materials obeying Hooke's law:

AL T
E——L- A_E (12)

where E is the static modulus of elasticity, A is the load-bearing cross-
sectional area, L is the unstretched Tlength of cable and AL is the actual
elongation. The strain of non-Hookeian (non-linear) materials is best
approximated by fitting a power curve to empirical data, if such is available.
The information regarding elongation of a particular material is often
provided by the manufacturer in the form of a graph or table giving strain

vs. the ratio of cable tension T to ultimate strength Tyax, both in percen-
tages. In this case, one can obtain the strain in the form:

a T T 12 |
= o=+ Db + 100 ¢ (13)
00 [Tmax} {Tmax] .

where a, b, ¢ are constants to be determined from the graph. Only the portion
of the graph covering the normal working range of the material should be
considered. The considerations above assume that pre-stretched cable is used,

so that any e]ongat1on resulting from mechanical deformation (readJustment of
strand positions) is not included.

Synthetic plastic cabies are non-linear in their elastic behaviour,
but the situation is complicated further by their plastic behaviour. This is
especially so when a history factor is involved, that is, the stress-strain
relationship depends somewhat on the previous loads experienced by the cable,
and may be affected by the number of wet/dry cycles undergone. Also, some
materials creep under load, even after pre-stretching has settled the strands
along the core. Some materials (e.g., nylon) absorb water and swell. - This
can result in a contraction of cable length, because the expansion in the
plane of the cross-section forces individual strands into a longer helical
path about the core. Little of an exact nature is known about these effects

and they are not dealt with here since their influence on the static behaviour
of the mooring is normally small.

The total strained length of cable is (1 + €) times the original

unstretched length. From Equation 13, we obtain the form used in the present
model:

l+e=ag+a; T+a, I? (14)

where ag, a;, a, are constants to be determined, as before. For an
inextensible cable: ayg =1, a; = 0, a, = 0. For a cable obeying Hooke's Law:
ag =1, a; = 4/ (nd? Eg, a, =0, where E is Young's modulus for the cable
itself (not the modulus for the cable material because of the difficulty in



determining the exact cross-section area). 2For synthetic cables:

ag = 1+ (a/100), a; = b/Tpax, a2 = 100 ¢/Tpax, wWhere Tpax is the ultimate.
stress for the cable. Rewriting equations 8 through 11 in terms of a
strained element gives:

%%.: %'{(1+€)FN + (w-b) cos ¢} (15)
%%.= - (1+e)F + (w-b) sin ¢ (16)
dX = (14¢) ‘ | (17
g5 = (1+e) cos , | )
dZ - (1+‘) : ]8
-d—S-" ‘(; sin ¢ ( )

Here, the implication is that the weight of one foot of stretched cable is
w/(1+e) so there is no change in total weight. Further, the buoyancy per
foot of stretched cable happens also to be taken as b/(1+e), so that some
compensation. for the. effect of radial strain on the displaced water volume is
included, although not in the correct formal manner. Any error in ‘this term
is small compared to. the other forces involved, so it was not considered
necessary to formalize it. As mentioned previously, the effect of radial
strain on the drag force term is neglected) again because of its relative
insignificance.

C. Cable Drag

A su1tab1e representat1on ef the cable drag forces is a very
important consideration for any mooring model, the more so when high.current
speeds are involved since the drag is proportiona] to the square of. the
velocity. For the most part, the literature is not too helpful in this
matter. Usually, as js done here, the forces involved are resolved into
components normal to the cable axis and components along.the cable. The form
of the normal component of drag is almost standardized, although there is
a considerable range in the actual drag coefficient values used. Many
different forms have been proposed for the longitudinal component (Casarella
& Parsons, 1970}, but it is often ignored completely since it is usually
small compared to the normal component. However, this is not necessarily the
case when the cable angle becomes large for some reason, such as high water
velocities or inadequate buoyancy on a subsurface mooring. Relative magnitudes
will be examined below. A problem that confronts one in attempting to
determine the most suitable form for drag force components is that very few
measurements of force as a function of cable inclination to the flow have
been reported -and some of these do not appear to be reliable, especially
where Tongitudinal drag is concerned. -This Tatter quantity is a difficult
one to measure accurately because of its relative magnitude and the fact that



it is usually the result of the subtraction of two Targe quantities, the

drag of the supporting structure being included in the measurement. The
preferred data set, in my view, is that due to Relf and Powell, made in

1917! Their longitudinal drag curve for a smooth wire is a good fit to a
theoretically-derived form, as will be shown, with the lack of scatter in

the data points being an indication of reasonable accuracy in the measure-
ments. This gives one some confidence in their subsequent drag determinations
for wire ropes. The Relf and Powell data is used below to estimate normal

and Tongitudinal drag coefficients for cables inclined to the flow.

According to the "crossflow" or "independence" principle which
states, in effect, that the nature of the boundary layer depends only on the
normal velocity component (Hoerner, 1958; Schlichting, 1960), the pressure
force and the normal friction force will also depend only on that component.
This holds true while laminar (sub-critical) flow prevails but does not
necessarily apply to turbulent boundary Tayers. Thus, in sub-critical
Reynolds number flow, the total drag force normal to the cable axis can be
expressed as a function of V sin ¢, where V is the free-stream velocity and
¢ is the cable inclination referenced to a horizontal plane (Fig. 2).
Typica] mooring systems will almost always operate in the sub-critical flow

regime. We can define the normal drag force component, per unit length of
cable, as: » .

Fy = Cpy & d u2 o - (19)

where u = V sin ¢ and d is the cable diameter. Cpp is based on frontal area
and includes the effects of both pressure and skin friction, i.e.

CDN = CP + CFN (20)

Over the Reynolds number range of interest, say 102<R<10°, Cp is usually
considered approximately constant. It is much larger than Cpy except at the
low end of the range. The logical definition for Reynolds number here makes
use of the normal velocity component as the characteristic velocity, since it

is the key to the changing state of the boundary layer, -as suggested by the
independence principle. Thus,

_dV sin ¢ _ .
R, = f_.TT_—__ = R sin ¢ (21)

where v is the kinematic viscosity and R is the Reynolds number at ¢ = 90°,
Since it is R which is generally reported in the literature, its use in
various expressions will be retained here, but in conjunction with sin ¢.

The value of R, may become small at large cable angles, even though the free
stream ve]oc1ty is high, with the result that the friction component of the
normal drag force may assume some relative importance. Therefore, Cpy should
probably not be excluded from consideration.
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Goldstein (1938) presents some drag data, which he attributes to
Relf and Thom, for a smooth cylinder normal to the flow. This is shown in
Fig. 3. The total drag curve is by Relf; the rest of the results are due
to Thom, who derived a numerical solution for skin friction and found that
a good fit to the points provided by this solution was given by:

—
N E

(22)
" ,

for ¢ = 90°. A With the inclusion of the Reynolds number in the appropr1ate
form,. the effect of cable angle 1s accounted for, i.e.

ey =4 | - (23)
(R sin q))/2

This eqUatfon should hold :so 1ong as ‘the flow is laminar, at least. Thus, ﬁt
may not apply to rough cylinders such as wire rope. An examination of the
pressure drag curve in Fig. 3 suggests that, rather than taking it as

constant, a power law fit might be worthwhile. In any case, the normal force
has the form

= CpN sinZ¢

L
=\}P + [R;?—M]J sin2¢ (24)

where Cp is determined at‘the angle ¢ = 90° and R = Qg

The prev1ous1y mentioned Relf and Powell (R&P) data were obtained
using a smooth wire and several different wire ropes. The data were taken
near R = 10%, so that the friction drag is only a small fraction of the
pressure drag. Even at an extreme angle of ¢ = 100, the boundary layer
Reynolds number R, is about 103. Then the friction drag is about 1/10 of the
pressure drag, so it is probably hidden within the measurement error of the
small forces involved. The normal drag coefficient values, derived from
R& normal force measurements, are plotted in Fig. 4. The measurements on
the different cable types were made at slightly different values of R, but
the scatter in the data is more likely due to differences in cable construc-
tion rather than to any R-dependence. The solid line in the figure is a

sin%¢ curve, which is read11y fitted to any of the data sets, including both
the smooth w;re_and the wire ropes.

The longitudinal, or a1ong—cab1e, flow field is, in one sense,
influenced by both flow components. This is a result of the fact that the
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boundary layer thickness is determined by the normal ve10c1ty component. A
boundary layer build- up in the direction of the cable is prevented because the
normal velocity "blows" away any excess retarded fluid layer. (This theory
‘obviously breaks down for the Timiting case of pure longitudinal flow at

¢ = 09.) However, the longitudinal stress distribution within the boundary
layer is determined only by the along-cable velocity. When the stress
distribution is known it can be integrated over the cable to obtain the
longitudinal drag force. The method for making this calculation has been
suggested by Schlichting (1960) and carried out by Schram (1968) and Topham
(1976) for the case of a smooth cylinder. A similar solution to the problem
is arrived at through an analogy with the heat flow equation (Schlichting,
1960; Tay1or 1952). The theoretical result is a function wh1ch depends on
both the sine and cosine of the angle ¢ (and not simply on cos 26 in an
analogous fash1on to the normal drag force), namely:

FL = Cpy = oR™% cos ) sin%¢ (25)
L ndy2
2 T

where o is a constant to be determined and Cf is based on surface area.
There is no longitudinal pressure drag component because it is assumed that

the cable is infinitely long. Note that, for convenience 1n subsequent
manipulation, we may write:

1 . ‘ ’
CFL = %. [R’%%ﬁ—E}z cos ¢ sin ¢ ' (26)

The longitudinal drag coefficients derived from R&P data are shown
in Fig. 5. The empirical result for the smooth wire shows good agreement with
Equation 25. However, the wire rope data shows considerable variance from
this function. This is probably a consequence of flow modification resulting
from the spiral construction of the cable. Fitting a straight Tine to the
wire rope data gives a curve of the form:

{1 . ¢ 16 L .
CrL [1 90] Im] T osing (27)

where ¢ is in degrees. A11 of the data were obtained near R = 10%, as
previously mentioned. If this is beyond the flow transition point for the
rough cables involved, then the boundary layer theory is inapplicable in any
case. The relatively high normal drag coefficients (seen in Fig. 4) would
seem to argue, though, that the flow is still sub-critical. Just where the

transition region lies for such cable has not been determined, to my
knowledge.

Fig. 6 summarizes the foregoing equations and allows one to easily
determine the relative magnitudes of the component forces at a given cable
inclination and Reynolds number. It can be seen that there may be occasions
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on which the skin frictional forces should not be ignored. However, the
equations are derived or verified on the basis of very limited empirical
results. A definite need exists for force measurements on various cable
types inclined to the flow over a reasonable range of Reynolds numbers. For
the present, however, we will be satisfied to use the results outlined in
Equations 19 through 27 to simulate drag in our mooring model.

D. The Instruments

Instrument packages, attached to the cable, may be of various
shapes and sizes, and the method and points of attachment may vary. Here,
as for the buoy, only the simplest case is considered, namely one in which
all of the forces act through the CG and any effect of tilt is neglected.
A free-body diagram is presented in Fig. 7. Wy is the package weight in air,
B is its buoyancy, A¢ is the increment in cable angle due to the instrument
and AT is the increment in cable tension. Package drag is given by:

D; = Cy %—Av[vl : (28)

where Cy is the‘drag coefficient and A is the cross-sectional area preéented
to the flow. Resolving the forces ‘in directions parallel to and normal to the
cable and summing, one obtains, respectively:

: f:+;DI cos ¢ - (wI-BI) sin ¢ = (T-AT) cos A¢ (Zé)

Dy sin ¢ + (W-Byy cos ¢ = (T-aT) sin a4 (30)

Some of the instrumen%'packages may be very buoyant or very heavy, so the
simplifying assumption of small changes in angle cannot be made. Solving the
equations simultaneously: g

T - AT = DI sin ¢ + (Wi-B) cos ¢

(31)
sin A¢
.~ +aq-1] DI sin ¢ + (Wp-By) cos ¢ (32)
A¢ = tan {T + D1 cos ¢ - (WI-BI) sin ¢

The boundary conditions (tension and angle) for these equations are obtained
from the solution of the cable system on one side of the instrument. The

equations, in turn, provide the boundary conditions for the next cable
segment.



