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ABSTRACT 

 
Gomez, C., Konrad, C.M., Vanderlaan, A., Moors-Murphy, H.B., Marotte, E., Lawson, J., 
Kouwenberg, A-L., Fuentes-Yaco, C., Buren, A. 2020. Identifying priority areas to 
enhance monitoring of cetaceans in the Northwest Atlantic Ocean. Can. Tech. Rep. 
Fish. Aquat. Sci. 3370: vi + 103 p. 
 
 

Species Distribution Models (SDM) were used to predict seasonal suitable habitat of 
cetaceans during spring (2 species), summer (10 species), and autumn (7 species) in 
eastern Canadian waters off Nova Scotia, and Newfoundland and Labrador. Available 
cetacean sightings data from 1975-2015 was compiled from the Department of 
Fisheries and Oceans Canada (DFO), the Ocean Biogeographic Information System 
(OBIS), the North Atlantic Right Whale Consortium (NARWC), the Whitehead Lab at 
Dalhousie University, and the Environment and Climate Change Canada (Canadian 
Wildlife Service) Eastern Canada Seabirds at Sea (ECSAS) program. As proxies for 
prey availability, we selected five predictor environmental variables for our SDM: ocean 
depth, compound topographic index, sea surface temperature, areas of persistently high 
chlorophyll-a concentration, and regional chlorophyll-a magnitude. Habitats with high 
suitability in this report are interpreted as areas where cetacean monitoring efforts may 
be prioritized, and results can help direct future survey efforts. While the SDM 
developed are informative, this report also illustrates that our results do not necessarily 
provide a fully accurate representation of the current distribution of cetaceans in the 
region and thus their use in marine spatial planning processes should be accompanied 
by complimentary approaches such as acoustic and visual validation of the SDM results 
as well as additional monitoring and modeling efforts. This study represents a significant 
initiative in eastern Canada to highlight key areas for cetacean monitoring efforts in 
waters off Nova Scotia, and Newfoundland and Labrador. Future efforts will focus on 
improving these models to facilitate the inclusion of cetaceans in marine spatial 
planning processes that are currently underway.  
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RÉSUMÉ 

 
Gomez, C., Konrad, C.M., Vanderlaan, A., Moors-Murphy, H.B., Marotte, E., Lawson, J., 
Kouwenberg, A-L., Fuentes-Yaco, C., Buren, A. 2020. Identifying priority areas to 
enhance monitoring of cetaceans in the Northwest Atlantic Ocean. Can. Tech. Rep. 
Fish. Aquat. Sci. 3370: vi + 103 p. 
 

On a utilisé des modèles de répartition des espèces afin de prédire l’habitat convenable 
saisonnier de cétacés pendant le printemps (deux espèces), l’été (dix espèces) et 
l’automne (sept espèces) dans les eaux de l’est du Canada, au large de la Nouvelle-
Écosse et de Terre-Neuve-et-Labrador. On a compilé les données d’observation de 
cétacés recueillies de 1975 à 2015 par le ministère des Pêches et des Océans (MPO), 
le Système d’information biogéographique des océans (OBIS), le North Atlantic Right 
Whale Consortium (NARWC), le laboratoire Whitehead de l’Université Dalhousie et le 
programme Suivi des oiseaux de mer de l’est du Canada (SOMEC) d’Environnement et 
Changement climatique Canada (Service canadien de la faune). À titre d’indicateurs de 
la disponibilité de proies, on a choisi cinq variables environnementales prédictives pour 
les modèles de répartition des espèces utilisés, soit la profondeur de l’océan, l’indice 
topographique composé (CTI), la température à la surface de la mer, la superficie des 
zones où la concentration de chlorophylle a est toujours élevée, et l’ampleur de la 
concentration régionale de chlorophylle a. On considère que les milieux hautement 
convenables cernés dans le présent rapport sont des zones qui pourraient être 
prioritaires en matière d’efforts de suivi des cétacés. Les résultats figurant dans ce 
rapport permettront d’orienter les futures activités de relevé. Les modèles de répartition 
des espèces conçus sont informatifs, mais le rapport illustre également que les résultats 
obtenus ne fournissent pas nécessairement une représentation entièrement exacte de 
la répartition actuelle des cétacés dans la région. Par conséquent, l’utilisation de ces 
modèles dans le cadre de processus de planification spatiale marine devrait être 
combinée à des approches complémentaires, comme des activités de validation 
visuelle et acoustique des résultats issus des modèles, ainsi que des activités de suivi 
et de modélisation supplémentaires. L’étude en question représente une importante 
initiative menée dans l’est du Canada, qui vise à cerner les zones clés pour les activités 
de suivi des cétacés dans les eaux au large de la Nouvelle-Écosse et de Terre-Neuve-
et-Labrador. Les futures activités, qui seront axées sur l’amélioration des modèles, 
permettront de faciliter l’inclusion des cétacés dans les processus de planification 
spatiale marine en cours. 
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INTRODUCTION 

Cetacean effort-based surveys (e.g., line-transect surveys) have been conducted in 
only a quarter of the world’s ocean surface (Kaschner et al. 2012), thus knowledge on 
cetacean distribution and density in many areas is generally limited. In Canada, the 
distribution and seasonal occurrence of cetaceans in most of the Northwest Atlantic 
Ocean (NWAO; waters off Nova Scotia, and Newfoundland and Labrador) is poorly 
understood (Breeze et al. 2002, Gomez and Moors-Murphy 2014). There is generally 
limited information available from effort-based surveys in most areas of eastern Canada 
(e.g., Lawson and Gosselin 2009, DFO 2019). This knowledge gap limits our ability to 
effectively monitor, manage and mitigate the impacts of human activities on cetacean 
species occurring in eastern Canadian waters, and has important implications for the 
monitoring and recovery of species at risk. Lack of information on cetacean distribution 
has limited their inclusion in network analyses related to the identification and 
delineation of Ecologically and Biologically Significant Areas (EBSAs) and Marine 
Protected Areas (MPA) in eastern Canada (e.g., King et al. 2013, DFO 2014). 
Therefore, information on cetaceans has been under-represented when identifying 
areas for protection.  

 
During past DFO Canadian Science Advisory Secretariat (CSAS) processes related 

to spatial planning off eastern Canada, Species Distribution Models (SDMs) were 
recommended as an important tool for combining available opportunistic cetacean 
sightings data and relevant environmental data to predict suitable habitat for these 
species (King et al 2013). Cetacean sightings and environmental predictors have 
successfully been used in the development of SDMs for cetaceans in other regions 
(Ainley et al. 2012, Gregr 2011, Pendleton et al. 2012, Bombosch et al. 2014, Roberts 
et al. 2016). Consequently, a series of efforts prior to this report were conducted to 
implement SDM for a selection of cetacean species. A first effort by Gomez and Moors-
Murphy (2014) implemented Maximum Entropy (MaxEnt) models for northern 
bottlenose (Hyperoodon ampullatus) and Sowerby’s beaked whales (Mesoplodon 
bidens) using five environmental variables: ocean depth, seafloor slope, seafloor 
aspect, sea surface temperature and Chlorophyll-a concentration. This first effort 
provided significant recommendations to further refine these approaches, including the 
inclusion of a more comprehensive dataset of cetacean sightings and improved 
environmental predictors. Gomez et al. (2017) implemented these recommendations 
and proposed a SDM framework to update the datasets and methods as part of an 
iterative, adaptive process to identify suitable habitat for cetaceans. They implemented 
this framework to predict priority areas for enhanced blue whale (Balaenoptera 
musculus) and northern bottlenose whale monitoring efforts in eastern Canada. 
Cetacean sighting records were compiled to provide information on cetacean 
occurrence, and broad-scale environmental data were assembled, including datasets 
acquired via satellite remote sensing. The modeling framework and datasets compiled 
by Gomez et al. (2017) were used by Moors-Murphy et. al (2019) to predict suitable 
habitat for blue whales. The SDM outputs from Moors-Murphy et al. (2019), in 
combination with additional sources of information, were then used to identify important 
blue whale habitat in the Northwest Atlantic (Lesage et al. 2018).  
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Building upon these previous efforts in the NWAO, this report developed SDMs to 
predict seasonal suitable habitat for several cetacean species in the NWAO, with the 
goal of identifying and providing recommendations on areas where increased cetacean 
monitoring should be prioritized. This paper follows similar methods proposed by 
Gomez et al. (2017), while expanding the number of species considered, updating the 
boundaries of the study area, and improving the modelling framework. Further refining 
and validation of the SDM results will be necessary to continue the process of 
understanding the distribution of cetaceans in eastern Canada. 
 

MATERIALS AND METHODS 

The NWAO study area  

The study area is situated in the Northwest Atlantic, encompassing waters off 
Nova Scotia, and Newfoundland and Labrador in eastern Canada. The NWAO 
comprises a continental shelf of varying breadth, characterized by complex topography 
including shallow banks, basins and submarine canyons, and bounded by convoluted 
coastlines and deep ocean basins (Breeze et al. 2002, Zwanenburg et al. 2002). In this 
study, the NWAO was delineated in the north by the northern tip of Labrador and in the 
south by the Fundian (or Northeast) Channel (Figure 1). Shallow coastal areas (waters 
<50m depth) as well as the enclosed areas of Bay of Fundy and the Gulf of St Lawrence 
are characterized by very different ecosystem dynamics compared with the rest of the 
NWAO (Araújo & Bundy 2012, Zwanenburg et al. 2002) and were not considered in this 
study. Very deep waters ( >3000m) were also excluded from the study area as there 
were very few sightings off the continental shelf . 

Cetacean data 

This manuscript follows the proposed framework and modelling procedures 
developed by Gomez et al. (2017). This study used long-term cetacean catch and 
sightings data available and assembled in Gomez et al. (2017) from several sources: 
sightings databases from the Department of Fisheries and Oceans Canada (DFO) 
Maritimes region (MacDonald et. al. 2017), and Newfoundland and Labrador regions, 
the Ocean Biogeographic Information System (OBIS; http://www.iobis.org/), the North 
Atlantic Right Whale Consortium (NARWC; http://www.narwc.org/), the Whitehead Lab 
at Dalhousie University (http://whitelab.biology.dal.ca/), and the Environment and 
Climate Change Canada (Canadian Wildlife Service) Eastern Canada Seabirds at Sea 
(ECSAS) program (Gjerdrum et al. 2012). The data obtained from DFO, OBIS and 
NARWC are compilations of sightings from a variety of sources including governmental, 
non-governmental organizations, academia and industry, using aerial- and vessel-
based platforms. Note that sightings data from these sources are not always effort 
corrected and distribution patterns based on these opportunistic sightings data are 
biased by when and where survey activities were conducted.  

 
Locations of cetacean sightings (or catches, in some cases) from all sources were 
merged. Quality control checks included discarding all records outside of our study area 
and removing redundant records (identical species, day, month, latitude and longitude). 
The dataset does not include dead animal, stranding, entanglement or entrapment data. 

http://www.iobis.org/
http://www.narwc.org/
http://whitelab.biology.dal.ca/
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The dataset encompasses records obtained during the whaling (catches or sightings, 
prior to 1975) and post-whaling periods (sightings only, 1975-2015). However, for all 
subsequent analyses in this study, only sightings of free-swimming whales, obtained 
during the post-whaling period (1975-2015), were used (Figure 1; N = 110,890).  

 
The data used in this study were extracted from the various databases listed 

above in 2016 and do not reflect any updates or corrections to the databases that have 
occurred since that time. The majority of sighting records extracted were from summer 
(June to August; N = 76,399), followed by autumn (September to November; N = 
29,464), spring (March to May; N = 4,113), and winter (December to February; N = 
914). Unfavorable weather and reduced visual effort in winter, spring, and autumn likely 
account for smaller number of sighting records in these seasons compared to summer. 
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Figure 1. Sightings of free-swimming cetaceans collected during the post-whaling period (1975 – 2015). A total of 110,890 
records are contained within the study area (red line). Sources: Department of Fisheries and Oceans Canada (DFO, 
Maritimes Region and Newfoundland and Labrador Region databases), the North Atlantic Right Whale Consortium 
(NARWC), the Ocean Biogeographic Information System (OBIS), the Whitehead Lab at Dalhousie University, and the 
Environment and Climate Change Canada (Canadian Wildlife Service) Eastern Canada Seabirds at Sea (ECSAS) 
program.
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Environmental data 

 A fundamental component of SDM is the selection of a suite of predictor 
variables that exhibit a spatial and temporal relationship with the location records for the 
species of interest, and thus, are useful to predict suitable habitat. Information on prey is 
an ideal predictor variable (e.g. Pendleton et al. 2012); however, information on the 
spatial and temporal distribution of cetacean prey is limited. Thus, as in previous studies 
with limited prey data (e.g., Gregr 2011, Roberts et al. 2016), we selected a suite of 
environmental variables that likely serve as proxies for prey availability (Table 1):  
 

1) Ocean depth (Figure 2) 
2) Compound Topographic Index (CTI; Figure 2)  
3) Sea Surface Temperature (SST; Figure 3) 
4) Persistence of high chlorophyll-a concentration (CHLpers; Figure 4) 
5) Regional chlorophyll-a concentration magnitude (CHLmagn; Figure 5) 

 
Areas of persistently high chlorophyll-a concentration (CHLpers; Figure 4) and 

regional chlorophyll-a magnitude (CHLmagn; Figure 5) were derived by identifying and 
mapping phytoplankton-rich zones using satellite imagery to provide an indication of 
primary productivity (see Fuentes-Yaco et al. 2015 and Gomez et al. 2017 for a detailed 
description of methods). The study area was subdivided into neritic (50m-600m depth) 
and oceanic (> 600m depth) regions. These regions were further subdivided into north 
and south sections following the boundaries of divisions 3 and 4 of the Northwest 
Atlantic Fisheries Organization (NAFO, Figure 4), as well as distinct bathymetric and 
hydrographic features (Devred et al. 2007, 2009, Longhurst 2007). Each one of these 
four large geographical regions has unique marine communities and food web systems 
(Devred et al. 2007, 2009, Longhurst 2007, NAFO 2014). For each of the regions, and 
for each season, we computed CHLpers and CHLmagn. For 2003-2014, CHLpers was 
calculated as a percentage of weekly composite images that a pixel’s value was above 
the region’s median value (in the same composite image) plus a half standard deviation. 
CHLmagn was the average of the median chlorophyll-a concentrations for the weekly 
composite images. To account for the time-lag for primary productivity to transfer to top 
predators (Croll et al. 2005, Jaquet 1996, Wong 2012), the SDMs from a given season 
used CHL data from that season (CHLpers and CHLmagn) and for the season prior (lagged 
CHLpers and CHLmagn). For example, the spring SDMs used CHL data for spring and 
winter.  
 