17

INSTRUMENT PACKAGE FREE-BODY DIAGRAM

Figure 7



18

E. Method of Solution

The equations for the complete buoy-cable system are first-order
non-1inear and form a boundary-value problem requiring boundary conditions
at each end of the cable. The buoy boundary condition is satisfied by '
assuming an elevation for the buoy which, in turn, fixes the cross-sectional
area and volume immersed. The anchor boundary condition is that the
elevation of the anchor must coincide with that of the sea bottom, within
acceptable Timits. The governing equations are solved for the unknown
quantities (¢, T, x, z) by a step-wise integration along the cable,
beginning at the buoy end, to a point of discontinuity resulting from the
concentrated loads caused by the presence of an instrument package. The
effect of the forces on the package is added to the cable forces and the
integration is continued-in a similar fashion until the Tower end of the
cable is reached. If the anchor boundary condition is not satisfied within
the specified error limits, then a new buoy position is chosen and the
procedure is repeated.

Computer Solution of the Buoy-Cable System ' S
A. The Buoy ¢ :

The buoy geometry 1is 1ncorporated into a subroutine (Appendix C),
so that the ability to copé with various types of buoys can be added to the
program with no difficulty.. The subroutine-is entered with the buoy elevation
and the water velocity at that elevation.. The buoyancy and water drag
forces are calculated and returned to the main program to provide the upper
boundary condition on the cable. The limitations on these calculations have
been mentioned in a previous section. The buoy elevation is taken to be at
the bottom of the buoy, which is the point of attachment for the cable.

Thus, for a surface buoy, the difference between the water surface elevation
and the buoy elevation is the depth of immersion of the buoy. Three
pertinent dimensions of a buoy can be specified in the data input. The
vertical dimension of the buoy is of particular importance, since.it is used
in conjunction with the buoyancy to modify the position of the buoy during
the iteration procedure. Surface or subsurface buoy types are specified by
a flag in the main program, to permit some minor processing differences.

B. The Velocity Profile

Since the model is two-dimensional, the water motion is confined
to a vertical plane. The flow is also assumed to have no vertical component.

Any speed versus depth relationship which can be represented by a second
order profile of the form:

v=a+bz+ cz? (33)
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is permissible. Likewise, various profiles of this form can be pieced
together in segments, as desired. The profile segments can be any convenient
size and do not have to correspond to multiples of the cable segment length
(discussed in a following section). Negative speeds are allowed. The only
lTimitation is that strong discontinuities in the profile may make convergence
to the correct solution more difficult. In the program, the velocity

profile information is stored in an array, the first element in each row
being the Tower depth 1imit of applicability (measured from the sea-bed) of
the particular segment whose coefficients (a,b,c) are given by the other
elements of that row. Presently, storage is provided for five segments.

A conditional branch on the depth is used in subsequent calculations to
calculate the correct velocity forra given depth.

C. The Instruments

The program permits all kinds of instrument packages to be
inserted in the system. They should be positioned at multiples of the basic
cable segment length, as used for integration along the cable (and discussed
in the next section). If they are not so positioned, the program will round
the position to a segment multiple. The instrument locations, in feet along
the cable from the buoy, are read into the computer, converted into an
integer number of cable segments and stored in an array capable of holding
ten different values. Because of the conversion, the instrument locations
are still correct when the cable is stretched. Before each integration is
made, the program checks to see if there is an instrument at the upper end
of the cable segment. If so, the velocity is determined and the instrument
drag calculated. Then the resulting increments in cable tension and angle
are combined with the preceding values of these variables. No separate
subroutine is provided for the instruments, as was the case for the buoy,
so the buoyancy and drag cross-sectional area must be read in as data. Any
swivels, shackles or other fittings located near an instrument should have
their weights accounted for by including them in the instrument weight.

D. The Cable

The integration along the cable is carried out over a series of
cable segments which are of equal length when unstretched, this Tength being
a sub-multiple of the total cable length. The choice of segment size depends
on the problem parameters, such as the complexity of the velocity profile,
the number and location of instrument packages, etc. The integration routine
uses the Runge-Kutta method with error control. The user must code an
external subroutine which specifies the functions required for an evaluation
of the derivatives given in Equations 24 through 27. The integration routine
also requires the specification of an error tolerance on the integral, a
step size, and a value of the independent variable at the end-point of the

integration. Double precision is used throughout to reduce the possibility
of cumulative rounding errors.

For an extensible cable and step-wise integration, the end point
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must correspond to the strained length of each cable segment. This requires
that the independent variable be stretched as well, i.e. Equations 24
through 27 are divided through by the quantity (1 + €), giving (1 + €)dS as
the independent variable instead of dS. In the program, the strained unit
Tength (1 + €) is represented by the function STRCH. The function is
presently calculated on the basis of the tension at the upper end of a cable
segment. For greater accuracy, this tension could include one-half of the
tension increment for the previous segment. Generally speaking, however,
the increment is usually no more than a few tenths of one percent of the
tension, so this correction is ignored here. If required, the accuracy can
be improved by reducing the segment length. Any necessity for this is
easily checked by running the model for two different segment lengths.

The boundary conditions for the first cable segment are provided
by the buoy calculations, and for subsequent segments by the results of the
integration over the preceding cable segment. The velocity used for
calculating cable drag is that which occurs at the midpoint of the segment,
the midpoint elevation being estimated on the basis of the cable angle for
the preceding segment. An iteration on the cable angle would result in a
sTightly more accurate midpoint location and, therefore, a slightly more
accurate velocity (only when the velocity profile is not uniform). This was
not deemed worthwhile since, for the calculation of drag, the midpoint
velocity is assumed to apply over the whole segment in any case. Likewise,
one could incorporate a varying velocity (when such is the case) throughout
the integration over a cable segment, but at the expense of a considerable
increase in program complexity. Again, if concern is felt about the outcome
of the procedure as presently used, especially when the velocity is changing
rapidly with depth, the program can be run with small segment lengths. Some
trial runs in which the segment lengths were varied by factors of two or
more, all other variables remaining unchanged, showed no variation in the
results. Thus, the indication is that the simple procedure used to obtain
the velocity for the drag determination is adequate. Also, while only an
average velocity value is used in the drag calculation, the dependence of
the drag on the actual cable angle is included throughout the integration
along a cable segment since the angle is one of the dependent variables.

At the conclusion of each call to the integration subroutine, the resulting
cable angle is tested for a negative value. The program is terminated if
such a value occurs, since it indicates either that the buoy has insufficient
buoyancy or that the cable is much too long. Thus the model will only cope
with a sTack Tine mooring up to the point at which the slack is sufficient

to result in a portion of the cable assuming a horizontal position. The
length of cable involved, at this critical point, depends on the cable
Toading.

The mooring Tine used in the model is not restricted to one size
or one kind of material throughout its length. Presently, ten different
cable types can be handled. Information on these, including the Tower end
position of each type in feet from the buoy, is read into an array. Then
(as is done for the instruments), the end position is converted into an
integer number of cable segments, the conversion permitting an easy check
on type changes as well as allowing cable stretch without causing any
additional problems. The form of the Tongitudinal drag equation used with
each type is optional, the choice being either that for smooth cable, for
wire rope, or no axial drag at all. The selection is made by assigning an
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appropriate logical flag in the input data.

The program incorporates a provision for using a length of chain,
rather than a dead-weight anchor, at the Tower end of the cable in a taut-
Tine surface mooring. The chain acts to reduce changes in cable tension
resulting from changes in water surface elevation, i.e. changes in the buoyant
force at the upper end of the cable. It does this by means of chain Tinks
being picked up or lowered to the bottom to permit small changes in buoy
elevation. A flag in the program indicates when chain is present, in which
case the integration is carried out beyond the end of the cable to the point
where the vertical component of tension in the chain is just less than the
weight of one increment of chain. The present chain drag routine arbitrarily
incorporates a sine-squared dependence on the angle of inclination for the
normal component -and a cosine-squared dependence for the longitudinal
component. The current speed occurring at the bottom end of the cable is
assumed to apply for all of the chain Tinks above the bottom.

E. The Iteration Procedure

The solution of the buoy-cable model is based on making an estimate
of the buoy position with respect to the bottom and, proceeding from there,
integrating along the cable to the anchor. If the anchor elevation doesn't
coincide with the bottom elevation, within specified 1imits, the estimate of
the buoy position is modified and another integration is performed. For the
case where a length of chain replaces the anchor, it is the end of the last
suspended 1ink which must coincide with the bottom. A simple additive
modification of the buoy position is made for the first iteration, using the

error in the anchor location. Subsequent iterations use a procedure somewhat
akin to the Newton-Raphson method (Appendix C).

A marked change in the velocity profile at the location of a
subsurface buoy can result in slow convergence, or even non-convergence, of
an iteration procedure unless certain steps are taken. Even more difficult
is the case of a surface buoy on a taut-line mooring using an elastic cable.
Here, the buoyancy force and the cable strain combine to increase convergence
problems. A very small change in buoy elevation can result in a very large
change in the calculated anchor position. To avoid these problems and assist
in attaining reasonably rapid convergence, a fairly elaborate system of
testing and revision is used. This begins in the buoy subroutine, but is
contained mostly in the main program. Record is kept of anchor position
errors obtained from revised buoy elevation estimates. The only corrections
subsequently permitted to the estimate are those which will result in the
error at the anchor being smaller than the error obtained on any previous
iteration. The correction term involving the ratio of differences in
successive buoy position estimates and resultant anchor Tocations, multiplied
by the most recent anchor location, usually provides a rapid initial
convergence but becomes Tess effective as the final answer is approached. To
offset this, an additional correction term is included which subtracts a
further fraction of the most recently-obtained coordinate for the anchor
location from the previous estimate of buoy elevation.

The program halts when more than fifteen iterations are required.
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If this happens, then a second run of the program, using a position estimate
based on the results of the first run, will normally achieve the desired
solution. In fact, subsurface moorings seldom take more than one iteration,
and surface moorings may typically require several. '

F. Program Output

The first portion of the program output 1ists information associated
with the integration and iteration routines. In particular, the various
estimates of buoy elevation and the resulting anchor position are given for
each iteration. Following this there is a Tisting of all of the pertinent
input and output data about the buoy-cable system and the velocity profile,
incTuding items such as instrument package drag and position coordinates.

Next, a table of cable coordinates, tensions, slope angle and drag
is printed. This contains the results of a solution of the system equations
for each segment of the cable, the number of segments having been specified
in the data input. The cable drag values given in this table are for unit
cable length. The drag value Tisted in the j-th row applies to the segment
whose lower-end coordinates are also listed in the j-th row.