Shallow coastal areas in the ocean (< 50m depth) typically contain a mixture of a 
constituents with different optical properties such as phytoplankton, other suspended 
particulates and yellow substances (Morel & Prieur 1977). In addition, shallow waters 
are also influenced by the depth of the water column, and by the nature of the bottom. 
Consequently, these areas require detailed and customized algorithms to identify 
concentrations of chlorophyll-a (IOCCG 2000), which was not applied in this study. Thus 
shallow coastal areas were excluded from the analyses. 
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Figure 2. Physical environmental data used to predict suitable habitat for cetaceans in 
the study area (outlined in black): (A) ocean depth and (B) compound topographic index 
(CTI). CTI is derived from ocean depth (Evans et al. 2014) and represents peaks (high 
values of CTI), basins (low values), and flat surfaces (intermediate values; Gessler et al. 
1995, Moore et al 1991, Andersen et al. 2013). 

A 

B 
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Figure 3. Average sea surface temperature (°C) during spring, summer and autumn, 
used to predict suitable habitat for cetaceans in the study area (outlined in black). 
Seasonal climatologies were derived from semi-monthly composites for 2003 to 2014.  
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Figure 4. Persistence of high chlorophyll-a concentration (CHLpers) during spring, 
summer, autumn and winter, used to predict suitable habitat for cetaceans in the study 
area (outlined in black). Black lines show the subdivision of the study area into regions: 
neritic (50m-600m depth) and oceanic regions (> 600m depth), which were further 
divided into North and South (see Figure 5). CHLpers values were calculated as a 
percentage of time periods that the pixel’s value was above the region’s median value 
(in the same time period) plus a half standard deviation (see Fuentes-Yaco et al. 2015 
for detailed description of the methods). Seasonal climatologies were derived from 
weekly composites for 2003 to 2014 (see Fuentes-Yaco et al. 2015). 
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Figure 5. Regional chlorophyll-a concentration magnitude (CHLmagn) during spring, 
summer, autumn and winter, used to predict suitable habitat for cetaceans in the study 
area (outlined in black). These values correspond to the average of the median 
chlorophyll-a concentration calculated to obtain the transformed chlorophyll indicators. 
Seasonal climatologies were derived from weekly composites for the 2003 to 2014 
period (see Fuentes-Yaco et al. 2015). The study area was subdivided into neritic 
(between 50m and 600m depth) and oceanic (> 600m depth). Neritic and oceanic 
regions were further divided into North and South. 



10 
 

 

 

Table 1. Environmental layers selected to predict the distribution of cetaceans in the 
NWAO.  Seasonal values were derived from weekly composites for CHLpers and 
CHLmagn, and from semi-monthly composites for SST, for 2003-2014. All environmental 
layers were processed to have the same geographic extent and cell size (1.5 km), and 
converted to an ASCII raster grid format. 

Variable  Units  
Temporal 
resolution  

Native 
Spatial 
resolution  

Source  

Ocean depth  metres Static  1 km  

Oceans and Coastal 
Management Division, Maritimes 
Region, DFO, Bedford Institute 
of Oceanography  

Compound 
topographic  
index (CTI) 

unitless Static  1 km 

Calculated using the 
Geomorphometry and Gradient 
Metrics Toolbox version 2.0 in 
ArcGIS (Evans et al. 2014) 

Sea surface 
temperature (SST)  

degrees 
Celsius 

Seasonal  1.5 km  

Derived from images from the 
Moderate Resolution Imaging 
Spectroradiometer (MODIS) 
instrument on the Aqua satellite 

Persistence of high 
chlorophyll-a 
concentration 
(CHLpers) 

percentage Seasonal  1.5 km  
Derived from images from 
MODIS Aqua satellite (Fuentes-
Yaco et al. 2015) 

Regional 
chlorophyll-a 
concentration 
(CHLmagn) 

milligrams/
metre3 

Seasonal 1.5 km  
Derived from images from 
MODIS Aqua satellite (Fuentes-
Yaco et al. 2015) 

 
All environmental layers were processed to have the same geographic extent and 

cell size (1.5 km), and converted to an ASCII raster grid format using ArcGIS 10. Before 
running SDMs, we investigated correlation between the environmental variables, using 
the variance inflation factor (VIF; Zuur et al. 2010). An environmental variable’s VIF is a 
measure of collinearity – how much of that variable’s variation is explained by all other 
variables. In accordance with Zuur et al. (2010), we considered VIF values less than 
three to denote that the environmental variables do not exhibit collinearity and thus are 
relevant to use in the SDMs. CHLmagn was not included in the VIF calculations as it is 
comprised of only one value per unique region (Figure 5). 
 

Implementing SDMs to model habitat suitability 

We used SDMs to integrate information on the location of cetaceans with 
environmental variables to predict areas of suitable habitat, which are to be interpreted 
as priority areas for monitoring species in the NWAO. We used MaxEnt software 
(version 3.3.3k; Phillips et al. 2006), implemented using the ‘maxent’ function from the R 
package ‘dismo’ (Hijmans et al. 2017), to build each SDM because this tool performs 
well compared to other approaches when using species presence-only data (sightings 
data without associated effort) and when sample size is relatively small (Elith et al. 
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2006, Pearson et al. 2007, Tittensor et al. 2009). In multiple studies, MaxEnt has been 
used to exploit opportunistically collected data that lacks true absences, to predict 
important cetacean habitat (e.g., Ainley et al. 2012, Gregr 2011, Pendleton et al. 2012, 
Bombosch et al. 2014). 

 
MaxEnt incorporates the presence locations for the species being modelled and 

a set of environmental data predictors across the study area (subsequently referred to 
as the landscape). The presence locations used include only one record of the target 
species per environmental grid cell. For each grid cell across the study area, the model 
calculates a probability of presence of an individual of the species of interest in that cell, 
relative to other cells in the landscape (Phillips et al. 2006, Merow et al. 2013), referred 
to as a relative occurrence rate (ROR). However, when assumptions of random 
sampling are not met, as is the case in our study, these ROR values are better 
interpreted as indices of predicted habitat suitability (Merow et al. 2013). To determine 
ROR values, MaxEnt contrasts environmental conditions at locations of species 
presence to conditions at a sample of background point locations within the landscape 
(Fithian & Hastie 2013). Background points are randomly selected from the landscape, 
unless a list of background points is supplied (for details, see section below: 
‘background points based on non-TGS’).  

 
To allow comparison between results for different species, we used raw ROR 

values to calculate indices that ranged between 0 and 100 for the grid cells; the value 
assigned to each grid cell was the sum of that pixel’s raw ROR and the RORs of all 
pixels of equal or lesser values, multiplied by 100. We used this cumulative index to 
generate habitat suitability maps as indicators of priority areas to target future 
monitoring efforts. High values indicate areas of predicted suitable habitat, where the 
target species is most likely to occur and thus these areas should be considered priority 
monitoring areas (Merow et al. 2013). The MaxEnt run settings are provided in Table 2.  

 

Evaluation of MaxEnt model performance 

The Area Under the Receiver Operating Curve (AUC) metric was used to 
evaluate the ability of the SDMs to discriminate correctly between sites associated with 
cetaceans’ presence and the sample of points from the landscape (Phillips et al. 2006). 
For this, we selected the cross-validation option in MaxEnt as recommended in Merow 
et al. (2013) (Table 2) and we used the AUC to investigate the probability that a 
randomly-chosen cetacean presence location was ranked higher than a randomly-
chosen location in the landscape. An AUC value close to 1.0 indicates that the SDM has 
good discriminatory power; a value less than or equal to 0.5 indicates that the model 
prediction is no better than random (Fielding & Bell 1997).  
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Table 2. MaxEnt run settings used to build SDMs for cetaceans in the NWO. Settings 
were selected following Phillips et al. (2006) and Merow et al. (2013). 

Variable Setting Comments 

Random Seed Yes   

Max Number of 
Background 
Points 

10000 

A sample of point locations from the landscape to 
represent the environmental conditions in the study area, 
selected randomly or based on a supplied list of non-
target group species sightings, if applicable. 

Regularization 
Multiplier 

1 Reduces model over-fitting. 

Output Grids None   

Maximum 
Iterations 

5000 Allows the model adequate opportunity for convergence. 

Convergence 
Threshold 

0.00001   

Replicated Run 
Type 

Crossvalidate 

Assesses uncertainty in model predictions; it incorporates 
all available sightings, making better use of smaller 
datasets. Occurrence data is randomly split into a number 
of equally-sized groups, and models are created leaving 
out each group in turn. The left-out groups are then used 
for model evaluation.   

Number of 
Replicates 

100 
Number of runs for each species. Averages of the results 
from all model replicates are used to generate habitat 
suitability maps. 

Output Type Raw 

Relative occurrence rate, from which we calculated 
cumulative output values that we used to generate maps 
of predicted habitat suitability. Cumulative values do not 
rely on post-processing assumptions and are useful when 
illustrating potential species range boundaries. 

Alternate 
estimates of 
variable 
importance 

Jacknife 

Each predictor variable is excluded in turn, and a model is 
created with the remaining variables. A model is also 
created using each variable in isolation. This is in addition 
to the model created using all variables. 

  

Sampling bias correction 

Bias in the sampling effort within a study area can influence SDMs reliability and 
quality (Bystriakova et al. 2012, Fourcade et al. 2014). There are two types of sampling 
bias in this study: 1) cetacean records may be overrepresented in regions with high 
sampling efforts (e.g. in the Gully MPA or Bay of Fundy, where dedicated cetacean 
fieldwork has occurred for many years); and 2) cetacean records in suitable habitat may 
be absent due to lack of survey effort. We cannot correct for sampling biases directly, 
because most cetacean sightings gathered for this study were from opportunistic 
surveys and we do not have a measure of survey effort. Instead, we applied two 
methods to indirectly account for these biases: 1) mixed random-systematic sampling of 
target group species (TGS) to account for overrepresentation in areas of high effort and 
2) using background points based on records of non-target group species (non-TGS) to 
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account for absences due to lack of effort (Gomez et al. 2017). These methods, as well 
as the SDM strategy used in this study, are summarized in Figure 6.  

 
 

 
Figure 6. Summary of the SDM approach used to integrate information on the location 
of cetaceans and environmental variables to predict suitable habitat and priority 
monitoring areas for cetaceans in the NWAO. 

Mixed random-systematic sampling of TGS – We refer to the cetacean species 
being modeled as the TGS (Tables 3 to 5). MaxEnt discards redundant TGS records 
that occur in the same grid cell of the environmental predictor raster layers (1.5 km 
resolution); however, it may still over-represent regions with high sampling efforts 
(Kadmon et al. 2004), especially if those regions of high effort are larger than the 
resolution of the environmental predictors. Thus, we replicated the SDMs after further 
reducing spatial aggregation of records; for each applicable season, we randomly 
subsampled one TGS record per grid cell on a 2.5 km and on a 5 km grid (e.g., 
Fourcade et al. 2014) and generated a SDM for each of these subsampled sets of 
records (Table 4). These models were in addition to a SDM with no subsampling (in all 
models, only one record of the target species within any given environmental grid cell 
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was included). For each season, SDMs were only built for species with at least 450 
records (prior to subsampling) in that season as model implementation encountered 
errors at sample sizes below this count. For all species, sample sizes in winter were too 
low to implement SDMs (Table 3 and Table 4). 

 
Background points based on non-TGS – When sampling effort across the study 

area cannot be reliably estimated, but many sightings of species other than one being 
modeled are available, these sightings can guide the selection of background points 
(Merow et al. 2013). If these other species, hereafter termed non-TGS, were observed 
using the same techniques as the TGS, then, based on the assumption that the TGS 
would have been observed if present, non-TGS sightings can serve as surveyed points 
(Merow et al. 2013). By selecting background points from surveyed locations, we 
exclude areas with no known survey effort from the landscape used to train the model. 
In this study, non-TGS comprised all free-swimming cetaceans except the TGS. Non-
TGS includes cetaceans that were not identified to species (e.g. unknown dolphin). For 
each combination of species and season that we analysed, we generated three lists of 
‘surveyed’ background points (corresponding to environmental predictor variable grid 
cells): generally, points that were within a 1 km, 2.5 km or 5 km radius of a non-TGS 
record (Table 5). We will subsequently refer to these lists of background grid cells as 
bias maps. We created models based on each of these bias maps and one where 
background points were selected without reference to non-TGS records, to examine the 
effect of how strictly the landscape is restricted. 

 
SDMs were generated for 12 species in each season for which these species 

had sufficient sample size (Table 3), using each combination of TGS subsampling 
resolution and background points (Tables 4 and 5). In this document we present results 
for ten species; North Atlantic right whales and northern bottlenose whales were not 
included as independent SDM studies are underway for these species.  

 

Spatial correlation of habitat suitability  

To assess the correspondence between all the habitat suitability maps generated 
for each species, we assessed their spatial correlation using the Pearson’s rank 
correlation coefficient (r) (Quinn & Keough, 2002).  

 

Consolidated priority areas to target monitoring efforts  

SDM quantitative outputs were divided in 4 arbitrary categories in Gomez et al. 
2017: high (100 to 60%), moderate (60 to 40%), low (40 to 10%) and very low (<10%) 
suitability. When appropriate, areas of high suitability (60-100%) from all scenarios of 
sampling bias correction (bias maps and subsampling) may be combined into one map 
per species. Consolidated outputs in this report indicate priority areas where monitoring 
efforts may be targeted.   
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Table 3. Counts of sighting records for free-swimming cetacean species observed in the 
study area from 1975 to 2015, by season. Seasons for which a given species had 
enough records (n > 450) to implement the SDM are bolded and highlighted in green. 
Counts are prior to any subsampling or the removal of additional records of the same 
species within the same environmental grid cell. *Northern bottlenose whales and North 
Atlantic right whales, highlighted in grey, were not included in this report as independent 
efforts are underway for those species.  