Verification. of the Model

A model user must have some assurance that the physics of the system
being modelled are represented in a reliable fashion so that he may place
confidence in the predicted results. If an analytical solution is available
for the system, this provides the best possible check on the correctness of
the model behaviour, confirming that any mathematical procedures involved in
the model are being properly carried out. For the present case, a problem
with an analytical solution can be formulated to verify that the system of
four simultaneous differential equations describing the cable behaviour is_
being solved correctly by the computer program. The problem concerns a
so-called free-streaming cable, i.e. a mooring line unencumbered by any
attachments except at the anchor point and supported only by its own buoy-
ancy. Under these circumstances, the cable will stream into a position where
the normal forces are in balance, i.e. the normal drag force will be just
equal to the normal component of the weight or buoyant force at every point
along the cable. Thus, referring back to Equation 8:

FN + {(w-b) cos ¢ =0 (34)
and:
do _
TR=0 (35)

Since T is dbvious]y non-zero, then the change in angle, %%3 must be zero and
the solution of Equation 35 is:
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¢ = constant (36)

Therefore, the cable streams in a straight line (if it is everywhere exposed
to water having the same velocity and density). Equation 34 can be solved,
by iteration if necessary, to obtain the exact value of the angle. It might
also be mentioned that the cable angle at the fixed end of any moored system
using buoyant line (or any surface-towed system with a 'weighty' 1ine) will
be asymtotic to the free-streaming angle, no matter what the configuration of
floats or weights. Next, the tension along the line can be calculated from
Equation 9, since all of the variables in the equation are now known.

Four simulations of a free-streaming cable were carried out by
applying the model to a 100-ft Tength of %-inch diameter buoyant cable
subjected to four different flow velocities. A buoy having a nominal buoy-
ancy of 1 1b was added to the system to circumvent some program logic that
requires support at the upper end of a mooring cable. A segment. length of
2 ft was used. In each simulation, the free-streaming angle was achieved at
a distance of several segment lengths from the buoy. For velocities ranging
from 5 to 20 ft/sec, the angles ranged from 20 to 5 degrees above the
horizontal, approximately. The agreement between the. predicted angles and
the angles calculated analytically reached to at least six significant
figures. The same degree of correspondence was found for predicted and
calculated tensions. Therefore, the veracity of the program procedures seems

unquestionable and there only remains the problem of supplying adequate input
data to the program.

The provision of suitable information to the mooring model is
certainly the key to obtaining accurate predictions regarding the system
configuration. In particular, a reasonable representation of the velocity
profile is required because of the square law dependence of drag on flow
speed. Even if a test mooring is deployed with the specific intent of
defining the nature of the profile at a given location by measuring velocities
at a number of depths, there is still no assurance that the velocity is not
considerably different at positions between the measuring points. Also, the
profile may vary with tidal range or with the seasons. Lacking any reliable
information concerning the profile required for a simulation, the most
straightforward approach is to assume a uniform velocity. Suitable estimates
of drag coefficients are also important, with the emphasis on accuracy
depending somewhat on the mooring configuration. If a long line is used,
carrying few instruments, then the cable drag is 1ikely to be the dominant
force. For a short Tine and a Tlarge number of instruments, the total drag
of the instruments may equal or exceed the cable drag. The flow Reynolds

numbers for the components should be considered when selecting the drag
coefficients.

Lacking an analytical solution for a particular model, any attempt
at verification on the basis of data from an actual mooring would be very
difficult because of the aforementioned problems associated with the
correctness of the model parameters. If such verification must be attempted,
it is preferable to make use of a subsurface mooring, rather than a surface

one, because of the much greater sensitivity of its configuration to
variations in the forces involved.



24

Limitations of the Present Model

Some of the limitations of the model have already been mentioned
as assumptions connected with the mathematical development. The effect of
these assumptions is to restrict the model to static two-dimensional cases
in which a1l moments of forces are neglected. The extension of the model to
three dimensions is not difficult in principle, but would add some complexity
to the computer program. Moments on the buoy and instruments could also be
readily included, but would require a good knowledge of the fluid dynamic
behaviour of these bodies, e.g. 1ift and drag coefficients vs angle of
incidence, and centre-of-pressure travel. Wind drag on surface buoys is
presently ignored but this restriction is easily modified. Instruments
must be attached between cable segments but this is of little consequence
because the segment lengths can be made as small as reasonably desired.
Moorings using more than a single anchor point require a different program.
For a two-point mooring, the model might still be two-dimensional. For a
larger number of anchors than two, a three-dimensional model is obviously

required. Multiple-point mooring models might encounter structural
redundancy problems.

In conclusion, the present model incorporates the steady two-
dimensional hydrodynamic drag forces exerted by a space-varying velocity on a
surface or subsurface buoy and on a flexible, extensible cable and
instruments supported beneath the buoy. The accuracy of results obtained
from the model will depend in large measure on the provision of accurate

velocity information and, to a lesser degree, on an adequate knowledge of
the cable characteristics.
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APPENDIX A - BUOY CALCULATIONS

1. Spherical Buoy
(a) Immersed volume:
b
V(z) =¢I C(z)dz
-r
where V is ‘immersed volume, C is the area of a horizontal section of the buoy,
z is the vertical coordinate (positive upwards), r is the radius of the buoy,

and b is the distance from the water surface to the centre of the buoy. The
horizontal coordinate is x. Now:

C(z)

i

mx2 = mn(r2 - z2)

n[r2z - Zﬁ]b

Therefore: | V(z)
_ ‘ : ' 3 -r

(3r2b - b3 + 2r3)
3

where v is given for a particular buoy and the quantity (r + b) is equal to
the difference in elevation of the water surface and the bottom of the buoy.

(b) Immersed area:

A(z) = 2xdz = Jr 2(r2-22)"? dz

-r -r

where A is the immersed area in a vertical plane and the other variables are
as given in the previous section. Then:

A(z)

it

1 -
[z2(r2-22)% + r2sin 12]b
‘Y—‘-Y‘

b(rz—bz)l/2 +r2(n +sin’! b)

I
p r
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2. Cylindrical Buoy with Horizontal Axis

(a) Immersed area:

The equation for the immersed area in a vertical plane.is identical
to that given for the spherical buoy, above.

(b) Immersed volume:
V(z) = LA(z)

where L is the length of the buoy (the average length in the case where
cone-shaped end pieces are fastened to the cylinder).

3. Toroidal Buoy
(a) Immersed area:

The immersed area of a toroidal buoy is just twice that of a
spherical buoy, where r is now the minor radius of the toroid (i.e., it is
the radius of a cylindrical section of the toroid).

(b) Immersed volume:
V(z) = 2mRA(z)

where A(z) is as given for the spherical buoy and R is the major axis of

the toroid, i.e., the centreline radius or mean value of the inside and
outside radii of the toroid.



28

APPENDIX B - SAMPLE COMPUTATION

The program is here applied to a system comprised of a -toroidal
surface float, a synthetic plastic cable, five instruments and a heavy
chain anchor to illustrate-the procedure, The FORTRAN cod1ng form for this
example is given in Table I at the end of this section. -

The first data card provides all the information about the buoy
type and its specifications. A letter "T" is required in the j-th column
to call the j-th buoy subroutine. The remainder of the first five columns,
corresponding to other buoy types, should cantain the letter "F". In the
present case, BUOY3 (toroid) is called. The letter "F" is found in Column
11, indicating that the -buoy is at-the water surface; a "T" would have been
required for a subsurface buoy. Columns 21-30 contain the buoy weight .
(700.0 1b) in air and Columns 31-40 contain the drag coefficient (1.0).

The principal vertical dimension (for displacement - see Appendix A) is
listed -in Columns 41-50. In this instance, it is the minor radius (1.25 ft)
of the toroid. The next two sets of ten columns are available for other
pertinent dimensions of the buoy. Here, only one is required, it being the
major radius (2.75 ft) of the toroid.

The second data card lists the cable parameters. Columns 1-7
contain the distance from the buoy to the lower end of the .cable type, in - -
the unstretched condition. In the present example, only one type of cable . -
is used, with a length of 900.0 ft. The next five sets of seven columns
each are used to supply information on, in the order given, the cable
buoyancy (0.045 1b/ft), weight (0.050 1b/ft), diameter (0.036 ft), drag
coefficient (1.2) for flow in a direction normal to the cable and drag
coefficient (0.1) for flow parallel to the cable axis. Beginning in Column 43,
there are three sets of ten columns each which‘contain the coefficients for
a second order fit to the fractional stress-strain re1ationsh1p for the cable.
In this instance; .the cable*is taken to .be Samson 2-in=1 nylon. From-a
graph supplied.hy the manufacturer, a least squares fit to the working

-port10n of the stress-strain curve was obtained in the form.of Equation 13 .
with a = 4,48, b = 0.675 and ¢ = -0.005. The ultimate stress for a line
having a diameter of 0.036 ft (7/16 in.) is 6000 1bs. Thus, in terms of
Equation 14, one obtains a, = 1.045, a; = 1.125 x 10™* and a, = 1.389 x 1078,
These are the data which are used on the card in the given sequence. Columns
73-75 contain logical variables used for selecting the form of longitudinal
drag equation considered appropriate to the occasion. If a "T" appears in
Column 73, Equation 26 is used; if in Column 74, Equation 27 is used; if in
Column 75, longitudinal drag is ignored altogether. Up to ten different
cable types may be represented in the model, each with its own card for
data input. If the number is less than ten, the sequence must be terminated
by an end-of-file indication. Hence, the third card here contains GEOF.

The fourth data card indicates, in Column 1, the presence (T) or
absence (F) of a length of chain at the Tower end of the cable. If, as here,
chain is used in the system then seven parameters are given, commencing in
Column 11 and occupying ten columns each. These are given in the following
order: buoyancy (1b/ft), weight (1b/ft), cross-sectional area (ft2) per ft
of length, drag coefficient for normal flow, drag coefficient for axial flow,
total length of chain (ft) and the Tength of chain (ft) over which each



29

integration is performed. For this example, it is assumed that chain is
used in Tieu of an anchor. For easier handling, two lengths of 17 Tb/ft
chain are used together, giving a weight of 34 1b/ft. The buoyancy is
about 4 1b/ft and the cross-sectional area is taken as 0.4 ft2/ft. The
drag coefficients are not known with any accuracy, but the drag force is
small in any case. Here the normal- and longitudinal-flow drag coefficients
are assumed to be 1.2 and 0.6, respectively. The increment of chain over

which each integration is made is 1 ft. Total length of chain (i.e., of
the doubled-up chain) is 40 ft.

The next five data cards provide information about the instrument
packages. Up to ten different types of instruments can be used, but five
identical current meters are involved here. Columns 1-10 on each card
contain the instrument locations in feet from the buoy along the unstretched
cable. The instruments must be positioned at multiples of the basic cable
segment Tength, as mentioned in the text. For this example, the segment
length will be 20 ft (determined by a subsequent card), and the five
instrument locations are 20, 100, 200, 500 and 800 ft. Then Columns 11-20
of each card contain the buoyancy (1bs), Columns 21-30 the weight (1bs),
Columns 31-40 the cross-sectional area (ft2) for the drag calculation and
Columns 41-50 the drag coefficient. Here, the values for the above
parameters arée assumed to be 15, 50,0.7 and 1.0, respectively. Since the

number of instrument data cards is less than ten, the next card must be an
end-of-file indicator.

Another five cards are used, next, to provide the velocity profile
information. Each card 1ists up to four numbers, each number occupying
ten columns. The last three numbers are the coefficients for a second order
velocity vs depth equation of the form v = a + bz + ¢cz2. The first number
is the Tower 1imit of applicability of the coefficients, given in feet
above bottom. If fewer than five segments (cards) are used, they must be
followed by an end-of-file card. The easiest way of determining the
coefficients is to graph the desired velocity profile, for clarity, then
obtain a zero-, first- or second-order fit to each segment separately. 1In
the present example, the current speed is 0.83 ft/sec from the bottom to a
height of 600 ft above bottom. It then increases linearly to 1.64 ft/sec
at 700 ft. It remains constant at this value for another 100 ft, and from

800 to 900 ft it increases linearly to 5 ft/sec. Above 900 ft, the speed
remains constant at 5 ft/sec.