  Records 

Taxon Species Spring  Summer Autumn  Winter  

Baleen  Blue whale 32 222 51 10 

Whales Fin whale 286 6413 2666 79 

 Sei whale 125 631 405 9 

 Minke whale 264 5737 1171 38 

 Humpback whale 463 10455 4066 73 

 North Atlantic right whale* 195 13997 8055 17 

Medium  Sperm whale 119 766 223 31 

& Large  Pygmy sperm whale 0 1 0 0 

Toothed  Northern bottlenose whale* 198 2352 169 28 

Whales Blainville's beaked whale 0 0 1 0 

 Cuvier's beaked whale 2 1 1 0 

 Gervais' beaked whale 0 1 0 0 

 Sowerby's beaked whale 0 53 2 0 

 Beluga 0 9 4 0 

 Killer whale 73 214 72 11 

 Long-finned pilot whale 874 3208 933 118 

 False killer whale 1 1 3 0 

Dolphins & Atlantic spotted dolphin 0 3 0 0 

Porpoises Atlantic white-sided dolphin 254 3098 1039 64 

 Bottlenose dolphin 54 176 56 20 

 Short-beaked common 
dolphin 

48 1513 690 100 

 Risso's dolphin 8 72 44 0 

 Striped dolphin 0 118 8 0 

 White-beaked dolphin 24 579 163 6 

 Harbour porpoise 250 20600 6928 31 

 Other/Unknown 843 6179 2714 279 

Total  4113 76399 29464 914 
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Table 4. Counts of sighting records for the target cetacean species, by season, used in 
the Species Distribution Models. Counts represent the number of sightings after 
subsampling (if any) and the removal of additional records of the same species within 
the same environmental grid cell. The counts are shown as a range in some cases as a 
result of randomization in the subsampling process. Counts include only free-swimming 
cetaceans observed in the study area from 1975 to 2015.  

  Subsampling grid 

Season Species None 2.5 km 5 km 

Spring Humpback whale 355 333-335 312-313 

 Long-finned pilot whale 542 416-421 363-366 

Summer Fin whale 2308 1908-1923 1471-1477 

 Sei whale 434 399-401 327-329 

 Minke whale 1727 1429-1436 1093-1102 

 Humpback whale 3304 2730-2757 2073-2078 

 Sperm whale 582 529-532 451-453 

 Long-finned pilot whale 2229 1930-1940 1643-1644 

 Atlantic white-sided dolphin 1811 1510-1530 1185-1192 

 Short-beaked common dolphin 1073 986-992 856-858 

 White-beaked dolphin 455 431-433 383-387 

 Harbour porpoise 2329 1569-1584 868-883 

Autumn Fin whale 1229 982-990 710-715 

 Minke whale 661 563-567 446-447 

 Humpback whale 1685 1450-1453 1154-1157 

 Long-finned pilot whale 702 620-625 567-569 

 Atlantic white-sided dolphin 697 587-594 486-487 

 Short-beaked common dolphin 525 494-496 451-454 

 Harbour porpoise 1117 745-747 401-405 
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Table 5. Number of background points used in the SDMs for each target group species 
(TGS) by season. A maximum of 10,000 background points (Table 2) were randomly 
selected from environmental predictor variable grid cells in the study area with records 
of non-target group cetacean species (non-TGS) observed in each season from 1975 to 
2015. These background points were used to create a bias map of ‘surveyed’ cells for 
the SDMs, at three different resolutions (Figure 6). For SDMs without a bias map, 
10,000 background points were randomly selected from across the entire study area, 
uninformed by non-TGS observations. At 1 and 2.5 km bias map resolutions, less than 
10,000 background points were used because a smaller selection of predictor variable 
grid cells overlap with a non-TGS observation at those resolutions. 

 
 Bias map 

resolution 
 

Season Target group species 1 km 2.5 km      5 km 

Spring Humpback whale 558 3477 10000 

 Long-finned pilot whale 550 3329 10000 

Summer Fin whale 5073 10000 10000 

 Sei whale 5333 10000 10000 

 Minke whale 5145 10000 10000 

 Humpback whale 4797 10000 10000 

 North Atlantic right whale 5141 10000 10000 

 Sperm whale 5297 10000 10000 

 Long-finned pilot whale 4944 10000 10000 

 Atlantic white-sided dolphin 5111 10000 10000 

 Short-beaked common dolphin 5187 10000 10000 

 White-beaked dolphin 5316 10000 10000 

 Harbour porpoise 4890 10000 10000 

Autumn Fin whale 2489 10000 10000 

 Minke whale 2530 10000 10000 

 Humpback whale 2325 10000 10000 

 North Atlantic right whale 2336 10000 10000 

 Long-finned pilot whale 2458 10000 10000 

 Atlantic white-sided dolphin 2489 10000 10000 

 Short-beaked common dolphin 2489 10000 10000 

 Harbour porpoise 2401 10000 10000 
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RESULTS  

Predictor variable contributions and model performance  

As proxies for prey availability, we selected five predictor environmental variables 
for our SDMs: ocean depth, compound topographic index, sea surface temperature, 
areas of persistently high chlorophyll-a concentration, and regional chlorophyll-a 
magnitude. These environmental variables did not exhibit collinearity (VIFs < 3; Table 6) 
and thus all were used in the SDMs.  
 

There were sufficient sighting records to produce SDMs for two cetacean species 
during spring, ten during summer, and seven during autumn (excluding North Atlantic 
right whales and northern bottlenose whales; Table 3). Mean AUC values in all 
scenarios of sampling bias correction were larger than 0.58, indicating that all model 
predictions are better than random, and often AUC values were greater than 0.70, 
indicating that many SDMs have good discriminatory power (Tables 7-25).  

 
SDM results using different bias maps and subsampling grids are reported in 

Figures A1-A19. As observed in Gomez et al. (2017), in general, maps that did not 
incorporate a bias file and included the total set of TGS sighting records (no 
subsampling) predicted a more conservative proportion of priority habitat compared with 
models that did utilize the bias files, and subsampled cetaceans records, which illustrate 
a more conservative prediction. This is represented by low correlation values in the 
different scenarios of bias correction (Table A1 - A20). We consider all outputs from 
these scenarios of sampling bias correction to be reasonable predictions in which to 
target monitoring efforts. We therefore used a precautionary approach by combining 
outputs from all scenarios of sampling bias correction to indicate consolidated priority 
areas where monitoring efforts may be targeted (Figures 8-12, 15,16,18, 21, 22). 

 
The relative contribution of each environmental variable to the SDM are presented 

in Tables 7-25.  Mean relative contributions of the predictor environmental variables to 
these SDMs varied by species and season. Ocean depth, SST and summer CHLpers 
often contributed the most to the SDM (Tables 7-25). However, the relative contributions 
of environmental predictors varied substantially in some cases, depending on the bias 
map and subsampling grid used (Tables A1-A19).  

Sightings maps and predicted habitat suitability maps 

Given that all models predictions are better than random, it was considered 
appropriate to combine areas of high suitability (60-100%) from all scenarios of 
sampling bias correction (bias maps and subsampling) across all seasons into one map 
per species. These consolidated outputs indicate priority areas where monitoring efforts 
may be targeted. For each species, maps of sightings and predicted areas of high 
priority are presented in Figures 7-22. Maps of sightings are accompanied by 
information on the species’ residency in the NWAO (migratory or resident), conservation 
status, and known prey preferences (as reviewed by Gomez and Moors-Murphy 2014; 
see Appendix 1 and 2 in that document).  
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The following information summarizes general patterns in the predicted distribution 
of cetaceans for all scenarios of sampling bias correction:  

 
- Priority areas for monitoring fin whales (Figure 8) and minke whales (Figures 10) 

were, in general, predicted across most of the study area when accounting for all 
different scenarios of sampling correction, although the deep water areas and 
Flemish cap had overall lower predictions.  
 

- Priority areas for monitoring sei whales included primarily the Scotian Shelf, Bay 
of Fundy, north area of the Labrador shelf, and the Flemish cap (Figure 9).  

 
- Priority areas for monitoring humpback whales were predicted on the Scotian 

Shelf, the Newfoundland Shelf, and a portion of the Labrador shelf (Figure 11). 
 
- Priority areas for monitoring sperm whales included primarily deep water of the 

Scotian, Newfoundland and Labrador shelf edges, and a portion of the Bay of 
Fundy (Figure 12).  
 

- Priority areas for monitoring long-finned pilot whales were predicted in the 
Scotian Shelf, and deep water areas in the offshore margins of the 
Newfoundland and Labrador shelves, including several submarine canyons and 
basins (Figure 15). 
 

- Priority areas for monitoring Atlantic white-sided dolphins included the Scotian 
Shelf, the Bay of Fundy, the Newfoundland shelf, and deeper waters of the 
Labrador shelf and the Laurentian Channel (Figure 16).  
 

- Priority areas for monitoring short-beaked common dolphins included the Scotian 
Shelf, deep water areas in the offshore margins of the Scotian Shelf, and south 
of the Newfoundland shelf (Figure 8). Predictions were very low for the Labrador 
region.  
 

- Priority areas for monitoring white-beaked dolphins included the Bay of Fundy, 
the Newfoundland and Labrador shelves, and excluded deep-water areas of the 
shelf edges in most cases (Figure 21).  
 

- Priority areas for monitoring harbour porpoises included, in particular, the Bay of 
Fundy and the northern area of the Scotian Shelf, Newfoundland shelf and 
Labrador shelf edge (Figure 22). 

 

Interpreting results from this report 

This study represents an important initiative in eastern Canada to highlight key 
areas for cetacean monitoring in waters off Nova Scotia, and Newfoundland and 
Labrador. High priority areas in this report are interpreted as areas where cetacean 
monitoring efforts should be prioritized. In this context, SDM results can direct future 
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survey and monitoring efforts for particular cetacean species (see also Gomez et al. 
2017).  

 
Our predictions do not represent the current distribution of cetaceans in the region 

because this is beyond the objectives of this report and is beyond the scope of our 
model’s evaluation capabilities (Gomez et al. 2017). Our aim was to capture general 
conditions that may direct where to focus monitoring efforts. We used cetacean 
sightings from 1970-2015, and dynamic environmental predictors (CHL and SST) that 
use seasonal averages across multiple years. Therefore, persistent patterns over time 
(between 1975 and 2015) are the main patterns expected to be captured by these 
models. Further, SDM results presented here are not the same as species density 
maps; rather, they portray predicted suitable habitat based on environmental 
characteristics and sightings data that are not always derived from effort based surveys. 
Consequently, the use of the SDM outputs in marine spatial planning process should be 
accompanied by complimentary approaches such as acoustic and visual validation of 
the SDM results as well as additional modeling efforts already available for the area. 
The discussion section provides some examples on how to interpret SDM outputs for 
these purposes.  

 
All SDM outputs for the various scenarios of sampling bias correction in the 

appendices (Figures A1 – A19) are reasonable predictions (mean AUC values > 0.58). 
Consequently, areas that are consistently predicted as having high suitability across all 
scenarios are potential areas in which to target monitoring efforts.  

 
Table 6. Variance inflation factor (VIF) values indicating lack of collinearity between 
environmental variables: ocean depth, CTI, SST, and CHLpers (note: CHLmagn was not 
included in this analysis, because it has only four values; see Figure 5). VIF < 3 denote 
environmental variables that do not exhibit collinearity with the other variables and thus 
are relevant to use in the SDMs (Zuur et al. 2010). 

 

Environmental 
Variable 

Spring 
SDMs 

Summer 
SDMs 

Autumn 
SDMs 

Ocean depth 1.45 1.14 1.15 

CTI 1.06 1.06 1.07 

SST  1.66 1.33 1.11 

CHLpers  1.58 1.19 2.07 

Lagged CHLpers 1.66 1.24 2.32 
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Blue whale (Atlantic population) 

 

Figure 7. Sightings of blue whales by season, collected from 1975 through 2015 (n = 315, within 
study area outlined by black line, see Table 3).  
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Fin whale (Atlantic population)  

 
Figure 8. Sightings of fin whales by season, collected from 1975 through 2015 (n = 9444, within study 
area outlined by black line, see Table 3). Yellow indicates consolidated SDM outputs: areas with high 
(60-100%) relative occurrence rate for any scenarios of sampling bias correction (bias maps and 
subsampling) during summer and autumn. SDM outputs indicate priority areas where monitoring 
efforts may be targeted. 
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Table 7. Relative contribution of each environmental variable to the fin whale summer species 
distribution model for each model scenario. Contributions and area under the curve (AUC) values 
were averaged across model runs (n = 100). AUC values greater than 0.70 indicate SDMs that have 
good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (≥ 
20) are highlighted in dark and light grey, respectively. 

Grid Resolution Mean Environmental Variable Contribution AUC   

Subsampling 
Bias 
Map 

Ocean 
depth 

 SST CTI 
Lagged 

 CHL 
magn 

 
CHL 
magn 

 Lagged 

CHL 
pers 

 
CHL 
pers 

mea
n 

sd 

none none 4.4 14.2 0.4 31.4 34.4 0.5 14.7 0.81 0.04 

 1 km 26.3 23.7 2 4.1 3.3 7.6 33 0.6 0.06 

 2.5 km 9 12.3 0.5 8.2 18.3 2.6 49.1 0.67 0.06 

 5 km 6.1 9 0.6 12.8 22.6 2.3 46.4 0.7 0.06 

2.5 km none 5.4 17.1 0.2 23.4 39.9 0.7 13.3 0.81 0.04 

 1 km 41 41.3 1.9 0.1 2.3 7.2 6.1 0.58 0.06 

 2.5 km 16.5 16.5 0.6 11.5 21.1 2.4 31.3 0.64 0.06 

 5 km 9.9 11 0.9 12.9 26.6 2.4 36.2 0.68 0.06 

5 km none 6.6 20.5 0.4 15.2 44.1 1.4 11.8 0.79 0.05 

 1 km 21.6 34.7 3.5 2.2 2.5 4.6 30.8 0.6 0.07 

 2.5 km 37.1 32.9 3 2.9 14.2 2 7.8 0.61 0.07 

 5 km 17.1 16.9 1.2 4.2 38.4 1.7 20.5 0.64 0.07 

 
Table 8. Relative contribution of each environmental variable to the fin whale autumn species 
distribution model for each model scenario. Contributions and area under the curve (AUC) values 
were averaged across model runs (n = 100). AUC values greater than 0.70 indicate SDMs that have 
good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (≥ 
20) are highlighted in dark and light grey, respectively. 