The sixteenth card in this data deck contains the desired number
of cable segments in Columns 1-10, the cable length (ft) in Columns 11-20
and the integration error tolerance in Columns 21-30. The number of
segments is here taken as 45, with a cable length of 900 ft, resulting in
a segment length of 20 ft, as mentioned above. The integration error
tolerance is required by the integration subroutine. Too large a value
reduces the computational accuracy and too small a value increases the
computation time. A value of 0.1 appears reasonable in this application.
Column 31 contains the value of a logical variable which, if given as "T",

will result in the printing of various data as a diagnostic aid, when
required.

The seventeenth data card contains, in Columns 1-10, an initial
estimate or guess of the buoy position in feet above bottom. The value of
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this guess can be almost any number because the iteration procedure usually
ensures a rapid approach to the correct position. However, for a subsurface
buoy a reasonable value to use is that of the cable length, and for a surface
buoy one could assume that it is immersed to about one-half of its height.
Columns 11-20 list the permissible jteration error (ft) for the anchor
position. An accuracy equivalent to one-tenth of one percent of the total
cable length appears to be a reasonable requirement. Columns 21-30 give

the elevation of the water surface in feet above bottom. For this example,
the water depth is 960 ft, the permissible iteration error is 1 ft and the
buoy elevation is estimated to be 958.8 ft.

After the program is run, the Tistings mentioned in the section on
Program Output are produced. These are shown in Table II for the given
example. The initial quess for the buoy elevation was too low, as indicated
by the resulting Targe negative value for the anchor position, seen under the
column headed Y(3). The iteration procedure then provided a rather ludicrous
second estimate (in the column headed ZED) for the buoy elevation, since
the suggested value put the buoy above the water surface. However, the buoy
subroutine recognized this and substituted a more reasonable value before
commencing on the first iteration. Note from the results how a small change
in elevation, for a surface buoy, can result in a large change in anchor
position.
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TABLE II - Qutput Listing for Mooring Program Example

NOQ Uf‘ \;A“Li SE‘_GN‘E‘.NTC - L‘tu)-

INTEGRATION EKKOR TOLERANCE = .10000

PERMISSIBLE ITERATION ERKCR = 1.00 FT

INITIAL GUCSS FOR oUOY POSITION = 958,80 FT ABOVE ROTTOM

2e0 Y (3) ZMAX ZLOW YMAX YM Ik

958480 154,87
1113467 154G .87 126855 958,80 154,87 ~154.87
959.37 255,93 -
959.10 255,93 1268.55 958,80 154 .87 -154.87
959.10 ~54.33
959,19 -54,33 1268.55% 959,10 154,87 -54 .33
959.19 -11.35 |
959,21 ~11.35 1268.55 959,19 154 .87 -11.35
959.21 3,75
959.20 3.75 959.21 959.19 3.75 =11.35
959.21 —2.23 959,21 959,20 3,75 -2.23
959.21 1.21 ,
9‘39-&1 1021 95)9.:.1 959@20 1021 -LZOZ.B
959.21 -63 |

Nue OF ITLRATIONS REQUIRED WAS 7 .

A%



TABLE II (Continued)

cUVY PARAMCTERS 3

sUUYANCY = 14&63.389  LEbS

WELGHT IiN AIR = 7J0,.000 L85

RB = 1.250 FT

RC = 2750 F1

KU = «000 FT

DRAG . COEFFICIENT = 1.,000

pUUY TYPE IS5 TOROTUAL.

BUUY CUORUINATES ( 336,43 959.21 ).
VERKTICAL EACUKRSION = -59,21 FT

BUOY DAL 1S 67.07  LisSe

BUOY Is IMMERSED TU A DEPTH OF « 795 FTa

CApLE PARAMETERS - TYPE 1 ¢

BUOYANCY = L0450  LBS PER FT
WELGHT IN AIR = .0500 L3% PER FT

UIAMETER = L0360 . FT

NOKMAL URAG CUEFFICIENT = 1.2000

AXLAL DRAL COEFFICIENT = .1000

CLASTIC COCFFICIENTS: AGT .1045+4601 & AlT 41125-003
LENGTH =  900U.000  FT. -
TOVAL LENGTH OF CABLE =  900.000 FT.

INSTRUMENT PARAMETERS = NUe 1 3

DISTANCE ALONG UNSTRETCHED CARLE FROM BUOY = 20.
BUUYANCY = 15,000 LBS

WEL1oHT IN AIR = 50,000 L&S

CRUSS=SECTIONAL AREA = U Se FT

DRAG COEFFICIENT = 1,000

INSTRUMENT DRAG IS 17.50 LBS

INSTRUMENT COURDINATES ( 33b.16 r 936,82 )

.
’

FT

A2==-.1389-007

€



TABLE II (Continued)

vk'_i\[iCmL. L/\\-Uh’:}luﬂl - ":'j(.‘)-dg f‘"

INSTRUMENT PARAME TERS = NO. 2 ¢

UloTACE ACONG UNSIRETCHED CARLE FROM
BUOUYANCY = 15.0CG0 LBS

wblGHT IN AIR = 50.000 LARS
CHRUSS=5ECTLONAL AREA = o 704 Sa
UORAG CuFFICIENT = 1.000

Mo TRUMENT DRAG IS 748 LIS

PN TRUMENT COURDINATES ( 317.91
VERXTICAL EACURSION = 4593 FT
INSTRUMENT PARAMETERS = NO. 3 @
VDISTANCE ALONG UNSTRETCHEU CARLE FKOM
BUUYANCY = 15,0060 LBS

WE1GHT IN AIR = 50,000 LBS
CRUSS-SECTIONAL AREA = « 700 SG
DRAG CucFFL{CIENT = 1.G00
LNSTRUMENT ORAG IS 1.8 LA&3S
INSTRUMENT COORDINATES ( 285.92
VERTICAL EXCURSION = -41.64 FT
INSTRUMENT .PARAMETERS = NC. 4 2
DISTANCE ALONG UNSTRETCHED CARLE FrOm
bUUYANCY = . 15,000 LBS

wELGHT IN AIR = 5C¢.000 LBS
CRUSS=SECTIONAL AREA = s 7010 Sa
DRAG CURFFICIENT = 1.000
INSTRUMENT DRAG IS 48 LHS
INSTRUMENT COORDINATES ( 17%.98

VERTICAL EXCURSION = -25.36 FT

RBU

BY

FT

BuU

FT

oy = 106.
848f93 }e
oY = 200.
T4le.64 }o
QY = 500.
425,36 ).

FT

FT

FY

ve



TABLE II (Continued)

Lo TRUMENT PARAMETERS = NGe 5 3

UISTANCE ALORG UMSTRETCHED CARLE FKOM BUQY = 800 FT
BUUYANCY = 15.000 LBS
b LGHT I AIR = H$0.0400 LRS
CRUSS=-SECTA0NAL AREA = s 700 Sa FT
URAG CUEFFLICIENT = 1.000
INSTRUMENT DRAG IS 48 L3S Do
INSTRUMENT COORDINATES 55429 ¢ . 114.03 VYo
VERTICAL EACURSION = -14.,03 FT
VELOCLTY PROFILE :
LOWER LAMIT COEF(0) COEF (1)’ COEF (2) VELOCITY
(F1 ABOVE 80TTUM) (FT/SEC)
900, «5000+001 »00600 «0000 5.00
800, -.2500+002 e 3330~001 «0000 1.64
700 «106404001 0000 . 0000 1.64
oLl - 41504001 «B8330=-002 «0000 «85
Oe «8300+000 0000 « 0000 «83
CHAIN PARAMETERS @
BUUYARCY = 4,000 LBS PER FT
WELGHT v alIR = .u00 . LBS PEn KT ,
URAG CROSS=SECTION AREA = 400 5QG FT PER FT LENGTH
NORMAL DRAG CUEFFICIENT = 1.200
AXLAL JRAG CORFFICLIENT = «H00
TOTAL LENOTH = 40.000 FT
INCREMENT  LENGTH FOR INTEGRATION = © 1.000 FT

LEWGTH OF CHAIN On HOTTOM = 22.000 FT

Ge



Table II (Continued)

TAsLE UF CaBLt COOKDINATES,LEHGTHs TENSIONSs ALGLES & DRAG

X (FT)

33343
33616
33204

3zdece,

32329
317.91
311.75
305.43
299,00
292.50

28%.92..

278489
271 .80
204 ° 03
257.41
25013
242.82
2535.47
228.11
220.72
213432
205.89
198 .44
190498

183449

17590

loUel4d
152.20
la4.24
136.20
128425
12023

Z (FT)

659,21

930.8&
914.62

BYZ.6U

570.71
B48.93
Be7 .35
805,88
784 .44
763,03

741,64 -

720439
699,25
678.09
656.97
©35.87
614.76
593.71
572.64
551.57

- 530¢8< -

509.47
L&EB.Y4S

‘L‘-L?O [ 3b
425436
L‘-‘Uq"- 49 ;

383.069
362.90
342.12
321434
300,57
27981

S FT)

1022.06:
999, 56

977.06
954 .62
932.18
909.74
58730

. 864.92

842 .54

82016

797.78
775.40
753.08
730.76
708.44
H86.12
663,80
641.48
619.16
596 .84

S7T4.52 -

552.21
529.89
50757
485425
462.93
440.61
418.306
396,10
373.84
351.59
329.33

307.07

T (L)

T06.26
7586.29
754,01
T754.18
T54.33
754 .44
722.63
~T22.64
- T7e2.61
722.59
- T722.56
669.77
689.75
689.73
689.69
6E9 .65
659.59
689.52
659.44
689,37
. 659,30
689.23
659.15
66908
669.01
668.94

656.19 .

65612
656.05
655.98
655.91
655.84
695.78

PHI

N i

(DEG)

B5.11
83.30
79.81
7798
TEet01
75.66
7377
73.41
73.21
73.00
72.80
7159
7138
71.19
71.03
70491
70.82
TGeT76
7070
70 .65
7059
T0.54
T0 48
TOe.42
TGe37
7031

6C.19 .

69,13
£9.07
69.01
6895
68.90

658,84

NORMAL DRAG
(LB/FT)

1.098
1.078
1.065
.802
554
351
.200
112
112
112
110
103
.081
« 063
« 046
«032
. 029
.029
028
.028
028
.028
028
.028
.028
.028
028
.028
.028
.028

AXTAL DRAG
(LB/FT)

20077
«0116
-0136
«0123
.0100
.0081
. 0035
«0036
.0036
.0039
.0039
. 0038
. 0032
0026
.0021
.0016
.0015
« 0015
«0015
«0015
.0015
.0015
.0015
0015
.0015%
0015
.0016
.0016
.0016
.00156
.0016

9¢



liz«18
104412
FHred3
8793
79.80
71-65
63«48
55.29
L4te04
3799
29.32
20002
11.91
11.51
11.09
l10.64
10.18
Y.69
9.17
8.62
8.04
743
HeT8
608
5034
4456
3.73
230
1.94
.ﬁa
.00

cb9.00
£384 3z
217.58
196.80
170.14
195 .45
134.73
114.03
93'53
73.09
52.66
32«24
11.83
10.91
10.01
9.11
8.2\5
7.35
50
5.66
4,85
4.006
3.30
2.56
1.91
1.26
o735
24
-.15
L

284482
262456
240.31
2165405
195.80
175.54
151.28
129.03
166477
84.58
62439
40419
16.00
17.00
16.00
15.00
14.00
13.00
12.00
11.00
10.00
9,00
8.00
7.00
6400
5.00
4.00
3400
2.00
1.00
.00

Table IT (C

6L5.71
655.64
LS «h7
655450
655 .’-H#
6537
55530
655.23
622.95
622 .89
6c2.82
622.76
‘622-69
595.26
568.08
541.21
514.7C
458459
462.97
437.91
413.52
389.92
36T .27
345.75
325458
307.04
260.43
276,09
264 .40
255.72
250.36

FInAL VERTICAL TENSLION COMPONENT =

FLNAL HURLZONTAL TENSION COMPONENT =

ontinued)

68.7F
68.72
HR.67
BE+61
68.55
6849
684U
6838
67.0S
67.02
66.97
66.91
66 .85
65.69
6442
63.02
6147
59.76
57.86
55475
53.37
50.71
47.72
44,34

4054

36425
31.46
26412
20.26
13.93

7.25

31.59 LB

248 .36

1.B

025
.028
Q28
028
«028
028
«028
028
027
- 027

027

.027
.027
.275
.269
.263
.255
.247
237
226
213
.198
.181
162
«140
116
.090
<064
.040
<019
.005

L0015
.0015
0016
0016
»0016
L0015
.0016
00016
«0017
«0017
.0017
.0017
.0017
.0280
.0308
«0340
«0377
+0419
. 0468
.0524
. 0588
0663
. 0748
.0846
« 0955
« 1075
«1203
«1333
» 1455
« 1558
1627

LE
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APPENDIX C - PROGRAM SOURCE LISTING

A complete source listing for the main program and all subrout1nes
is given in the following pages.



C=-=SURFACE & SUBSURFACE SINGLE=~POINT MOORED BUOY PROGRAM

C

C We He BELL = 1977

C

C--THIS ROUTINE CALCULATES CABLE SHAPE » TENSION¢DRAG AND ANGLE.

c
C--ORIGIN OF THE SYSTEM IS AT THE BUOY FOR THE INITIAL CALCULATIONS®

AND AT THE ANCHOR FOR THE LIST.
CABLE ANGLE IS REFERRED TO THE HORIZONTAL.
IF MORE THAN 300 DEPTH SEGMENTS ARE REQUIREDsALL OF THE
ARRAY DIMENSIONS MUST BE INCREASED ACCORDINGLY.
-=-DENSITY OF WATER IS TAKEN AS 2 SLUGS PER CUFTerI.E. RHO/2 = 1.
KINEMATIC viISCOSITY IS 0.000015 S@ FT/SEC.

--NOMENCLATURE 3 BB ~ BUOY BUOYANCY (LBS)
WB - BUOY WEIGHT IN AIR (LBS)
AB - BUOY CROSS-SECTIONAL AREA (SQ FT)
ChH - BUOY DRAG COEFFICIENT
DB - DRAG FORCE ON BUOY (LBS)
B( )} = BUOY TYPE
RB - VERTICAL DIMENSION OF BUOY
ZED - VERTICAL DISTANCE OF BUOY ABOVE BOTTOMe.

BC = CABLE BUOYANCY (LBS PER FT)

WC = CABLE WEIGHT (LBS PER FT)

CP - CABLE DRAG COEFFICIENT FOR NORMAL FLOW

CL - CABLE DRAG COEFFICIENT FOR AXIAL FLOW

D( ) = DRAG TYPE '

DIAC - CABLE DIAMETER (FT)

STRCH = STRETCHED LENGTH OF UNIT CABLE

ZCBL - TOTAL CABLE LENGTH (FT)

CBLZ - DISTANCE FROM BUOY TO END OF CABLE TYPE
A{ ) - ELASTIC COEFFICIENTS FOR CABLE

OO0 0000OCO00O00

6€



CABLE - ARRAY OF CABLE PARAMETERS

NSEG = NO+ OF CABLE SEGMENTS USED IN CALCULATIONS
DELZ = LENGTH OF CABLE SEGMENT :

X = INDEPENDENT VARIABLE - CABLE LENGTH

Y(1) = CABLE ANGLE (RADIANS)

Y(2) = CABLE TENSION (LBS)

Y(3) = CABLE Z~COORDINATE (FT)

Y(4) = CABLE X-COORDINATE (FT)

BCH = CHAIN BUOYANCY (LBS PER FT)

WCH - CHAIN WEIGHT (LBS PER FT)

CNCH - CHAIN DRAG COEFFICIENT FOR NORMAL FLOW
_CTCH = CHAIN DRAG COEFFICIENT FOR AXIAL FLOW

DCH = CHAIN  CROSS~-SECTION -AREA PER FT LENGTH
ZCHN = TOTAL CHAIN LENGTH (FT)

LINK = CHAIN INCREMENT (FT) FOR INTEGRATION

BI = INSTRUMENT BUOYANCY (LBS)

WI = INSTRUMENT WEIGHT (LBS)

Al = INSTRUMENT CROSS-SECTIONAL AREA (5Q FT)
CI - INSTRUMENT DRAG COEFFICIENT

DI - DRAG FORCE ON INSTRUMENT (LBS)

DELPH = INCREMENT IN CABLE ANGLE DUE TO INSTR.
INSTR = ARRAY OF INSTRUMENT PARAMETERS

“VEL = WATER VELOCITY (FT PER SEC)
RN = REYNOLDS NOe« '

N = NO. OF SIMULTANEOUS EQUATIONS
£ - INTEGRATION ERROR' TOLERANCE
SURF = WATER SURFACE ELEVATION
LOOP = NO. OF ITERATIONS REQUIRED,
IT = PERMISSIBLE ITERATION ERROR

IMPLICIT REAL%8 ( A-HeO=Z )

DIMENSION IDEPTH(300)/7300%0/» Y(4)e F(4)» G(4)» S(4),
+T(4) s SAVE(L6)s XXI(10)e Z2I(10)e XX(301), 2Z(301)»
+CDIST(301) s TENS(301)e PHI(301), VP{(4,5)/20%0.0D0/0
+JDEPTH(300) /300%0/+DRGN(301) vDRGL (301)

0P



OO0 O0OO0

OOOOOO00O000000

C

REAL*8 IDRG(10)¢ NSEGs MIDZ¢ MERSs LINKs LCHNe ITv»
+CABLE(9,10)/90%0.000/+INSTR(5¢10)/50%0.0D0/

LOGICAL SUB!BlrBEvB3vB4vBSvD1oDZrD3vFLAG/.FALSE./!TRBL/.FALSE./r
+DRAG(3,10)

COMMON /ALL/ VEL(PI
COMMON /KKFN/ DN+DLCP+CL/DIAC,GAMMA/D1,02+D3

COMMON /RKCH/ CNCH/DCH?»WCH»BCH¢CTCH
COMMON /BUOY/ RB»RC+RD»SURFYYrZCBLCD¢ZED

EXTERNAL FUNC/,FCHN

--READ BUOY PARAMETERS.

A LETTER T IN COLUMN J CALLS BUOY(J) SUBROUTINE. (B1-SPHERICAL
82-CYLINDRICALs, B3-TOROIDALr B4 & BS5 NOT PRESENTLY USED.) OTHER &
OF 5 COLUMNS REQUIRE F.

sug IS T FOR SUBSURFACE OR F FOR SURFACE BUOY.

RB IS A VERTICAL DIMENSION. RC & RD ARE 2 OTHER DIMENSIONS
DESCRIBING BUOY GEOMETRY» IF REQUIRED.

READ(5:,40) B1rB2:B3¢B4¢B5+SUBIWB+CDrRBrRCIRD

40 FORMAT(5L1+5XsL1+,9X¢5F10+2)

-=READ CABLE PARAMETERS.

ONE CARD FOR EACH CABLE TYPEfIN CORRECT SEQUENCE STARTING AT THE
BUOY. ORDER OF PARAMETERS IS CBLZ»BC WCeDIAC,CP»CLIAO/AL»AZ D1¢D2rD3.
CBLZ IS THE DISTANCE FROM THE BUOY TO THE LOWER END OF THE CABLE
TYPE. THE LENGTH OF EACH TYPE MUST BE A MULTIPLE OF DELZ.

AO+AlrA2s» ARE COEFFICIENTS FOR A SECOND ORDER FIT TO A FRACTIONAL
STRAIN VS. STRESS RELATIONSHIP,. '

D1eD2:D3 ARE LOGICAL FLAGS FOR AXIAL DRAG ROUTINES. (D1-SMOOTH.

D2=ROUGH:D3=NONE « )
LAST CARD MUST BE REOF UNLESS ARRAY IS FILLED.

Lo 54 J=1r10
READ (5050 END=34) (CABLE(IeJ)rI=199) ¢ (DRAGIK»J) 1K=113)

50 FORMAT(6F 72+ 3E10.4093L1)

54 CONTINUE

C--READ FLAG & CHAIN PARAMETERS.

Ly



C IF FLAG IS TRUE,THEKE IS A LENGTH OF CHAIN AT THE LOWER END OF THE
C CaABLE. SEE NOMENCLATURE FOR EXPLANATION OF VARIABLES.
C
34 READ(5¢303) FLAG/BCHeWCHsDCHrCNCH»CTCH» ZCHN» LINK
303 FORMAT(L1+v9Xr7F10.2)

-—-READ INSTRUMENT PARAMETERS.
ONE CARD FOR EACH INSTRUMENT:IN CORRECT SEQUENCE FROM BUOY.
ORDOER OF PARAMETERS IS INSTZ/BIeWI,AI,CI. INSTZ IS THE LOCATION
OF THE INSTRUMENT Iii FEET ALONG THE CABLE FROM THE BUOY.
INSTRUMENTS MUST BE POSITIONED AT MULTIPLES OF DELZ.

LAST CARD MUST BE mEOF UNLESS ARRAY IS FILLED. '

OOOOO0COO0

READ(S5¢145°END= lS)INSTR
145 FORMAT(5F10.2) '

o

C==READ VELOCITY PROFILE INFORMATION.

THE LAST THREE NUMBERS ARE THE COEFFICIENTS FOR A SECONU ORDER

C VELOCITY vS. DEPTH EQUATION. THE FIRST NUMBER IS THE LOWER LIMIT OF
C APPLICABILITY.ZMIN (POSITIVE FT ABOVE BOTTOM)» OF THE EQUATION.
C
C

(@]

LAST CARD MUST BE- BEOF UNLESS ARRAY IS FILLED.

15 READ (5,121+END=123) VP
121 FORMAT(F10. 0,3510 4)
" C
C~=READ NO» OF CABLE SEGMENTS+CABLE LENGTH¢ERROR TOLERANCE & LOGICAL
C FLAG. IF TRBL IS SET+DRKC VALUES WILL BE LISTED FOR DIAGNOSTIC USE.
C
123 READ(5960) NSEGrZCBL+EsTRBL

60  FORMAT(2F10. 2-Flu SeL1)

C

C--READ A FIRST. ESTIMATE OF THE BUOY POSITION IN FEET ABOVE

C BOTTOMes THE PERMISSIBLE ITERATION ERROR & THE WATER SURFACE
C ELEVATION IN FEET ABOVE BOTTOM,
c ‘ .
READ(59122) ZEDsITrSURF
122 FORMAT(3F10.2)
C

A/



WRITE(6e102) NSEGE
102 FORMAT('L'»//¢' WO. OF CABLE SEGMENTS ='»
+F10.0¢//9" INTEGKATION ERROR TOLERANCE SV F10.5¢/)
e .
WRITE(6¢31) ITeZED
31 FORMAT (' ' *PERMISSIBLE ITERATION ERROR S0y F10e213Xe'FTY 2/ /01Xy
+'INITIAL GUESS FOR BUOY POSITION ='sF10.2¢3X»'FT ABOVE pOTTONM'e//)
C
WRITE(60,206)
206 FORMAT(?® ' eSXp VZED T eOX 'Y (3) 19 OX e TZMAX ' 99X ' ZLOW' ¢ IXo
+VYMAX Y s OXe *YMINY /) :
C .
C-=-INITIALIZE SOME ITEMS.
C
2=ZCBL
X=0,000
PI=3.141593D0
RAD=PI/180.D0
ZINC=0.000
LOOP=0
YY=Y (3)
DELZ==(Z=X) /NSEG
C
C==LOAD AN ARRAY INDICATING THE INSTRUMENT LOCATIONS FOR
C SUBSEQUENT PROCESSING ROUTINES
C
Do 75 J=1,10
I1I==DELZ
JUZINSTR(1eJ)
K=JdJu/11l
IF(K) 75¢75¢85
85 IDEPTH(K+1)=dJd
75 CONTINUE
C
C-=-LOAD AN ARRAY INDICATING THE LOCATION OF
C CHANGES IN CABLE MATERIAL.
C
DO 46 J=1.10

EY



C
C

OO0 O000O0

I1==DELYZ
JU=CABLE (19 J)
K=JdJ/11
_ IF(K) 46146047
47 JDEPTH(K)=J+1
46 CONTINUE

-~CALCULATE THE VELOCITY AT THE BUOY.