Grid Resolution Mean Environmental Variable Contribution AUC   

Subsampling 
Bias 
Map 

Ocean 
depth 

 SST CTI 
Lagged 

 CHL 
magn 

 
CHL 
magn 

 Lagged 

CHL 
pers 

 
CHL 
pers 

mean sd 

none none 10.2 9.7 0.4 40.2 8.7 28.6 2.1 0.87 0.04 

 1 km 40.4 9.1 1.6 2.8 4.5 37.8 3.7 0.64 0.07 

 2.5 km 14.6 7.2 1.2 7.6 7.5 57 5 0.73 0.07 

 5 km 11.6 5.5 0.8 9.1 6.6 61.9 4.5 0.76 0.07 

2.5 km none 13.3 11.3 0.8 42.4 7.9 22.1 2 0.87 0.04 

 1 km 65.1 15.3 2.3 0.2 1 11.1 5 0.6 0.08 

 2.5 km 23.5 7.5 1.3 10.4 6.4 46.6 4.4 0.69 0.08 

 5 km 15.3 6.1 1 12.2 9.6 52 3.8 0.73 0.08 

5 km none 18.6 17.4 0.5 37.3 7.2 17.5 1.5 0.85 0.05 

 1 km 39.2 31 1.8 0.6 0.4 21.2 5.6 0.61 0.1 

 2.5 km 55.4 12.9 3.2 6.3 3.1 11.6 7.5 0.62 0.09 

 5 km 36.5 7.2 1.3 9.3 9.8 30.9 5 0.68 0.09 
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Sei whale (Atlantic population) 

   
Figure 9. Sightings of sei whales by season, collected from 1975 through 2015 (n = 1170, within study 
area outlined by black line, see Table 3). Yellow indicates consolidated SDM outputs: areas with high 
(60-100%) relative occurrence rate for any scenarios of sampling bias correction (bias maps and 
subsampling) during summer. SDM outputs indicate priority areas where monitoring efforts may be 
targeted. 
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Table 9. Relative contribution of each environmental variable to the sei whale summer species 
distribution model for each model scenario. Contributions and area under the curve (AUC) values 
were averaged across model runs (n = 100). AUC values greater than 0.70 indicate SDM that have 
good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (≥ 
20) are highlighted in dark and light grey, respectively. 

 

Grid Resolution Mean Environmental Variable Contribution AUC   

Subsampling Bias Map 
Ocean 
depth 

 SST CTI 
Lagged 

 CHL 
magn 

 
CHL 
magn 

 Lagged 

CHL 
pers 

 
CHL 
pers 

mean sd 

none none 9 9.2 0.6 22.2 37.2 1.9 19.8 0.87 0.07 

 1 km 8.1 16.9 1.4 0.2 17.6 15.4 40.4 0.73 0.1 

 2.5 km 13.4 11.7 0.9 5.8 24.3 6.3 37.6 0.76 0.1 

 5 km 13.9 11.7 0.6 14.4 20.4 4.7 34.3 0.79 0.1 

2.5 km none 10.2 8.3 0.6 18.8 38.6 1.8 21.8 0.86 0.08 

 1 km 10.7 14.6 0.8 0.4 15.9 15.5 42.1 0.72 0.1 

 2.5 km 14.7 10.2 1 5.3 23.6 6.5 38.8 0.75 0.1 

 5 km 13.9 10.7 0.7 13.7 20.5 5 35.5 0.79 0.1 

5 km none 9.8 10.6 0.6 35 20.6 2.9 20.5 0.84 0.08 

 1 km 5.6 19.5 0.7 0.4 14.8 14.5 44.5 0.70 0.11 

 2.5 km 12.5 14.5 0.4 0.9 27.3 6.8 37.6 0.72 0.11 

 5 km 13.7 12.5 0.7 7.1 24.7 5.2 36.1 0.76 0.11 
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Minke whale (Atlantic population) 

               

 
Figure 10. Sightings of minke whales by season, collected from 1975 through 2015 (n = 7210, within 
study area outlined by black line, see Table 3). Yellow indicates consolidated SDM outputs: areas 
with high (60-100%) relative occurrence rate for any scenarios of sampling bias correction (bias maps 
and subsampling) during summer and autumn. SDM outputs indicate priority areas where monitoring 
efforts may be targeted. 
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Table 10. Relative contribution of each environmental variable to the minke whale summer species 
distribution model for each model scenario. Contributions and area under the curve (AUC) values 
were averaged across model runs (n = 100). AUC values greater than 0.70 indicate SDM that have 
good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (≥ 
20) are highlighted in dark and light grey, respectively. 

 

Grid Resolution Mean Environmental Variable Contribution AUC   

Subsampling 
Bias 
Map 

Ocean 
depth 

 SST CTI 
Lagged 

 CHL 
magn 

 
CHL 
magn 

 Lagged 

CHL 
pers 

 
CHL 
pers 

mean sd 

none none 13.5 8.6 0.6 5 53.4 0.9 18.1 0.84 0.04 

 1 km 36.7 11.4 2.7 2.1 24.4 14.4 8.4 0.66 0.06 

 2.5 km 22 9.1 2.5 7.8 14.6 4.5 39.6 0.72 0.06 

 5 km 13.6 8.7 0.9 8.6 20.3 4 43.8 0.75 0.06 

2.5 km none 13.3 8.9 0.6 5.9 51.2 0.6 19.5 0.83 0.05 
 1 km 38.7 9.9 2.9 0.2 36.4 10.2 1.8 0.63 0.06 
 2.5 km 28.7 8.6 2.6 4.7 19.2 3.6 32.6 0.7 0.06 

 5 km 16.9 8.3 0.8 6.9 24.1 3.9 39.2 0.73 0.06 

5 km none 21 10.8 0.3 1.9 54.6 1.3 10 0.82 0.06 
 1 km 30.4 9 2.6 0.1 48.2 2.8 6.9 0.62 0.08 

 2.5 km 41.3 11.9 4.2 4.8 27.8 2.6 7.3 0.66 0.07 
 5 km 28.8 9.6 1.7 4.8 30.2 3.1 21.8 0.69 0.07 

 

Table 11.  Relative contribution of each environmental variable to the minke whale autumn species 
distribution model for each model scenario. Contributions and area under the curve (AUC) values 
were averaged across model runs (n = 100). AUC values greater than 0.70 indicate SDM that have 
good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (≥ 
20) are highlighted in dark and light grey, respectively. 

Grid Resolution Mean Environmental Variable Contribution AUC   

Subsampling 
Bias 
Map 

Ocean 
depth 

 SST CTI 
Lagged 

 CHL 
magn 

 
CHL 
magn 

 Lagged 

CHL 
pers 

 
CHL 
pers 

mean sd 

none none 13.7 9.4 0.4 18.9 10.3 43.7 3.7 0.86 0.06 

 1 km 35 41.5 8.2 1.5 1.7 9.8 2.3 0.61 0.09 

 2.5 km 11.2 15.5 2.8 1.7 1.8 63.7 3.4 0.71 0.09 

 5 km 6.1 11.2 1.9 1.6 3.1 71.4 4.6 0.74 0.09 

2.5 km none 17.3 11.3 0.8 10.5 15.2 41.4 3.4 0.85 0.06 

 1 km 34 38.4 10.5 8.1 5.7 2.3 0.9 0.58 0.1 
 2.5 km 15.8 19.7 2.3 1 2.7 54.1 4.3 0.68 0.1 

 5 km 8.5 13.1 2.5 1.2 3.9 67 3.8 0.72 0.1 

5 km none 21.8 14.3 0.5 13 13.4 34.4 2.5 0.83 0.07 
 1 km 16 19.6 8.7 33.3 13.6 6.1 2.9 0.58 0.11 

 2.5 km 28.9 32.7 3.2 1.5 1.5 29.6 2.6 0.61 0.11 

 5 km 15.7 18.7 2.2 2 2.7 55 3.7 0.66 0.11 
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Humpback whale (Atlantic population) 

 
Figure 11. Sightings of humpback whales by season, collected from 1975 through 2015 (n = 15057, 
within study area outlined by black line, see Table 3). Yellow indicates consolidated SDM outputs: 
areas with high (60-100%) relative occurrence rate for any scenarios of sampling bias correction (bias 
maps and subsampling) during spring, summer and autumn. SDM outputs indicate priority areas 
where monitoring efforts may be targeted. 



29 
 

 
 

 

Table 12. Relative contribution of each environmental variable to the humpback whale spring species 
distribution model for each model scenario. Contributions and area under the curve (AUC) values 
were averaged across model runs (n = 100). AUC values greater than 0.70 indicate SDM that have 
good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (≥ 
20) are highlighted in dark and light grey, respectively. 

Grid Resolution Mean Environmental Variable Contribution AUC   

Subsampling Bias Map 
Ocean 
depth 

 SST CTI 
Lagged 

 CHL 
magn 

 
CHL 
magn 

 Lagged 

CHL 
pers 

 
CHL 
pers 

mean sd 

none none 39.8 32.8 4.9 3.9 5.6 9.3 3.7 0.8 0.07 
 1 km 18.6 60.5 1.8 2.7 12.1 3.6 0.7 0.64 0.11 

 2.5 km 28.1 57.1 3.8 1.6 3.4 4.2 1.8 0.71 0.1 
 5 km 35 49.5 3.5 1.5 2 5.1 3.3 0.72 0.1 

2.5 km none 43.9 33.8 4.9 5.9 2.1 5.8 3.5 0.8 0.08 
 1 km 24.8 48.2 1.8 4.1 18.4 2.3 0.4 0.65 0.11 
 2.5 km 31.7 48.4 4.1 1.2 9.3 3.7 1.7 0.72 0.1 
 5 km 38.8 42.1 3.1 1.8 7.5 4.2 2.5 0.72 0.11 

5 km none 41.6 34.5 4 5.3 2.2 9.3 3.1 0.8 0.08 
 1 km 18.4 53.7 2.3 3.4 19.1 2.7 0.4 0.67 0.11 

 2.5 km 26.7 52.6 3.7 1.7 10.6 3.1 1.5 0.72 0.11 
 5 km 34.3 45.9 3.3 1.8 8.5 3.8 2.4 0.72 0.1 

 

Table 13. Relative contribution of each environmental variable to the humpback whale summer 
species distribution model for each model scenario. Contributions and area under the curve (AUC) 
values were averaged across model runs (n = 100). AUC values greater than 0.70 indicate SDM that 
have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth 
(≥ 20) are highlighted in dark and light grey, respectively. 

Grid Resolution Mean Environmental Variable Contribution AUC   

Subsampling 
Bias 
Map 

Ocean 
depth 

 SST CTI 
Lagged 

 CHL 
magn 

 
CHL 
magn 

 Lagged 

CHL 
pers 

 
CHL 
pers 

mean sd 

none none 35.6 23.1 0.9 5.8 19.7 1.4 13.6 0.77 0.03 
 1 km 41.4 29.2 1.4 8.1 7.4 8.8 3.7 0.63 0.04 

 2.5 km 45.8 31.6 1.7 0.8 3.3 10.2 6.6 0.68 0.04 
 5 km 44.4 20.9 1.6 1.0 2.0 6.7 23.4 0.69 0.04 

2.5 km none 38.8 24.3 0.8 13.5 6.6 2.1 13.9 0.77 0.04 
 1 km 32.7 8.3 0.8 33.1 15 6.6 3.4 0.63 0.05 
 2.5 km 47.2 31.8 1.6 1.9 6.9 7.9 2.8 0.67 0.05 
 5 km 47.5 23 1.5 0.1 7.7 6.3 13.9 0.68 0.05 

5 km none 41.6 30.3 0.7 5 7.1 2.3 13.1 0.76 0.05 
 1 km 22.6 3.8 0.7 46.4 9.6 2.1 14.8 0.67 0.05 

 2.5 km 40.9 14.1 0.9 28 10.8 4.4 0.9 0.66 0.05 
 5 km 47.1 27.1 1.0 0.3 17.4 5.0 2.0 0.66 0.05 
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Table 14. Relative contribution of each environmental variable to the humpback whale autumn 
species distribution model for each model scenario. Contributions and area under the curve (AUC) 
values were averaged across model runs (n = 100). AUC values greater than 0.70 indicate SDM that 
have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth 
(≥ 20) are highlighted in dark and light grey, respectively. 

 

Grid Resolution Mean Environmental Variable Contribution AUC   

Subsampling Bias Map 
Ocean 
depth 

 SST CTI 
Lagged 

 CHL 
magn 

 
CHL 
magn 

 Lagged 

CHL 
pers 

 
CHL 
pers 

mean sd 

none none 22.2 26.8 0.1 1.9 17 30.5 1.5 0.83 0.04 
 1 km 27.1 62.1 2.5 3.5 0.1 1.5 3.3 0.64 0.06 

 2.5 km 30.9 57.8 1.0 0.9 0.1 6.2 3.0 0.74 0.05 
 5 km 27.6 45.1 0.5 1.2 0.7 21.3 3.6 0.76 0.05 

2.5 km none 23.3 28 0.1 2.2 18.1 27.2 1.1 0.83 0.04 
 1 km 22.8 53.4 3.1 15.6 1.2 0.7 3.2 0.65 0.07 
 2.5 km 30.1 60.5 1.0 0.7 0.1 4.5 3.0 0.73 0.06 
 5 km 30.9 51.1 0.8 1.0 0.1 12.3 3.8 0.74 0.06 

5 km none 22.5 37.4 0.2 1.0 22 15.7 1.1 0.82 0.05 
 1 km 13.1 33.8 2.3 39.2 3.1 2.7 5.7 0.68 0.07 

 2.5 km 24.7 51.1 1.4 13.2 1.0 1.9 6.7 0.72 0.07 
 5 km 32.3 57.4 0.4 0.5 0.1 3.8 5.5 0.72 0.06 
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Sperm whale 

 

Figure 12. Sightings of sperm whales by season, collected from 1975 through 2015 (n = 1139, within 
study area outlined by black line, see Table 3). Yellow indicates consolidated SDM outputs: areas 
with high (60-100%) relative occurrence rate for any scenarios of sampling bias correction (bias maps 
and subsampling) during summer. SDM outputs indicate priority areas where monitoring efforts may 
be targeted. 
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Table 15. Relative contribution of each environmental variable to the sperm whale summer species 
distribution model for each model scenario. Contributions and area under the curve (AUC) values 
were averaged across model runs (n = 100). AUC values greater than 0.70 indicate SDMs that have 
good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (≥ 
20) are highlighted in dark and light grey, respectively. 

 

Grid Resolution Mean Environmental Variable Contribution AUC   

Subsampling 
Bias 
Map 

Ocean 
depth 

 SST CTI 
Lagged 

 CHL 
magn 

 
CHL 
magn 

 Lagged 

CHL 
pers 

 
CHL 
pers 

mean sd 

none none 44.3 11.9 6.6 14.9 10 5.3 7.1 0.87 0.06 
 1 km 80.3 8.5 2.1 3.3 2.1 2.6 1.2 0.81 0.07 

 2.5 km 75.6 10.2 3.8 1.2 3.3 3.9 2 0.82 0.07 
 5 km 69.6 12.2 4.2 0.1 6.1 4.4 3.5 0.82 0.07 

2.5 km none 47.9 10.4 5.5 11.5 11.5 6 7.1 0.86 0.06 
 1 km 78.3 7.9 2.1 6.4 1.9 2.1 1.2 0.81 0.07 
 2.5 km 76 8.2 3.9 4.3 2.7 3.6 1.4 0.81 0.08 
 5 km 70.5 10.4 4.1 3.2 5.3 3.7 2.8 0.82 0.07 

5 km none 49.2 7.6 4.3 7.8 18.1 7.1 5.9 0.85 0.06 
 1 km 72.4 7.7 1.2 12.6 1.4 2.3 2.4 0.8 0.08 

 2.5 km 72.6 6.4 3.4 10.9 2.7 3.2 0.8 0.8 0.08 
 5 km 68.7 7 3.8 11 4.8 3.3 1.4 0.8 0.08 
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Sowerby’s beaked whale 

 

 
Figure 13. Sightings of Sowerby's beaked whales by season, collected from 1975 through 2015 (n = 
55, within study area outlined by black line, see Table 3). 
  



34 
 

 
 

 

Killer whale (Atlantic population) 

 
Figure 14. Sightings of killer whales by season, collected from 1975 through 2015 (n = 370, within 
study area outlined by black line, see Table 3).  
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Long-finned pilot whale (Atlantic population) 

 
Figure 15. Sightings of long-finned pilot whales by season, collected from 1975 through 2015 (n = 
5133, within study area outlined by black line, see Table 3). Yellow indicates consolidated SDM 
outputs: areas with high (60-100%) relative occurrence rate for any scenarios of sampling bias 
correction (bias maps and subsampling) during spring, summer and autumn. SDM outputs indicate 
priority areas where monitoring efforts may be targeted. 
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Table 16. Relative contribution of each environmental variable to the long-finned pilot whale spring 
species distribution model for each model scenario. Contributions and area under the curve (AUC) 
values were averaged across model runs (n = 100). AUC values greater than 0.70 indicate SDMs that 
have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth 
(≥ 20) are highlighted in dark and light grey, respectively.  

Grid Resolution Mean Environmental Variable Contribution AUC   

Subsampling 
Bias 
Map 

Ocean 
depth 

 SST CTI 
Lagged 

 CHL 
magn 

 
CHL 
magn 

 Lagged 

CHL 
pers 

 
CHL 
pers 

mean sd 

none none 13.3 25.9 7.8 3.6 47.2 0.9 1.3 0.89 0.05 
 1 km 33.1 23.6 10.4 3.9 8.8 8.3 12 0.65 0.09 

 2.5 km 26 27.9 8.7 2.4 17.1 6.2 11.8 0.78 0.08 
 5 km 24.5 27.3 9.7 4 19.1 5.3 10.1 0.81 0.08 

2.5 km none 11.1 28.1 9.1 2.9 46.1 0.6 2.0 0.88 0.06 
 1 km 33.8 25.6 11.4 5.5 4.2 8.2 11.3 0.65 0.1 
 2.5 km 28.3 29.6 8.4 3.9 13.7 6.3 9.8 0.75 0.09 
 5 km 25.6 29.2 10.3 4.1 18.2 4.3 8.3 0.78 0.09 

5 km none 9.5 29.2 8.1 2.3 47.3 1.0 2.6 0.87 0.06 
 1 km 37.6 23.4 12.2 7.3 3.0 7.2 9.3 0.65 0.11 

 2.5 km 32.2 29.5 7.1 4.1 12.4 6.9 7.8 0.73 0.1 
 5 km 26.6 32.7 8.0 4.6 15.5 5.4 7.1 0.76 0.09 

 

Table 17. Relative contribution of each environmental variable to the long-finned pilot whale summer 
species distribution model for each model scenario. Contributions and area under the curve (AUC) 
values were averaged across model runs (n = 100). AUC values greater than 0.70 indicate SDMs that 
have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth 
(≥ 20) are highlighted in dark and light grey, respectively.  

Grid Resolution Mean Environmental Variable Contribution AUC   

Subsampling 
Bias 
Map 

Ocean 
depth 

 SST CTI 
Lagged 

 CHL 
magn 

 
CHL 
magn 

 Lagged 

CHL 
pers 

 
CHL 
pers 

mean sd 

none none 8.9 33.3 3.5 46.7 2.4 3.1 2.0 0.78 0.04 
 1 km 31 21.6 0.6 1.6 0.5 1.7 42.9 0.71 0.04 

 2.5 km 41.7 41.8 2.1 1.3 1.2 1.9 10 0.71 0.05 
 5 km 36.4 50 2.5 1.2 4.8 1.5 3.5 0.7 0.05 

2.5 km none 9.7 31.8 2.3 44.5 4.5 3.8 3.3 0.78 0.05 
 1 km 31.8 15.7 0.5 2.6 0.8 1.6 46.9 0.7 0.05 
 2.5 km 45.1 36.3 1.6 0.9 2.0 2.5 11.6 0.7 0.05 
 5 km 41.5 44.9 2.6 0.4 4.5 2.2 3.9 0.69 0.05 

5 km none 11.1 32.9 2.1 41.7 5.2 3.9 3.2 0.77 0.05 
 1 km 32.4 11 0.6 2.3 0.9 1.9 50.8 0.71 0.05 

 2.5 km 52 26.6 0.9 1.8 1.7 2.9 14 0.69 0.06 
 5 km 49.5 34.7 2.5 0.3 4.8 2.4 5.7 0.68 0.06 
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Table 18. Relative contribution of each environmental variable to the long-finned pilot whale autumn 
species distribution model for each model scenario. Contributions and area under the curve (AUC) 
values were averaged across model runs (n = 100). AUC values greater than 0.70 indicate SDMs that 
have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth 
(≥ 20) are highlighted in dark and light grey, respectively. 

 

Grid Resolution Mean Environmental Variable Contribution AUC   

Subsampling 
Bias 
Map 

Ocean 
depth 

 SST CTI 
Lagged 

 CHL 
magn 

 
CHL 
magn 

 Lagged 

CHL 
pers 

 
CHL 
pers 

mean sd 

none none 19.4 48.5 2.9 5 5.4 4.6 14.2 0.81 0.07 
 1 km 51.5 16.6 1.3 2.5 2.4 22.8 2.9 0.78 0.06 

 2.5 km 60.8 26.1 2.3 2.9 3.7 1.3 3.0 0.8 0.07 
 5 km 62.2 29 3.5 2.4 0 0.9 2.0 0.79 0.07 

2.5 km none 23.4 42.7 4.1 5.9 4.0 5.6 14.4 0.81 0.07 
 1 km 54.7 11.9 1.4 2.9 1.4 25.9 1.8 0.78 0.07 
 2.5 km 65.8 20.7 2.6 2 4.0 1.7 3.3 0.79 0.07 
 5 km 66.1 24.2 4.1 2.3 0.1 0.8 2.3 0.78 0.07 

5 km none 19.7 42.4 7.9 4.6 5.9 3.5 16 0.8 0.08 
 1 km 51.1 12 1.4 2.6 2.6 27.8 2.4 0.78 0.07 

 2.5 km 59.2 19.3 2.3 2.3 11.2 3.8 1.7 0.79 0.08 
 5 km 63.8 22.7 4.0 2.1 4.9 0.9 1.7 0.77 0.08 
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Atlantic white-sided dolphin (Atlantic population) 

Figure 16. Sightings of Atlantic white-sided dolphins by season, collected from 1975 through 2015 (n 
= 4455, within study area outlined by black line, see Table 3). Yellow indicates consolidated SDM 
outputs: areas with high (60-100%) relative occurrence rate for any scenarios of sampling bias 
correction (bias maps and subsampling) during summer and autumn. SDM outputs indicate priority 
areas where monitoring efforts may be targeted. 
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Table 19. Relative contribution of each environmental variable to the Atlantic white-sided dolphin 
summer species distribution model for each model scenario. Contributions and area under the curve 
(AUC) values were averaged across model runs (n = 100). AUC values greater than 0.70 indicate 
SDMs that have good discriminatory power. Variables with a mean contribution of at least one third (≥ 
33), or fifth (≥ 20) are highlighted in dark and light grey, respectively. 

Grid Resolution Mean Environmental Variable Contribution AUC   

Subsampling 
Bias 
Map 

Ocean 
depth 

 SST CTI 
Lagged 

 CHL 
magn 

 
CHL 
magn 

 Lagged 

CHL 
pers 

 
CHL 
pers 

mean sd 

none none 4.9 20.3 0.6 44.6 10.3 1.3 18 0.82 0.04 
 1 km 5.3 9.9 2.5 19.7 1.2 50.4 10.8 0.61 0.06 

 2.5 km 11.5 16.4 1.2 15.9 1.0 19.1 34.8 0.66 0.06 
 5 km 8.6 13.5 1.0 19.6 1.9 11.8 43.6 0.69 0.06 

2.5 km none 5.2 18.2 0.3 41.5 14.4 2.8 17.7 0.81 0.05 
 1 km 6.4 9.4 1.6 18.7 4.4 49.1 10.3 0.59 0.07 
 2.5 km 14.3 17.3 1.2 16.5 1.6 21.9 27.2 0.65 0.07 
 5 km 9.9 12.3 0.9 19.8 3.7 13.4 40 0.68 0.07 

5 km none 5.6 22.8 0.3 38 17.5 2.8 12.8 0.8 0.05 
 1 km 5.7 5.7 3.4 8.5 14.5 26.6 35.6 0.61 0.07 

 2.5 km 13.8 17.3 2.6 22.1 0.9 29.8 13.4 0.61 0.07 
 5 km 12.1 15.9 0.7 22.6 3.4 16.4 28.9 0.64 0.07 

 

Table 20. Relative contribution of each environmental variable to the Atlantic white-sided dolphin 
autumn species distribution model for each model scenario. Contributions and area under the curve 
(AUC) values were averaged across model runs (n = 100). AUC values greater than 0.70 indicate 
SDMs that have good discriminatory power. Variables with a mean contribution of at least one third (≥ 
33), or fifth (≥ 20) are highlighted in dark and light grey, respectively. 

Grid Resolution Mean Environmental Variable Contribution AUC   

Subsampling Bias Map 
Ocean 
depth 

 SST CTI 
Lagged 

 CHL 
magn 

 
CHL 
magn 

 Lagged 

CHL 
pers 

 
CHL 
pers 

mean sd 

none none 3.6 6.0 0.5 44.2 7.2 35 3.5 0.83 0.07 
 1 km 19.4 21.2 2.9 0.8 5.1 15 35.7 0.62 0.09 

 2.5 km 7.9 24.6 1.8 4.5 2.3 45.8 13 0.7 0.09 
 5 km 4.8 19 1.2 7.2 5.4 54.7 7.7 0.74 0.09 

2.5 km none 5.0 6.6 1.0 35.4 13.9 34.5 3.6 0.81 0.08 
 1 km 28.1 21.4 2.3 1.6 4.3 4 38.3 0.61 0.1 
 2.5 km 10.8 26.8 2.2 6.0 3.0 36.4 14.9 0.68 0.1 
 5 km 6.5 20.5 1.2 7.6 6.8 48.7 8.7 0.71 0.1 

5 km none 6.2 8.6 0.6 13.7 39.6 28.3 3.0 0.79 0.08 
 1 km 19.4 22.1 2.8 2.7 3.1 16.9 32.9 0.61 0.12 

 2.5 km 11.9 48 2.9 5.5 1.7 16 13.9 0.63 0.11 
 5 km 6 33.5 2.5 5.8 6.9 34.7 10.6 0.67 0.1 
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Bottlenose dolphin (Atlantic population) 

 
Figure 17. Sightings of bottlenose dolphins by season, collected from 1975 through 2015 (n = 306, 
within study area outlined by black line, see Table 3).  
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Short-beaked common dolphin (Atlantic population) 

 
Figure 18. Sightings of short-beaked common dolphins by season, collected from 1975 through 2015 
(n = 2351, within study area outlined by black line, see Table 3). Yellow indicates consolidated SDM 
outputs: areas with high (60-100%) relative occurrence rate for any scenarios of sampling bias 
correction (bias maps and subsampling) during summer and autumn. SDM outputs indicate priority 
areas where monitoring efforts may be targeted. 
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Table 21. Relative contribution of each environmental variable to the short-beaked common dolphin 
summer species distribution model for each model scenario. Contributions and area under the curve 
(AUC) values were averaged across model runs (n = 100). AUC values greater than 0.70 indicate 
SDM that have good discriminatory power. Variables with a mean contribution of at least one third (≥ 
33), or fifth (≥ 20) are highlighted in dark and light grey, respectively. 