245 DO 200 1=1s5
ZMINSVP(101)
IF (ZMIN=~ZED) 210.200,200
210 VEL=VP(2,1)4+VP(3+1)*ZED+VP (4, 1) *ZED*ZED
G0 TO 220
200 CONTINUE

--EMPTY THE STORAGE ARRAYS.
XXI & zzZI ARE INSTRUMENT COORDS. IDRG IS INSTRUMENT DRAG. XX & ZZ ARE
CABLE COORDS. TENS IS CABLE TENSIONe. PHI IS CABLE ANGLE. CDIST 15
DISTANCE ALONG THE CABLE FROM THE BUOY (STRETCHED DISTANCE.IF
APPLICABLE). CDRG IS THE AVERAGE DRAG FORCE ON A CABLE SEGMENT »
RESOLVED HORIZONTALLY.

220 DO 32 I=1,301 "

CDIST(I)=0.00D0
TENS(I)=0.0D0
PHI(I)=0.0D0
" DRGL (1)=0.0D0
XX(I)=0.0D0
32  ZZ(1)=0.0D0
DO 35 I=1,10
IDRG(I)=0.000
XXI(I)=0.0D0
35 Z22I1(1)=0.0D0

4%



C--CALCULATE BUOY LRAG & BUOYANCY, ADD MORE SUBROUTINES AS REGUIRED »
C .
IF(B1) CALL BUOYLl(BB.DB)
IF(B2) CALL BUOY2(3B.0DB)
IF(B3) CALL 8U0OY3(BB.DB)
C
C--DETERMINE INITIAL VALUES FOR CABLE ANGLETENSION & COORUINATES
C AT THE BUOY END OF THE CABLE
C
A=BB=WB : o
IF(DB.EQ+0.000) GO TO 3
IF(A) 1¢92¢9c
IF(SUB) 6O TO 93
IF (SURF .GE+ (ZED+2,0D0*RB)) GO T0O 91
ZINC=ZINC+RB/2.000 ‘
LED=ZED=ZINC
GO TO 245
92 Y(1)=DATANZ2(A+DB)
60 70 90
3 IF(2CBL.GE+SURF) GO TO 86
IF(A) 1+183
83 Y(1)=PI/2.000
90 Y(2)=(A*A+DB*DB) *%0.500
Y(3)=ZED
Y(4)=0.000
X=0.0D0
XX(1)=Y(4)
22(1)=Y(3) ‘
YDEG=Y(1)/RAD
COIST(1)=X
TENS(1)=Y(2)
PHI(1)=YUEG
PRIORX=0.,0D0

N -

c
C-=-INITIALIZE CABLE PARAMETERS.
C

JJd=1

BC=CABLE(2,JJ)

1Y



WC=CABLE (30 uu)
DIAC=CABLE (49 Jd)
CP=CABLE (51 JJ)
CLECABLE (6+JJ)
- AOZCABLE (7+JJ)
ALZCABLE (8¢ JJ)
A2=CABLE (91 ud)
D1=DRAG ( 1+ JJ)
D2=DRAG (21 JJ)
- D3=DRAG (3¢ JJ)
“GAMMAZHC=-BC
C .
C—-PARAMETERS REQUIRED BY DRKC ROUTINE FOR SIMULTANEOUS DeE+'S
C .
.Nq‘vA
STRCHZAG+AL®Y (2) +A2%Y (2) %Y (2)
- Z=DELZ*STRCH
- H=(Z=X) /64 .000
HMINZ,0001D0*H

Commmemm INTEGRATION LOOP BEGINS HERE=====
KSIDFIX(NSEG)
D010 J=LrK.

c

C=~IF THERE IS AN INSTRUMENT AT THE UPPER END OF A CABLE SEGMENT.

C CALCULATE THE VELOCITY THERE

o

- IF(IDEPTH(J)) 106+106¢107

107 DO 250 I=1+5 s . e
ZMINZVP(1,1) ' 0T C '
IF(ZMIN-Y(3)) 255¢250,250

255 - VELZVPA2+ 1) +VP.(3s 1) Y A3) +VP (4r 1) *Y{3) %Y (3)
60 TO 105 : .

250 CONTINUE

c - \ , : . o

C-=SET INSTRUMENT PARAMETERS & CALCULATE THE DRAG

o

9¥



c

105

JUZIDEPTH(J)
BIZINSTR(2¢Jd)
WIZINSTR(3eJJ)
AIZINSTR(4 e JJ)
CIZINSTR(SrJJ)
DI=CIxAI+VEL*DABS(VEL)

C-- CALCULATE CHANGE IN ANGLE & TENSION DUE TO INSTRUMENT

C

C

6

DELP=(WI-BI)*DSIN(Y(1))=DI*DCOS(Y (1))
DELN=(WI-BI)*DCOS(Y(1))+DI*DSIN(Y (1))
DEL1=Y(2)-DELP

CELPH=DATANZ2 (DELNeDEL1)
Y(2)=DELN/DSIN(DELPH)

Y{(1)=Y(1l)~-DELPH

YDEG=Y(1)/RAD

IF (YDEG) 97996096

C==LOAD INSTRUMENT COORDINATE ARRAY

C

C

96

IDRG(JJ)=DI
XXI(JJ)I=Y(4)
2Z1(JJ)=Y(3)

C--CALCULATE THE VELOCITY AT THE CABLE MIDPOINT (APPROXIMATELY).

C

106

109

108

265

11

STRCHTAO+A1#Y (2) +A2%Y(2) *Y(2)
MIDZ=Y(3)+{DELZ*STRCH*DSIN(Y(1)))/2.D0

DO 108 I=1¢5

ZMIN=VP(1,1)

IF(ZMIN=MIDZ) 10901080108

VEL=VP(2e 1) +VP (3¢ 1) *MIDZ+VP (4, 1) *MIDZ*MIDZ
GO0 TO 265

CONTINUE

IF(JNOT.TRBL) GO TO 260

WRITE(6r11) XeZeYeVEL
FORMAT (Y ' IN:"3X"x:"F100412X"Z:'0F1004'2XP'Y1="F1004'

LY



42X VY2Z N sF 104ty 2Xs LY3Z1 s FL10.4 02X ' Y41 yF106 % 2Xe "VELS " »FL1044)
C . 5 . . Lo W kS Lt
C=-CALCULATE THE DEPENDENT VARIABLES.
C URKC CALLS SUBROUTINE FUNC & RETURNS VALUES FOR Y(I).

C | _
260 CALL DRKC(N#XrZeYoFoHeHMINIE#FUNC?GrSe T

c : L : < s
IF{.NOT.TRBL) GO TO 12
WRITE(6+13) XrZeYrF .
13 FORMAT (Y "¢t OUT:%02(4XsF104H)aUL5XaF1044) 0/ 16X
+’F;=‘JF104442Xo'FZ:'vFan#vZXv’F3='rFlO.QvZX"F4='vF10.4)
C
C==CHECK FOR TOO SMALL A CABLE . ANGLE.
€
12 YDEG=Y(1)/RAD
IF(YDEG) 4+95¢95
~4 IF(SUB) 60 TO 22
5 60 TO 84
C .

C-=LOAD CABLE COORDINATE ARRAY. (SEE AFTER LABEL 200 FOR LIST.)
c S |
95 STRCHZAQ+AL®Y (2) +A2%Y (2) xY (2)
Z2=2+DELZ*STRCH.
L=dJd+l - .
XX (L)Y (4)
ZZ(LIZY(3)
CDIST(L)=X
TENS(L)=Y(2)
PHI(L)=YDEG
DRGN(L)=DN .

DRGL (L)=DL

PRIORX=X
C . O
C--CHECK FOR: CHANGE IN CABLE TYPE.
C

IF(JDEPTH(J)) 1041049
49 JJ=JDEPTH(Y)
BC=CABLE (2¢JJ)

" 8f



10

C--IF

309

WC=CABLE (3rJJ)
DIAC=CABLE (4sJd)
CP=CABLE (5¢JJ)
CL=CABLE (69 JJ)
AO=CABLE(7rJu)
A1=CABLE (8+JJ)
A2=CABLE(9rJJ)}
D1=DRAG(1rJJ)
D2=DRAG(2rJJ)
D3=DRAG (3¢ JJ)
GAMMAZWC~BC
CONTINUE

YZ=Y (2) %0SINCY (1))
YX=Y (2)%DCOS (Y (1))
SVCBL=X

Ltc=L

FLAG IS SET.DO CHAIN ROUTINE

IF(.NOT.FLAG) GO TO 308

Z=X

2=Z2-LINK

LC=LC+1

IF(LC.GT«301) 60 TO 308

CALL DRKC(N¢XrZeYeFrHIHMINIEPFCHN?GrSrT)

DN=CNCH*DCH*VEL*DABS (VEL) *DSIN(Y (1)) *DSIN(Y (1))
UL=CTCH*OCH*VEL*DABS(VEL) *DCOS (Y (1)) *DCOS(Y (1))
YODEG=Y (1) /RAD

IF(YDEG.LT+0.0D0) STOP 100

XX(LCI=Y (k)

ZZ(LC)=Y(3)

CDIST(LC)=X

TENS(LC)I=Y(2)

PHI(LC)=YDEG

URGN(LC)=DN

DRGL(LC)=DL

PRIORX=X

6¥



YZZY (2)*DSIN(Y (1))
YX=Y (2)*DCOS(Y (1))
IF(YZ=WCH*LINK) 308,308,309
308 CONTINUE ~
SVCHN=X"
C o
WRITE(6¢189) ZED»Y(3)
189 FORMAT(F1042:3X¢F10.2)
C L ‘
C-- DETERMINE IF AN ITERATION IS NECESSARY.:
- i , e _
L=LOOP+1
SAVE(L)=ZED
- IF(Y(3)) 270,275,280
270 ERR=Y(3)+IT
IF(ERR) 285927501275
280 ERR=Y(3)~IT '
IF(ERR) 27592752285
C
C--ITERATION PROCEDURE
C
285 IF(LOOP=-1) 266,287,287
286 IF(Y(3).LT.0.0D0) GO TO 146
: IF(Y(3).6T.0.0D0) GO TO 147
146 YMAX==Y(3)
YMIN=Y (3)
ZMAX=ZED=2+0D0%Y (3)
ZLOW=ZED
GO TO 148
147  YMAX=Y(3)
YMIN==Y(3)
ZMAX=ZED
ZLOW=ZED=2*Y.(3)
148 ZED=ZED=Y(3)
G0 TO 201
287 SAVEZ=SAVE(L-1)
IF(Y(3) eGTe0+s0D0.ANDY(3) «GT.YMAX) GO TO 142