 

Grid Resolution Mean Environmental Variable Contribution AUC   

Subsampling 
Bias 
Map 

Ocean 
depth 

 SST CTI 
Lagged 

 CHL 
magn 

 
CHL 
magn 

 Lagged 

CHL 
pers 

 
CHL 
pers 

mean sd 

none none 8.5 30.8 3.2 54 0.2 1.4 1.9 0.83 0.05 
 1 km 1.5 51.9 4.0 1.8 5.6 0.8 34.5 0.72 0.06 

 2.5 km 1.1 70.5 10.4 4.6 0.5 2.9 9.9 0.71 0.06 
 5 km 1.0 74.8 9.2 5.1 0.1 6.1 3.6 0.71 0.07 

2.5 km none 8.0 31.4 2.7 54.2 0.4 1.5 1.7 0.83 0.05 
 1 km 1.6 52.1 3.0 1.5 4.9 0.9 36.1 0.72 0.06 
 2.5 km 1.0 71.7 8.7 4.5 0.5 3.4 10.2 0.71 0.06 
 5 km 1.0 77.9 7.8 4.0 0.2 6.3 2.9 0.71 0.07 

5 km none 7.6 35.1 2.9 50.6 1.2 1.2 1.3 0.83 0.06 
 1 km 2.0 48 1.6 1.2 5.9 1.4 40 0.72 0.06 

 2.5 km 1.0 71.3 5.9 3.6 1.0 2.8 14.5 0.7 0.07 
 5 km 0.8 80.3 5.0 3.4 0.2 7.4 3.0 0.69 0.07 

 

Table 22. Relative contribution of each environmental variable to the short-beaked common dolphin 
autumn species distribution model for each model scenario. Contributions and area under the curve 
(AUC) values were averaged across model runs (n = 100). AUC values greater than 0.70 indicate 
SDM that have good discriminatory power. Variables with a mean contribution of at least one third (≥ 
33), or fifth (≥ 20) are highlighted in dark and light grey, respectively. 

Grid Resolution Mean Environmental Variable Contribution AUC   

Subsampling Bias Map 
Ocean 
depth 

 SST CTI 
Lagged 

 CHL 
magn 

 
CHL 
magn 

 Lagged 

CHL 
pers 

 
CHL 
pers 

mean sd 

none none 20.4 25 0.5 10.5 32.1 7.8 3.8 0.84 0.06 
 1 km 11.2 27 0 2.6 0.3 57.1 1.8 0.78 0.06 

 2.5 km 17.8 51 0.3 2.0 0.3 23.8 4.8 0.77 0.07 
 5 km 19.3 59.6 0.7 1.5 0.5 12.5 5.9 0.76 0.08 

2.5 km none 18.2 25.8 0.6 14.2 30.4 7.5 3.2 0.83 0.06 
 1 km 11.6 26.6 0 2.4 0.3 56.8 2.3 0.78 0.06 
 2.5 km 18 49.4 0.5 2.2 0.4 24.8 4.8 0.77 0.07 
 5 km 20.1 58.3 1.1 1.2 0.4 13.7 5.2 0.76 0.08 

5 km none 17.9 28.1 0.5 17.3 24.5 7.6 4.1 0.83 0.06 
 1 km 11.3 26.4 0 2.6 0.3 57.1 2.3 0.77 0.07 

 2.5 km 16.9 49.5 0.4 2.0 0.3 25.1 5.8 0.76 0.08 
 5 km 18.4 60.8 0.4 1.2 0.6 14 4.6 0.75 0.08 
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Risso’s dolphin (Atlantic population) 

 
Figure 19. Sightings of Risso’s dolphins by season, collected from 1975 through 2015 (n = 124, within 
study area outlined by black line, see Table 3). 
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Striped dolphin (Atlantic population) 
 

Figure 20. Sightings of striped dolphins by season, collected from 1975 through 2015 (n = 126, within 

study area outlined by black line, see Table 3). 
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White-beaked dolphin (Atlantic population) 

 
Figure 21. Sightings of white-beaked dolphins by season, collected from 1975 through 2015 (n = 772, 
within study area outlined by black line, see Table 3). Yellow indicates consolidated SDM outputs: 
areas with high (60-100%) relative occurrence rate for any scenarios of sampling bias correction (bias 
maps and subsampling) during summer. SDM outputs indicate priority areas where monitoring efforts 
may be targeted. 
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Table 23. Relative contribution of each environmental variable to the white-beaked dolphin summer 
species distribution model for each model scenario. Contributions and area under the curve (AUC) 
values were averaged across model runs (n = 100). AUC values greater than 0.70 indicate SDM that 
have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth 
(≥ 20) are highlighted in dark and light grey, respectively. 

Grid Resolution Mean Environmental Variable Contribution AUC   

Subsampling Bias Map 
Ocean 
depth 

 SST CTI 
Lagged 

 CHL 
magn 

 
CHL 
magn 

 Lagged 

CHL 
pers 

 
CHL 
pers 

mean sd 

none none 28.1 41.9 6.1 0.3 1.3 4.1 18.3 0.82 0.07 
 1 km 6.3 26.6 1.3 53.2 6.3 2.5 3.8 0.86 0.05 

 2.5 km 7.6 59.2 2.1 15.4 6.8 4.6 4.3 0.84 0.06 
 5 km 8.7 71.8 2.8 1.5 4.7 5.1 5.5 0.83 0.06 

2.5 km none 27.6 43.9 7.0 0.3 1.4 4.1 15.8 0.82 0.07 
 1 km 5.3 21.1 1.1 61.3 6.7 1.5 3.0 0.86 0.05 
 2.5 km 8.2 48.7 2.1 28.4 5.7 3.6 3.4 0.84 0.06 
 5 km 7.9 72.3 3.1 3.1 5.8 4.1 3.7 0.82 0.06 

5 km none 31 44.9 5.3 0.4 2.2 3.6 12.5 0.82 0.07 
 1 km 5.2 18.5 1 66.3 6.7 1.0 1.3 0.86 0.05 

 2.5 km 6.8 39.4 2.1 40.3 7.1 2.2 2.1 0.84 0.06 
 5 km 7.0 60.8 2.6 17 7.1 3.0 2.5 0.81 0.07 
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Harbour porpoise (Atlantic population) 

 
Figure 22. Sightings of harbour porpoises by season, collected from 1975 through 2015 (n = 27809, 
within study area outlined by black line, see Table 3). Yellow indicates consolidated SDM outputs: 
areas with high (60-100%) relative occurrence rate for any scenarios of sampling bias correction (bias 
maps and subsampling) during summer. SDM outputs indicate priority areas where monitoring efforts 
may be targeted.  
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Table 24. Relative contribution of each environmental variable to the harbour porpoise summer 
species distribution model for each model scenario. Contributions and area under the curve (AUC) 
values were averaged across model runs (n = 100). AUC values greater than 0.70 indicate SDM that 
have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth 
(≥ 20) are highlighted in dark and light grey, respectively. 

Grid Resolution Mean Environmental Variable Contribution AUC   

Subsampling 
Bias 
Map 

Ocean 
depth 

 SST CTI 
Lagged 

 CHL 
magn 

 
CHL 
magn 

 Lagged 

CHL 
pers 

 
CHL 
pers 

mean sd 

none none 1.4 2.7 0.9 10.1 53.3 1 30.6 0.88 0.02 
 1 km 0.1 20.5 0.1 6.4 14.6 2 56.3 0.77 0.04 

 2.5 km 0 15 0.3 8.5 15.4 1.2 59.5 0.85 0.03 
 5 km 0.1 13.5 0.3 11.1 17.6 1.3 56 0.86 0.03 

2.5 km none 1.8 4 0.5 5.5 54.2 0.9 33.1 0.9 0.03 
 1 km 1.2 25.4 0.5 6.8 17.1 1.1 47.8 0.76 0.04 
 2.5 km 0.1 18.5 0.2 4.7 22.4 1 53.1 0.85 0.04 
 5 km 0.2 15.3 0.3 6 25.2 0.9 52.2 0.87 0.04 

5 km none 2.1 6.6 1.3 5.3 51.6 1.1 32 0.9 0.04 
 1 km 9.6 27.1 1 5 17.5 2.9 37 0.76 0.06 

 2.5 km 1.5 23.1 0.9 3.8 26 2.3 42.4 0.82 0.06 
 5 km 0.4 18.7 0.8 7.9 26.3 1.2 44.7 0.85 0.05 

 

Table 25. Relative contribution of each environmental variable to the harbour porpoise autumn 
species distribution model for each model scenario. Contributions and area under the curve (AUC) 
values were averaged across model runs (n = 100). AUC values greater than 0.70 indicate SDM that 
have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth 
(≥ 20) are highlighted in dark and light grey, respectively. 

Grid Resolution Mean Environmental Variable Contribution AUC   

Subsampling 
Bias 
Map 

Ocean 
depth 

 SST CTI 
Lagged 

 CHL 
magn 

 
CHL 
magn 

 Lagged 

CHL 
pers 

 
CHL 
pers 

mean sd 

none none 4.3 6.0 0.1 22.2 10 54.1 3.3 0.93 0.02 
 1 km 2.0 14.9 0.8 3.2 5.8 66.6 6.8 0.76 0.05 

 2.5 km 1.7 11 0.7 7.0 5.1 70 4.5 0.89 0.03 
 5 km 1.1 9.2 0.5 4.4 5.9 72.3 6.6 0.91 0.03 

2.5 km none 4.0 5.2 0.8 24.3 4.7 54.6 6.4 0.93 0.03 
 1 km 3.0 22.8 1.2 7.6 3.1 55.1 7.2 0.75 0.06 
 2.5 km 1.4 13.4 1.3 5.5 3.9 67.7 6.9 0.87 0.04 
 5 km 2 11.9 0.8 4.7 7.0 63.9 9.6 0.9 0.04 

5 km none 5.7 8.7 2.4 11.7 18.4 45.4 7.7 0.91 0.05 
 1 km 10.6 45.1 4.1 3.2 3.1 16.8 17 0.73 0.08 

 2.5 km 3.6 28.8 1.2 1.2 9.5 47.2 8.4 0.83 0.07 
 5 km 2.0 22.5 0.8 3.8 9.1 51.5 10.3 0.87 0.06 
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Figure 23. Sightings of cetacean species that were rarely observed in the study area 
(outlined by black line), collected from 1975 through 2015 (sightings within study area: 
total n = 28, range: 1-13). Belugas may belong to either St. Lawrence Estuary or Arctic 
populations, thus COSEWIC status varies from Special Concern to Endangered while 
SARA status is Endangered or Not Assessed. Gervais' beard whales and Atlantic 
spotted dolphins have not been assessed by COSEWIC or SARA, while the remaining 
four species are considered Not at Risk by both COSEWIC and SARA.  
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DISCUSSION 

Long-term cetacean sightings data from government, non-government, academic, 
and industry sources were assembled for this project. When there were sufficient 
numbers of sightings by species and season, we developed SDMs for each species 
using a set of environmental variables to predict priority areas in eastern Canadian 
waters off Nova Scotia, and Newfoundland and Labrador. This section provides general 
information about these SDMs, and some recommendations on how to interpret and 
use these spatial outputs.  

SDM results: indicators of priority areas for increased cetacean monitoring 
efforts 

Environmental data used to model species distributions should ideally be collected in 
the same time frame as the sightings data, to best reflect conditions experienced by the 
observed animals and thus allow the development of dynamic spatial planning tools 
(Hazen et al. 2018). Given the lack of sightings data from effort-based surveys on a 
monthly and seasonal time-period in the study area, the sightings data in the SDM were 
consolidated by season, across years. Thus, we correspondingly used an 
amalgamation of dynamic environmental data (SST, CHLpers and CHLmagn, by season) 
collected from 2003-2014 (during which 41% of cetacean sightings in the study area 
were collected), to explore general patterns of species’ preferred habitat conditions. In 
some cases, the relative importance of environmental predictors for a given species 
varied by season (Tables 7-25). Seasonal variation is not surprising as our study area is 
characterized by marked seasonality, which induces changes in the spatial and 
temporal availability of resources (Fuentes-Yaco et al. 2015) and thus can change 
cetacean habitat preferences across seasons (Lambert et al. 2017). The relative 
importance of environmental predictors also varied by species (Tables 7-25). Cetacean 
species have different ecological requirements, which are partially reflected in the 
relative contribution of environmental predictors to the SDMs.  

 
In particular, ocean depth contributed to the SDM predictions for fin whale, minke 

whale, humpback whale, sperm whale, and long-finned pilot whale (Tables 7-25). 
Ocean depth has been identified as important in predicting the distribution of cetaceans 
in previous SDM studies (e.g. Abgrall 2009, Mannocci et al. 2015). For instance, Abgrall 
(2009) highlighted the importance of ocean depth in predicting the distribution of baleen 
whales in waters off Newfoundland, particularly in areas characterized by deep water 
and steeper seabed slopes (Abgrall 2009). Deep water and steep topography were also 
often identified as the most important variables explaining the presence of deep diving 
whales, such as sperm whales and northern bottlenose whales (Moors-Murphy 2014, 
Gomez et al. 2017). Ocean depth has been important in the process of defining 
cetacean hotspots in many ecosystems (e.g., Cañadas et al. 2005, Hooker et al. 1999, 
MacKay et al. 2016) and thus it is an important predictor to be considered in SDM 
studies. Ocean depth contributed significantly more to cetaceans’ habitat preferences 
than CTI (which was used here as a measure of topography). CTI is derived from ocean 
depth, but represents different habitat characteristics. CTI reflects peaks, basins and flat 
surfaces of the ocean floor. Those characteristics may be relatively less important in 
predicting cetacean habitat compared with ocean depth in our models. Alternatively, CTI 
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may not emerge as an important feature because the scale it was calculated on may not 
be the scale relevant to the animals.  

 
SST provided significant contributions to the SDMs for harbour porpoise, white-

beaked dolphins, Atlantic white-sided dolphins, short-beaked common dolphins, long-
finned pilot whale, humpback whales, fin whales, and minke whales. SST is an 
important predictor of diversity and abundance of marine life (Worm et al. 2003, Morato 
et al. 2010, Pirotta et al. 2011, Whitehead et al. 2010) and provides information about 
dynamic thermal mesoscale processes that can potentially be linked to cetacean 
distribution. For example, SST maps highlight areas related to increased biological 
productivity and aggregated prey, particularly at persistent thermal fronts where higher 
food densities are found, leading to predictable feeding locations for many marine 
species (Podesta et al. 1993, Etnoyer et al. 2006). Such areas in our study area include 
regions where warm waters from the Gulf Stream meet the cold waters from the 
Labrador current. SST, therefore, captures important seasonal and spatial processes 
that are important for cetaceans and cetacean prey distribution.  For species with 
sufficient data available, further investigation may also reveal patterns at a finer 
temporal scale (e.g., daily SST have proven to be important predictors for harbor 
porpoises, Gilles et al. 2016). 

 
Predictors related to chlorophyll-a provided significant contributions to the SDMs 

for fin whales, sei whales, minke whales, long-finned pilot whale, short-beaked common 
dolphins, harbour porpoise, and Atlantic white-sided dolphins. Areas with relatively high 
chlorophyll-a concentration have been used in other SDM studies to locate biological 
hotspots (Palacios et al. 2006, Kobayashi et al. 2011) and as a proxy for the amount of 
primary production, which is important for predicting cetacean distribution (Jaquet & 
Whitehead 1996, Ferguson et al. 2006, Mannocci et al. 2015). Regional CHLmagn also 
captures the distinctiveness of geographic regions shown in Figure 5, which are 
characterized by unique marine communities and food web systems (Devred et al. 
2007, 2009, Longhurst 2007). Cetaceans were not among the marine species used to 
characterize these regions; however, the relatively high contribution of regional CHLmagn 
suggests that this partitioning is important to understanding spatial ecology for some 
cetacean species.  

 

Interpreting results for marine spatial planning purposes 

 
An AUC value close to 1.0 indicates that the SDM has good discriminatory power, 
whereas a value ≤0.5 indicates that the model prediction is no better than random 
(Fielding & Bell 1997). With most AUC values indicating relatively good model 
performance (>0.70 for most model runs; Tables 7-25), our SDMs can be interpreted as 
areas to prioritize cetacean monitoring in waters off Nova Scotia, Newfoundland and 
Labrador regions. The following are important considerations for using outputs of this 
report: 
 

- Cetacean sighting records compiled in this work were largely collected through 
platforms of opportunity rather than systematically. Therefore, sampling effort 
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was often not recorded. Areas, seasons, and species with low sampling effort are 
underrepresented, and it is possible that important habitats may not be captured 
in this report’s predictions. The lack of highly suitable habitat in some cases may 
be the result of a lack of effort and not necessarily low suitability. 

 
- The use of all non-TGS in the bias files assumes that all of the surveys record all 

species types. Some surveys may not record all species even when present and 
therefore, the bias file is likely missing non-TGS records. One consideration in 
future approaches may be to limit the non-TGS records to surveys that may be 
similar in nature and species types that may be similar to the focal species. 
 

- AUC values reflect the probability of having a higher predicted suitability value in 
a randomly chosen presence cell compared with a randomly chosen absence cell 
(Elith et al. 2006). This is problematic for SDMs that lack true absence data 
(Lobo et al. 2008), and there is a lack of alternatives to evaluate model 
performance for this type of presence-only approach (Merow et al. 2013), 
although see Muscarella et al 2014 and Cobos et al 2019). However, AUC values 
are considered reliable to compare models generated for a single species in the 
same area and the same predictors (Fourcade et al. 2014).  
 

- SDMs in this study used seasonal averages, and cetacean data from 1975-2015. 
SDMs do not take into account monthly or inter-annual variations in the 
distribution of cetaceans, and more recent cetacean sightings data (e.g., from 
2016 to present) are available. They also do not capture fluctuations in 
environmental conditions that impact cetacean prey or long-term changes in 
environmental conditions (e.g., climate change). This limits their availability to be 
used in dynamic spatial management efforts.  
 

- There is additional uncertainty associated with using environmental predictors 
from shorter time frames compared with the cetacean sightings. This limitation 
may have implications for our predictions as there are large scale changes that 
have occurred in the NWAO that are not captured due to environmental 
predictors available for more recent time frames. 
 

- There are likely additional environmental predictors not included in this study that 
may impact cetacean prey. Inclusion of cetacean prey, or better predictor 
variables as proxies for cetacean prey, would likely improve predictions as more 
data becomes available.  
 

- This report used MaxEnt due to the nature of the available cetacean sightings, 
which were largely opportunistic for most of the species. However there are other 
approaches, such as those that also allow to estimate pseudo absences. Thus, 
we recommend testing other algorithms to compare outputs and ultimately 
improve predictions of suitable habitat for these species. 
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- SDM outputs sometimes vary considerably under the different sampling bias 
correction. When background points are selected randomly from within the study 
area (i.e. without a bias map), MaxEnt is expected to predict wider ranges of 
suitable habitat (Merow et al. 2013). In our case, and in Gomez et al. (2017), the 
opposite pattern was observed: predictions seemed to be more restricted when 
bias maps were not included. In these models without bias maps, there is also a 
trend that the Scotian Shelf – an area of relatively high densities of sightings (due 
at least in part to greater presence of vessels/observers in this area) – is deemed 
more highly suitable than in models with a bias map. Despite this variation, all 
SDM outputs presented in the scenarios of sampling bias correction are 
reasonable predictions with which to target monitoring efforts (Figures A1-A19). 
We therefore combined all the different models into one all-inclusive predictive 
output.  
 

- How would the inclusion of human drivers (e.g. offshore development, shipping) 
that may result in the avoidance of areas or degradation of habitat (seasonally or 
at some point during the study period) by some species affect these models? 

 
Due to the reasons listed above (and summarized in Gomez et al. 2017), results in 

this report do not represent a complete and current distribution of cetaceans in the 
region. Thus, its use in marine spatial planning processes should be accompanied by 
complimentary approaches. For example, important habitat for blue whales in the 
Northwest Atlantic was identified using a combination of approaches related to blue 
whale distribution and krill aggregation (observed or predicted) (Plourde et al. 2016, 
Lesage et al. 2018, Moors-Murphy et. al 2019), including the SDM approach described 
in this report. Consequently, SDM predictions presented in this report should not be 
used on their own. Rather, outputs should be used together with other sources of 
information (such as: prey distribution, tagging data, detections from acoustic 
monitoring, other data on cetacean occurrence, and other modeling efforts already 
available for the area) to delineate important habitat. The use of multiple sources of 
information in Lesage et al. (2018), in addition to SDM predictions, represents a good 
framework in which to properly use the outputs of this report in marine spatial planning 
processes.   
 

Recommendations for future work  

 
Gomez et al. 2017 provide an extensive list of recommendations to improve the 

approach and predictions illustrated in this report. Here we highlight some of those key 
recommendations that should be taken into consideration when conducting further SDM 
exercises for cetaceans.  

 
Sightings data collection and management: A significant amount of effort was put 
into collating cetacean sighting records from multiple sources/databases, removing 
duplicate data and quality checking the sightings data. In some cases, existing sightings 
records were not included in this study because they were not captured in the 
databases from which the data used here were extracted. Ensuring that existing DFO 
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cetacean sightings databases capture all known sightings records within the study area 
would facilitate future data gathering and modelling efforts. This is especially important 
in the case of sightings in areas for which there currently exist few records, such as 
deep off-shelf waters. For example, records from marine mammal observers onboard 
offshore seismic vessels from seismic surveys occurring off Nova Scotia in 2013 and 
2014 (LGL 2013, 2014) could be included in the SDM to have a better representation of 
deep-water areas. Further, a centralized cetacean sightings database that captures 
data from all regions in a standardized way and removes duplicate or inaccurate data to 
ensure that data extracted is of the highest quality possible would greatly facilitate 
modelling efforts.  
 
Model validation using new sightings data: Validation of model results can be 
conducted by using sighting records obtained from more recent cetacean surveys in 
eastern Canada (e.g., the North Atlantic International Sightings Survey (NAISS) 
conducted in 2016; Lawson and Gosselin 2020) or more recent North Atlantic right 
whale survey efforts that have been occurring since 2017; DFO 2019). Until the SDMs 
models in this report are validated with independent datasets such as these, particularly 
in areas with low sighting efforts, the SDM results should be used primarily to direct 
monitoring efforts. 
 
Updating models using new data: New sightings data can be used not only to 
validate these SDMs, but also to update them. When enough data becomes available, 
the models may be able to account for monthly or inter-annual variations in the 
distribution of cetaceans and potentially investigate long-term fluctuations in 
environmental conditions that may impact cetacean prey.  

 
Use of acoustic data on cetacean presence: Incorporating cetacean acoustic 
detection data into SDM is highly recommended. Some of this data is already available 
and includes occurrence data from autumn, winter and spring, which typically have less 
visual-based effort relative to summer (Lesage et al. 2018). With these data, we can 
more closely examine areas highlighted as suitable in the SDM, and we can do so 
across all seasons. 
 
Incorporating better predictors: Future SDM efforts will likely benefit by including 
additional predictor data layers such as thermal fronts, prey distribution or human 
drivers. Selecting useful predictors may depend on the species whose distribution is 
being modelled, and the model’s intended use (Kenchington et al. 2019). The approach 
presented in this report was for multiple species, but future single-species studies 
should examine individual species ecology to select meaningful environmental 
predictors for the target species. The importance of carefully selecting biologically 
meaningful variables is evidenced by Fourcade et al. (2017), who show that SDMs that 
use variables with no biological relevance can be misleadingly classified as good or 
even excellent using common evaluation measures. Incorporating better predictors will 
be also relevant in in the context of climate change as species will shift their distribution 
in responses to changes in temperature (Greenan et al. 2019). 
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Use of additional satellite-derived information: Satellite-derived information can be 
further explored and utilized to fully take advantage of its ability to improve 
environmental predictors. Fuentes-Yaco (com pers) proposed the use of satellite-
derived information on selected wavelengths to better understand the spatial and 
temporal distribution of marine species. Fuentes-Yaco et al. (in press) is producing 
specific Moderate Resolution Imaging Spectroradiometer (MODIS) products at a spatial 
resolution of 250m per pixel that can be applied for this purpose. Preliminary tests using 
this dataset have given promising results (Fuentes-Yaco and Clay 2018). The 
mechanisms of visual foraging by cetaceans to find prey patches, and the role of colour 
vision has been explored in multiple studies (Griebel and Peich 2003, Dugan et al. 
2015, Fasick and Robinson 2016, Cronin et al. 2017). Remote detection of whales from 
space (Fretwell et al. 2014) and of whales’ prey, zooplankton, is also currently being 
developed and explored (Trudnowska et al 2015; Basedow et al 2019). Before they can 
be applied to modelling species distributions, these approaches must be improved using 
more advanced sensors such as the Visible and Infrared Imager/Radiometer Suite 
(VIIRS) (https://oceancolor.gsfc.nasa.gov/data/viirs-snpp/) and the Ocean and Land 
Colour Instrument (OLCI) (https://oceancolor.gsfc.nasa.gov/data/olci-s3a/).  
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APPENDIX  - SPECIES DISTRIBUTION MODEL RESULTS 

Figure A 1. Habitat suitability index for fin whale during summer, based on the averaged relative occurrence rate output 
from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in 
summer from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias map grid 
resolutions. 
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Figure A 2. Habitat suitability index for fin whale during autumn, based on the averaged relative occurrence rate output 

from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in 

autumn from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias map grid 

resolutions. 
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Table A 1. Pearson’s correlation between for the 12 summer SDMs for fin whale.  

Bias map  None 1 km  2.5 km  5 km  

 Subsampling none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  

none none 1.00 1.00 0.99 0.38 0.25 0.05 0.66 0.57 0.45 0.78 0.75 0.67 
 

2.5km  1.00 0.99 0.38 0.25 0.06 0.66 0.58 0.46 0.78 0.76 0.69 
 

5 km   1.00 0.38 0.26 0.07 0.65 0.58 0.47 0.78 0.76 0.69 

1 km none    1.00 0.91 0.78 0.78 0.79 0.78 0.69 0.69 0.71 
 

2.5km     1.00 0.94 0.61 0.67 0.84 0.54 0.63 0.69 
 

5 km      1.00 0.45 0.54 0.79 0.36 0.47 0.56 

2.5 km none       1.00 0.96 0.78 0.93 0.88 0.86 
 

2.5km        1.00 0.85 0.86 0.84 0.86 
 

5 km         1.00 0.71 0.80 0.88 

5 km none          1.00 0.96 0.90 
 

2.5km           1.00 0.97 
 

5 km            1.00 
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Table A 2. Pearson’s correlation between the 12 models for the autumn SDMs for fin whale.  

Bias map  None 1 km  2.5 km  5 km  

 Subsampling none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  

none none 1.00 0.99 0.99 0.75 0.71 0.58 0.80 0.81 0.79 0.86 0.86 0.85 
 

2.5km  1.00 0.99 0.76 0.71 0.59 0.80 0.82 0.79 0.86 0.87 0.85 
 

5 km   1.00 0.77 0.73 0.61 0.80 0.82 0.80 0.86 0.86 0.85 

1 km none    1.00 0.98 0.89 0.91 0.93 0.92 0.89 0.90 0.91 
 

2.5km     1.00 0.95 0.88 0.90 0.91 0.85 0.86 0.88 
 

5 km      1.00 0.77 0.80 0.86 0.73 0.75 0.80 

2.5 km none       1.00 0.99 0.93 0.97 0.96 0.94 
 

2.5km        1.00 0.96 0.96 0.97 0.96 
 

5 km         1.00 0.91 0.93 0.96 

5 km none          1.00 0.99 0.96 
 

2.5km           1.00 0.98 
 

5 km            1.00 
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Figure A 3. Habitat suitability index for sei whale during summer, based on the averaged relative occurrence rate output 

from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in 

summer from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias map grid 

resolutions. 
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Table A 3. Pearson’s correlation between the 12 models for the summer SDMs for sei whale.  