141

142

143

144

111

29
204

202

203

201

65

275

C

IF(Y(3) eLTs0oUD0ANDsY(3) GT+YMIN) GO TO 143
IF(Y(3) elL,Te0+0D0ANDY(3)eLT.YMIN) GO TO 144
ZMAX=ZED

YMAXZ=Y (3)

GO TO 111

ZED=ZLOW+Y (3)*RB/BB

GO TO 204

ZLOW=ZED

YMINZ=Y (3)

60 TO 111

ZED=ZMAX+Y (3) *RB/BB

G0 TO 204

IF(SuB) GO TO 29

ZED= ZED-Y(B)*DABS(ZED-SAVEZ)/(DABS(Y(3))+DABS(SAVEY))-Y(3)*R8/BB
GO0 TO 204

ZED=ZED=Y (3) * (ZED=-SAVEZ) /(Y (3)~SAVEY)~Y (3) *RB/BB
IF(ZED.LE.ZLOW) ZED=ZMAX=Y(3)*RB/BB
IF(ZED+GE«ZMAX) ZED=ZLOW=Y(3)*RB/BB

IF(LOOP-15) 201,201,202

WRITE(6+203) '
FORMAT('0"s* PROGRAM TERMINATED BECAUSE THE NO. OF ITERATIONS EXCE

+EDS 15.'+/¢" MAKE A BETTER GUESS & TRY AGAIN.':/)

60 TO 300

LOOP=LOOP+1

WRITE(6065) ZEDeY(3) 2 ZMAX»ZLOW» YMAX s YMIN
FORMAT(6(F10.2¢3X)0e/)

SAVEYZY (3)

60 TO 245

CONTINUE

LCHN=ZCHN=-SVCBL+SVCHN

XRV=XX(LC)

CBLMX==CDIST(LC)

C-=PRINT THE NU., OF ITERATIONS REGUIRED.

C

33
C

WRITE(6033) LOOP
FORMAT('0's* NO. OF ITERATIONS REQUIRED WAS'r»ISe¢1Xe'e'r///)

LS



C==-LIST ALL PARAMETERS
c A Co
C--PRINT BUOY DATA.
C T : :
300 WRITE(6.100) BB wBrRB!RC RD»CD
100 FORMAT('lBUOY-PARAMETERS 1V, //0t BUOYANCY ='+sF10.3¢3X0'LBSY ¢/
+' WEIGHT IN AIR Z',F106303X0'LBSY /et RB = eF106303X0FT 0/
+' RC =frF10c3o3X-*FT'u/o' RD =" +1F10e3¢3Xe'"FT e/
+' DRAG COEFFICIENT ='»F10,3)

IF(B1l) WRITE(6¢51)

51 FORMAT(' BUOY TYPE IS SPHERICAL.

‘ IF(B2) WRITE(6,52) :

52 FORMAT(' BUOY TYPE IS CYLINDRICAL WITH HORIZONTAL AXIS.')
IF(B3) WRITE(6¢53)

53 FORMAT (' BUOY TYPE IS TOROIDAL.')

XXB=XX{1)=XRV
EXC=ZCBL=-2Z(1)
WRITE(6276) XXBeZZ(1)eEXCrDB '
76 FORMAT (' BUOY COORDINATES ('+F10:20¢1Xe*r*eF10. 2v1X").'n/r
+' VERTICAL EXCURSION ='+F1042e2Xr'FT'r /0
+' BUOY DRAG IS'rF10.292X2'LBSe")

IF(SUB) GO TO 77
IF (SURF=Z + *RB=ZED) 61178978

78 WRITE(6+79)
79 FORMAT(!' x*s*x% BUOY IS COMPLETELY IMMERSED. *¥*x*¥*')
60 70 77
61 MERS=SURF-ZZ(1)
WRITE (6¢62)MERS
62 FORMAT(*' BUOY IS IMMERSED TO A DEPTH OF'»F10e3¢3Xe*FTe")

IF(FLAG.AND . (YZ+5T« (WCH%LINK))) GO TO 902

GO TO 77

902 WRITE(6,903)
903 FORMAT("Ox*xxxINVALID RESULT - SOLUTION COINCIDED WITH BOTTOM'.

+* WITHOUT PROPER'»/¢'REDUCTION IN VERTICAL COMPONENT OF TENSION.®

25



C

+9' TRY AGAIN. ¥k %xx')
STOP 99 .

C==PRINT CABLE DATA.

C

C

C

77

101

14

17

D0 14 K=1010

IF(CABLE(1+K) «EQ.0.,0D0) GO TO 14

KTYPE=K :

IF(KeEQsl) CLEN=CABLE(1r1) :

IF(KeNEel) CLEN=CABLE(1¢K)=CABLE(1l¢K=1)

WRITE(6.101) KTYPEr(CABLE(JvK)JJ=2'9)vCLEN

FORMAT(?' *o//¢' CABLE PARAMETERS = TYPE '+I1¢' 3'0//0! HUOYANCY ' »
+' =V, F10.4e3Xr'LBS PER FTte/»
+' WEIGHT IN AIR =',F10.4+3X»'LBS PER FT's/+' DIAMETER =vyF10.4¢3Xy
+'FT*y/»' NORMAL URAG COEFFICIENT ='+F10e4e/r? AXIAL DRAG '
+'COEFFICIENT ='+F10elt4r/»
+' ELASTIC COEFFICIENTS: AO= ' »EL1Q 402X " Al=*»E10.4r2Xe ' A2='»
+E1Co4e/r? LENGTH =t »F10.3¢3Xr'FT.")

CONTINUE

WRITE(6017) ZCBL
FORMAT(' '+//»? TOTAL LENGTH OF CABLE ='¢F10.3¢3X¢e'FTa'r//)

C--PRINT INSTRUMENT DATA,

C

135

DO 16 K=1r10

IF(INSTR(1¢K) .EQ«0.0D0) GO TO 16

ITYPE=K _

EXC=ZCBL-INSTR(1¢K)=ZZI (K)

XXI(K)=XXI(K)=XRV

WRITE(6:135) ITYPE, (INSTR(JrK)rJ=105) » IDRG(K) ¢ XXI(K) »ZZI(K)sEXC
FORMAT (' *¢'INSTRUMENT PARAMETERS =~ NO. '»Il¢* st //
+' DISTANCE ALONG UNSTRETCHED CABLE FROM BUOY ='3F8s0+s3Xe*FT ¢/
+' BUOYANCY ='+F10.3¢3Xs'LBS"¢/»* WEIGHT IN AIR ='2F10.3¢3Xs
+7.BS's/r' CROSS-SECTIONAL AREA ='"+F10.3¢3Xr*SG FTY/»
+' DRAG COEFFICIENT ='sF10.3¢/¢"' INSTRUMENT DRAG ISYesF10.202Xe 'LBST
+/9' INSTRUMENT COORDINATES (*oF10.2¢1Xe e ' oF10e201Xe ') "0/
+' VERTICAL EXCURSION =V F10.2¢2Xe'FT's//)

€9



lo CONTINUE
C
C-=PRINT VELOCITY DATA.
C ' s .
WRITE(60:230) B o
230 FORMAT('0's /¢ ' VELOCITY PROFILE :'s//+3Xs'LOWER LIMIT':an
+9COEF(0) " 15X s "COEF (1) * #SX st COEF(2) ¥ #5X # *VELOCITY s /v - :
+' (FT ABOVE: BOTTOM)'-Qer'(FT/SEC)')
DO 235 I=1.5 )
IF(I+EQ.1) GO TO 236
IF((VP(1+»1) EQs0.0D0) WANDs (VP(14I-1)EQ.0,0D0)) GO TO 235
236 VELZVP(2yI)+VP (3¢ 1) *VP (1o D) +VP (4 1) *VP (1, 1) *VP (1, 1)
: WRITE(60240) (VP(JrI)rd=leb4)»VEL
240 FORMAT(' "s3XsF10.004Xr3(2XeE10,4)9¢3XeFL0.2)
235 CONTINUE
C .
C==PRINT CHAIN DATA.
C - .
IF(FLAG) 60 TO 305
GO TO 307
305 WRITE(60306) BCHeWCH» DCHrCNCHpCTCHvZCHNrLINKpLCHN
306 FORMAT(Y *¢//% CHAIN PARAMETERS :%¢//+" BUOYANCY ='+F10.303X>
+'LBS PER FT'»/+* WEIGHT IN AIR ='+F10.3¢s3X»'LBS PER FT's/»
+' DRAG CROSS-SECTION AREA .='»F1l0.3¢3Xe'SQ FT PER FT LENGTH'»/»
+' NORMAL DRAG COEFFICIENT ='»F10e3¢/» ' ‘
+' AXIAL DRAG COEFFICIENT ='+F10.3+/¢' TOTAL LENGTH =t
+F10.3¢3X0'FT" s /0" INCREMENT LENGTH FOR INTEGRATION ='»F10.3¢3Xs
+'FTvs/e? LENGTH OF CHAIN ON BOTTOM =*»F10.3¢3Xe'FT')
307 CONTINUE S
c \
C==PRINT A TABLE OF CABLE COORDINATES,TENSIONS» ANGLES & DRAG
C ke

WRITE (6+30)
30 FORMAT('1TABLE OF CABLE COORDINATES/LENGTH:TENSIONS:'s

+' ANGLES & DRAG :"¢//724Xe'X (FT)'olXe*Z (FT)'olUXe'S (FT)'r4Xo
497 (LB)'e2Xs'PHI (DEG) " +2Xs» *NORMAL DRAG'»2Xr» 'AXIAL DRAG'?
+/055Xe Y (LB/FT) " 2&Xs " (LB/FT) " /)

CDIST(1)=CBLMX+CDIST(1)

I8



24

20

310

97
98

84
63

22
64

86
87

91

XX(1)=XX(1)=XRV
WRITE(6024) XX(1)922Z(1)oCDIST(1)»TENS(1)PHI(1)

FORMAT(5F10.2) ’

K=LC

DO 70 I=2¢K

XX(I)=XX(I)=XRV

CDIST(I)=CBLMX+CDIST(I)

WRITE(6+20) XX(I)vZZ(I)vCDIST(I)vTENS(I)vPHI(I)oDRGN(I)oDRGL(I)
FORMAT(5F10.2/F10C. 3¢e3XeF10.4)

CONTINUE

WRITE(6,310) YZeYX
FORMAT(//¢' FINAL VERTICAL TENSION COMPONENT ='¢F10e2¢3Xe'LB'r/ /0

+* FINAL HORIZONTAL TENSION COMPONENT =%¢F102¢3Xr'LB"»//)

GO0 TO 205

WRITE(6,98)
FORMAT('G' ¢ *PROGRAM TERMINATED AT LABEL 6.'¢/¢1Xr

+'CABLE ANGLE IS TOO SMALL. ADD BUOYANCY.'e/)

60 TO 300

WRITE(6063)
FORMAT('0'» 'PROGRAM TERMINATED AT LABEL 54'¢/¢1Xr

+'CABLE ANGLE IS TOO SMALL. INCREASE VELOCITY.':/)

GO0 7O 300

WRITE(6,64) .
FORMAT('0' s *PROGRAM TERMINATED AT LABEL 4."r/¢1Xr

+'CABLE ANGLE IS TOO SMALL. ADD BUOYANCY.'s/)

GO TO 300

WRITE(6:87)
FORMAT('0' s *PROGRAM TERMINATED AT LABEL 3.'¢/r1X»

+'THE CABLE IS TOO LONG FOR THE WATER DEPTH«':/)

GO TO 300

WRITE(6099)
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99  FORMAT('0's *PROGKAM TERMINATED AT LABEL 2.'¢/¢1X,
+'8UOY PULLED UNDER DUE TO INSUFFICIENT BUOYANCY.'v/)
GO TO 300
C
93 WRITE(6i94)
94 FORMAT('0's 'PROGRAM TERMINATED AT LABEL 1.%'¢/r1Xys
+'THE BUOY SANK DUE TO. INSUFFICIENT BUOYANCY.':/)
GO TO 300
205 STOP
END
C
C--SUBROUTINE TO PROVIUE THE FUNCTIONAL RELATIONSHIPS FOR DRKCe
C THE FUNCTIONS ARE’ THE STATIC CABLE EQUATIONS.'
C
SUBROUTINE FUNC(XsYsF)
IMPLICIT REAL¥8 ( A=H¢0=Z )
LOGICAL D1+D2¢D3
COMMON /ALL/ VELPI
COMMON /RKFN/ DN¢DL¢CPoCL" DIAC'GAMMAle'D2vD3
" DIMENSION Y(1).,F(1)
STRCHZAU+AL%Y (2) +A2xY (2) %Y (2)
GCOMP=GANMMA/STRCH
o : '
C~=CALCULATE DRAG FORCES PER UNIT LENGTH.
< ‘ p
RN=DIAC*DABS(VEL)/1.5D=05
DP=DIAC*VEL*DABS (VEL)
RP‘(lo.DO/(RN*DSlN(Y(l))))**0 500
CDN=CP+RP’
IF(D1) CFL=(CL/4+.D0)*RP*DCOS(Y (1) J*DSIN(Y (1))
IF(D2) CGFL=RP*(1.D0-(Y(1)%2.D0)/PI)*DSIN(Y (1))
IF(D3) CFL=0.D0
DN=CDN*DP*DSIN(Y (1)) *DSIN(Y (1))
DL=PI*DPxCFL

F(1)=(DN+GCOMP*DCOS(Y(1)))/Y(2)
F(2)=GCOMP*DSIN(Y(1))-DL
F(3)=DSIN(Y (1))

99



F(4)=pCosS(Y (1))
RETURN
END
C .
C~-SUBROUTINE TO PROVIDE THE FUNCTIONAL RELATIONSHIPS FOR DRKC.
C THE FUNCTIONS ARE THE CHAIN EQUATIONS.
C
‘SUBROUTINE FCHN(XrYrF)
IMPLICIT REAL*8 ( A=H»0-=Z )
COMMON /ALL/ VEL!PI
COMMON /RKCH/ CNCH¢DCH¢»WCH»BCH»CTCH
DIMENSION Y(1),F(1)
F(1)-(CNCH*DCH*VtL*DABS(VEL)*DSIN(Y(l))*DSIN(Y(l))+(WCH—BCH)*DCOS(
+Y(11))/Y(2)
F(2)—(WCH—BCH)*DSIN(Y(1))—CTCH*DCH*VEL*DABS(VEL)*DCOS(Y(l))*DCOS(Y
+(1))
F(3)=DSIN(Y (1))
F(4)=DCOS(Y (1))
RETURN
END
C
C-- SUBROUTINE TO DETERMINE BUOYANCY & DRAG FOR A SPHERICAL BUOY.
C
SUBROUTINE BUOY1(BB.DB)
IMPLICIT REAL*8 ( A=He0=Z )
COMMON /ALL/ VEL(PI
COMMON /BUOY/ RB*RC+RD¢SURF»YY»ZCBL»CD»ZED
ZS=ZED+RB=SURF
IF(Z25-RB) 1l1r12el2

C
C BUOY IS PARTLY OR COMPLETELY SUBMERGED.
C
11 IF(ZS+RB) 16+16¢17
c
C BUOY IS ABOVE THE WATER SURFACE.
c

12 ZED=SURF=RB*YY/ZCBL
Z2S=ZED+Rb=SURF

LS



60 TO 17

C
C  BUOY IS COMPLETELY SUBMERGED.
c
16 AB=PI*RE*RB
VOL= (4+DU+PI+RB*KB*RB) /300
GO TO 13 - . |
C
C  BUOY: IS PARTLY SUBMERGED.
C | SRR
17 BYIM=RB=ZS
BYEX=RB+ZS
AB=-ZS*DSQRT (BYIM*BYEX) +RB*RB* (P1/2.0D0-DARSIN(ZS/RB))
VOL=PI#(~3+D0*RB*RB*ZS5+Z5*2S+25+2.DO*RB*RB*RB) /3.0
13 DB=CD*ABXVEL*DABS (VEL)
©+ BBSVOL*64.D0
RETURN
END
c |

C-= SUBROUTINE TO DETERMINE BUOYANCY & DRAG FOR A CYLINDRICAL BUOY.
C THE AXIS IS HORIZONTAL.

C
SUBROUTINE BUQY2(BB»DB)
IMPLICIT REAL*8 ( A=H,0-2Z )
COMMON /ALL/ VEL»PI
COMMON /BUOY/ RBsRC» RDvSURFoYY ZCBLsCD 9 ZED
2S5=ZED+RB=SURF -
IF(2S~RB) 11el2s12
C ‘ :
C BUOY IS PARTLY OR COMPLETELY SUBMERGED.
C
11 IF(ZS+RB) 16:16917
C
C BUOY IS ABOVE THE WATER SURFACE.
C

12 ZED=SURF=RBxYY/Z(CBL
ZS5=ZED+RB=SURF
GO TO 17
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C
C BUOY IS COMPLETELY SUBMERGED.
C
16 AB=PI*RB*RB
VOL=AB*RC
GO0 TO 13
C
C BUOY IS PARTLY SUBMERGED.
C
17 BYIM=RB=ZS
BYEX=RB+25S
ABZ-ZS*DSQRT(BYIM*BYEX)+RB*RB*(PI/2aDD-DARSIN(ZS/RB))
VOL=AB=RC
13 DB=CD*AB*VEI_*DABS(VEL)
BB=VvOL*64.DD
RETURN
END
C
C-- SUBROUTINE TO DETERMINE BUOYANCY & DRAG FOR A TOROIDAL BUOY .

C

6§

SUBROUTINE BUQY3(BB+DB)

IMPLICIT REAL*8 ( A=H:0-Z )

COMMON /ALL/ VEL PI

COMMON /BUOY/ RB*RC+RD»SURF»YY2CBL»CDr»ZED
ZS=ZED+RB=SURF

IF(ZS5-RB) 11rl2el2

BUOY IS PARTLY OR COMPLETELY SUBMERGED.
11 IF(ZS+RB) 169016117
BUOY 1S ABOVE THE WATER SURFACE.

OO0 OO0

12 ZED=SURF=RB*YY/Z(BL
2S=ZED+RB=SURF
GO TO 17

c
C BUOY IS COMPLETELY SUBMERGEO.



C

C
c
C

c

OO0 0O00

16 AB=2.D0%PI*RB*RB

VOL=ABxP [ *RC
GO TO 13

BUOY IS PARTLY SUBMERGEDSs. -

17

13

BYIM=RB=2S =

BYEX=RB+Z2S

AB=2 . D0%x (=ZS*DSART(BYIM*BYEX)+RB*RB* (PI1/2.D0-DARSIN(ZS/RB)))
VOL=AB*P1*RC ‘
DB=CD*AB*VEL*DABS (VEL.)

BB=VOL*64.D0

RETURN

END

C--SUBROUTINE FOR SOLVING SiMULTANEOUS ORDINARY DIFFERENTIAL EQUATIONS

USING THE RUNGE-KUTTA METHOD (ADAPTED FROM usC DRKC.)

N
X

~< N

Irm

NO. OF D.E.'S TO BE SOLVED. '

INDEPENDENT VARIABLE. INITIAL VALUE ON ENTRY TO DRKC

& FINAL VALUE ON EXIT.

FINAL "VALUE OF X AT END OF INTEGRATION.

VECTOR OF DEPENDENT VARIABLES. INITIAL VALUES ON ENTRY
TO DRKC & FINAL VALUES ON EXIT,

OUTPUT VECTOR OF DERIVATIVES: DY/DX AT X=Z.

INPUT STEP-SIZE.

HMIN = INPUT LOWER BOUND ON STEP=~SIZE.

£ = INPUT ERROR TOLERANCE »

FUNC = EXTERNAL SUBROUTINE FOR EVALUATING DERIVATIVES.
GeS»T = SCRATCH VECTORS.

SYSTEM OF -EGNS IS: F(I)=DY{(I)/DXSFN(X*»YsY(1)reeerY(N)) rIZilreeerN

SUBROUTINE DRKC(NeXeZ o YrFsHrHMINGErFUNC2GrSeT)
IMPLICIT REAL*8(A=H»0=2)

DIMENSION Y(N) pF{N) e TIN) rS(N)2G(N)

INTEGER SW

09



10

15
20

30
40

50

60
70

80

LOGICAL BC!BE»BH/BRrBX

IF (HMIN oLTe 0400) HMIN=,01D0%DABS(H)
BH= TRUE

BR=+TRUE »

.BX=«TRUE «

BC=.FALSE.

IF (E «LTe 1.D0) BC=.TRUE.

E=DABS(E)

ES5=5.00*E

IF (2 «GT. X eANDo H LT 0.00) H==H
IF (2 +LT. X +ANDe H «GTo OODO) H==H
XS = X

DO 15 J=1+¢N

G(J) = Y(J)

HS=H

@=X+H=-Z

BE=.TRUE « .

IF (H «GTe 0«DO «AND. @ oGE. 0.p0) GO TO 30
IF (H oLTe 0.D0 +ANDe Q@ oLE. 0.DO) GO TO 30
GO TO 40 ’
H=Z=X

BR=,FALSE »

H3=H/3.D0

DO 240 SwW=1,5

CALL FUNC(XrYsF)

DO 200 I=1N

Q=H3*F (1)

GO TO (50+60¢70080090) ¢SW

T(I)=Q

R=Q

60 TO 100

R= .5D0%(Q+T(I))

GO 7O 100

R=3.D0*@Q

S(I)=R

R=«375D0%(R+T(1))

GO0 TO 100

R=T(I)+4.D0%Q

L9



90

100

110
120

180

185

190
200
210
220

230
240

T(I)—R

R=1. SDO*(R‘S(I))

GO TO 100

RzZ«5D00%(Q+T (1))
G=DABRS(R+R=1:5D0%(@+S(1}))
Y{I)=G(I)+R .

IF (SW «NEe. 5) GO TO 200
IF («NOT. BC ) GO TO 200
R=DABS(Y4(I) )y :

IF(R +LTe. «001D0O) GO TO 1190
RZE5#*R - :

GO TO 120

R=ES - '

IF (@ +LT. R} GO TO 190
IF (NOT. BX) GO TO 190
BR=.TRUE .

BH=,FALSE «

H=5D0*H

IF { DABS(H) .GE. HMIN) GO TO 180

SIGH=1+D0

IF ( H LT 0.DO) SIGH=‘1GDO
H=SIGH*HMIN

BXT«FALSEs -

00 185J=1N_

Y (J) =G (J)

X=XS
GO TO 20
CONTINUE

IF (@ ;GE._.oalasoo*R) BE=+FALSE.

CONTINUE .

GO TO (210!240!220!2300240)05W
X=X+H3

GO-TO 240

X=X+ 5D0%H3

60 TO 246

X= X+ +5D0*H

CONTINUE

IF (.NOT. BC) GO TO 300

29
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