Bias map  None 1 km  2.5 km  5 km  

 Subsampling none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  

none none 1.00 0.99 0.99 0.53 0.50 0.47 0.61 0.60 0.56 0.63 0.62 0.59 
 

2.5km  1.00 0.99 0.55 0.52 0.49 0.63 0.62 0.58 0.65 0.64 0.60 
 

5 km   1.00 0.54 0.52 0.49 0.63 0.62 0.59 0.65 0.64 0.61 

1 km none    1.00 1.00 0.98 0.97 0.97 0.96 0.93 0.94 0.95 
 

2.5km     1.00 0.99 0.95 0.96 0.97 0.92 0.94 0.95 
 

5 km      1.00 0.92 0.94 0.96 0.88 0.90 0.93 

2.5 km none       1.00 1.00 0.97 0.98 0.99 0.98 
 

2.5km        1.00 0.98 0.98 0.99 0.99 
 

5 km         1.00 0.95 0.96 0.98 

5 km none          1.00 1.00 0.98 
 

2.5km           1.00 0.99 
 

5 km            1.00 
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Figure A 4. Habitat suitability index for minke whale during summer, based on the averaged relative occurrence rate 

output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of 

sightings in summer from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias 

map grid resolutions. 
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Figure A 5. Habitat suitability index for minke whale during autumn, based on the averaged relative occurrence rate output 

from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in 

autumn from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias map grid 

resolutions. 
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Table A 4. Pearson’s correlation between the 12 models for the summer SDMs for minke whale.  

Bias map  None 1 km  2.5 km  5 km  

 Subsampling none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  

none none 1.0 0.99 0.99 0.53 0.44 0.32 0.73 0.70 0.63 0.77 0.75 0.74 
 

2.5km  1.0 0.99 0.54 0.45 0.33 0.73 0.70 0.63 0.77 0.76 0.74 
 

5 km   1.0 0.54 0.46 0.35 0.73 0.70 0.65 0.77 0.75 0.75 

1 km none    1.0 0.96 0.84 0.87 0.90 0.87 0.8 0.82 0.83 
 

2.5km     1.0 0.92 0.79 0.85 0.86 0.70 0.74 0.79 
 

5 km      1.0 0.62 0.72 0.81 0.51 0.55 0.70 

2.5 km none       1.0 0.98 0.9 0.96 0.96 0.93 
 

2.5km        1.0 0.95 0.94 0.94 0.96 
 

5 km         1.0 0.83 0.85 0.94 

5 km none          1.0 0.99 0.92 
 

2.5km           1.0 0.93 
 

5 km            1.0 

 

  



75 
 

 

Table A 5. Pearson’s correlation between the 12 models for the autumn SDMs for minke whale.  

Bias map  None 1 km  2.5 km  5 km  

 Subsampling none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  

none none 1.00 0.99 0.98 0.47 0.43 0.37 0.56 0.55 0.51 0.59 0.58 0.58 
 

2.5km  1.00 0.99 0.48 0.45 0.38 0.57 0.56 0.51 0.60 0.59 0.59 
 

5 km   1.00 0.48 0.46 0.41 0.55 0.55 0.52 0.58 0.58 0.58 

1 km none    1.00 0.98 0.93 0.88 0.91 0.92 0.81 0.83 0.84 
 

2.5km     1.00 0.97 0.83 0.86 0.90 0.76 0.80 0.82 
 

5 km      1.00 0.74 0.78 0.85 0.67 0.72 0.75 

2.5 km none       1.00 0.99 0.94 0.96 0.95 0.93 
 

2.5km        1.00 0.96 0.93 0.94 0.93 
 

5 km         1.00 0.89 0.92 0.94 

5 km none          1.00 0.98 0.95 
 

2.5km           1.00 0.98 
 

5 km            1.00 
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Figure A 6. Habitat suitability index for humpback whales during summer, based on the averaged relative occurrence rate 
output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of 
sightings in summer from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias 
map grid resolutions.  
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Figure A 7. Habitat suitability index for humpback whales during spring, based on the averaged relative occurrence rate 

output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of 

sightings in spring from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias map 

grid resolutions.  
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Figure A 8. Habitat suitability index for humpback whales during autumn, based on the averaged relative occurrence rate 

output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of 

sightings in autumn from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias map 

grid resolutions. 
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Table A 6. Pearson’s correlation between the 12 models for the spring SDMs for humpback whale.  

Bias map  None 1 km  2.5 km  5 km  

 Subsampling none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  

none none 1.00 0.99 0.98 0.18 0.15 0.14 0.52 0.47 0.48 0.64 0.61 0.58 
 

2.5km  1.00 0.98 0.21 0.18 0.17 0.55 0.51 0.52 0.67 0.65 0.61 
 

5 km   1.00 0.21 0.18 0.18 0.55 0.51 0.53 0.67 0.65 0.62 

1 km none    1.00 1.00 0.99 0.79 0.83 0.81 0.70 0.74 0.76 
 

2.5km     1.00 1.00 0.77 0.82 0.80 0.67 0.71 0.74 
 

5 km      1.00 0.76 0.81 0.79 0.67 0.71 0.73 

2.5 km none       1.00 0.99 0.99 0.97 0.98 0.98 
 

2.5km        1.00 0.99 0.95 0.97 0.97 
 

5 km         1.00 0.95 0.97 0.98 

5 km none          1.00 0.99 0.98 
 

2.5km           1.00 0.99 
 

5 km            1.00 
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Table A 7. Pearson’s correlation between the 12 models for the summer SDMs for humpback whale.  

Bias map  None 1 km  2.5 km  5 km  

 Subsampling none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  

none none 1.00 0.99 0.98 0.54 0.47 0.32 0.63 0.60 0.51 0.73 0.69 0.60 
 

2.5km  1.00 0.99 0.55 0.49 0.34 0.65 0.61 0.53 0.74 0.70 0.62 
 

5 km   1.00 0.60 0.52 0.38 0.68 0.65 0.58 0.77 0.74 0.66 

1 km none    1.00 0.98 0.91 0.96 0.98 0.97 0.92 0.94 0.96 
 

2.5km     1.00 0.95 0.93 0.95 0.97 0.88 0.91 0.94 
 

5 km      1.00 0.83 0.87 0.92 0.76 0.81 0.88 

2.5 km none       1.00 0.99 0.95 0.97 0.98 0.96 
 

2.5km        1.00 0.97 0.95 0.97 0.98 
 

5 km         1.00 0.90 0.93 0.97 

5 km none          1.00 0.99 0.95 
 

2.5km           1.00 0.97 
 

5 km            1.00 
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Table A 8. Pearson’s correlation between the 12 models for the autumn SDMs for humpback whale.  

Bias map  None 1 km  2.5 km  5 km  

 Subsampling none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  

none none 1.00 0.99 0.99 0.67 0.65 0.61 0.73 0.71 0.68 0.78 0.76 0.73 
 

2.5km  1.00 0.99 0.67 0.65 0.62 0.73 0.71 0.68 0.78 0.76 0.74 
 

5 km   1.00 0.69 0.68 0.65 0.76 0.74 0.71 0.80 0.78 0.76 

1 km none    1.00 0.99 0.95 0.93 0.93 0.92 0.91 0.92 0.91 
 

2.5km     1.00 0.97 0.92 0.93 0.93 0.89 0.91 0.92 
 

5 km      1.00 0.91 0.93 0.95 0.87 0.90 0.93 

2.5 km none       1.00 0.99 0.97 0.99 0.99 0.98 
 

2.5km        1.00 0.99 0.97 0.98 0.99 
 

5 km         1.00 0.94 0.96 0.98 

5 km none          1.00 0.99 0.98 
 

2.5km           1.00 0.99 
 

5 km            1.00 
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Figure A 9. Habitat suitability index for sperm whale during summer, based on the averaged relative occurrence rate 

output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of 

sightings in summer from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias 

map grid resolutions. 
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Table A 9. Pearson’s correlation between the 12 models for the summer SDMs for sperm whales.  

Bias map  None 1 km  2.5 km  5 km  

 Subsampling none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  

none none 1.00 0.99 0.99 0.53 0.50 0.47 0.61 0.60 0.56 0.63 0.62 0.59 
 

2.5km  1.00 0.99 0.55 0.52 0.49 0.63 0.62 0.58 0.65 0.64 0.60 
 

5 km   1.00 0.54 0.52 0.49 0.63 0.62 0.59 0.65 0.64 0.61 

1 km none    1.00 1.00 0.98 0.97 0.97 0.96 0.93 0.94 0.95 
 

2.5km     1.00 0.99 0.95 0.96 0.97 0.92 0.94 0.95 
 

5 km      1.00 0.92 0.94 0.96 0.88 0.90 0.93 

2.5 km none       1.00 1.00 0.97 0.98 0.99 0.98 
 

2.5km        1.00 0.98 0.98 0.99 0.99 
 

5 km         1.00 0.95 0.96 0.98 

5 km none          1.00 1.00 0.98 
 

2.5km           1.00 0.99 
 

5 km            1.00 
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Figure A 10. Habitat suitability index for long-finned pilot whales during summer, based on the averaged relative 

occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic 

locations of sightings in summer from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution 

and bias map grid resolutions. 
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Figure A 11. Habitat suitability index for long-finned pilot whales during spring, based on the averaged relative occurrence 

rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of 

sightings in spring from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias map 

grid resolutions. 
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Figure A 12. Habitat suitability index for long-finned pilot whales during autumn, based on the averaged relative 

occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic 

locations of sightings in autumn from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution 

and bias map grid resolutions. 
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Table A 10. Pearson’s correlation between the 12 models for the spring SDMs for long-finned pilot whale.  

Bias map  None 1 km  2.5 km  5 km  

 Subsampling none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  

none none 1.00 0.99 0.98 0.71 0.67 0.64 0.73 0.68 0.66 0.76 0.72 0.69 
 

2.5km  1.00 0.99 0.72 0.68 0.66 0.73 0.69 0.67 0.76 0.74 0.70 
 

5 km   1.00 0.72 0.68 0.66 0.73 0.70 0.68 0.76 0.74 0.71 

1 km none    1.00 0.99 0.98 0.93 0.92 0.92 0.90 0.90 0.90 
 

2.5km     1.00 1.00 0.93 0.93 0.93 0.89 0.91 0.91 
 

5 km      1.00 0.91 0.92 0.93 0.88 0.90 0.91 

2.5 km none       1.00 0.99 0.97 0.98 0.98 0.97 
 

2.5km        1.00 0.99 0.97 0.98 0.98 
 

5 km         1.00 0.95 0.96 0.98 

5 km none          1.00 0.99 0.97 
 

2.5km           1.00 0.99 
 

5 km            1.00 
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Table A 11. Pearson’s correlation between the 12 models for the summer SDMs for long-finned pilot whale.  

Bias map  None 1 km  2.5 km  5 km  

 Subsampling none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  

none none 1.00 0.99 0.99 0.41 0.36 0.26 0.53 0.48 0.41 0.58 0.54 0.47 
 

2.5km  1.00 0.99 0.38 0.33 0.24 0.50 0.45 0.39 0.55 0.51 0.45 
 

5 km   1.00 0.40 0.35 0.26 0.51 0.46 0.40 0.56 0.52 0.46 

1 km none    1.00 0.99 0.97 0.94 0.95 0.94 0.89 0.89 0.89 
 

2.5km     1.00 0.98 0.93 0.94 0.94 0.87 0.88 0.89 
 

5 km      1.00 0.89 0.91 0.93 0.84 0.85 0.87 

2.5 km none       1.00 0.99 0.97 0.97 0.95 0.94 
 

2.5km        1.00 0.99 0.96 0.96 0.95 
 

5 km         1.00 0.94 0.95 0.95 

5 km none          1.00 0.99 0.97 
 

2.5km           1.00 0.99 
 

5 km            1.00 
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Table A 12. Pearson’s correlation between the 12 models for the autumn SDMs for long-finned pilot whale.  

Bias map  None 1 km  2.5 km  5 km  

 Subsampling none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  

none none 1.00 0.98 0.98 0.49 0.45 0.41 0.51 0.47 0.43 0.55 0.52 0.49 
 

2.5km  1.00 0.98 0.53 0.48 0.44 0.54 0.51 0.46 0.58 0.55 0.52 
 

5 km   1.00 0.51 0.47 0.43 0.52 0.49 0.45 0.56 0.54 0.51 

1 km none    1.00 0.99 0.98 0.97 0.97 0.96 0.96 0.97 0.97 
 

2.5km     1.00 0.99 0.95 0.96 0.96 0.95 0.96 0.96 
 

5 km      1.00 0.94 0.95 0.95 0.93 0.94 0.95 

2.5 km none       1.00 1.00 0.99 0.99 0.99 0.99 
 

2.5km        1.00 0.99 0.98 0.99 0.99 
 

5 km         1.00 0.98 0.98 0.99 

5 km none          1.00 1.00 0.99 
 

2.5km           1.00 1.00 
 

5 km            1.00 
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Figure A 13. Habitat suitability index for Atlantic white-sided dolphin during summer, based on the averaged relative 

occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic 

locations of sightings in summer from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution 

and bias map grid resolutions. 
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Figure A 14. Habitat suitability index for Atlantic white-sided dolphin during autumn, based on the averaged relative 

occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic 

locations of sightings in autumn from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution 

and bias map grid resolutions. 



92 
 

 

Table A 13. Pearson’s correlation between the 12 models for the summer SDMs for Atlantic white-sided Dolphin.  

Bias map  None 1 km  2.5 km  5 km  

 Subsampling none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  

none none 1.00 0.99 0.99 0.55 0.41 0.22 0.78 0.73 0.63 0.84 0.82 0.77 
 

2.5km  1.00 0.99 0.55 0.41 0.22 0.78 0.74 0.64 0.84 0.82 0.77 
 

5 km   1.00 0.55 0.42 0.23 0.78 0.74 0.65 0.84 0.83 0.78 

1 km none    1.00 0.96 0.84 0.86 0.88 0.88 0.77 0.80 0.82 
 

2.5km     1.00 0.93 0.77 0.82 0.86 0.66 0.71 0.76 
 

5 km      1.00 0.60 0.66 0.77 0.47 0.54 0.64 

2.5 km none       1.00 0.98 0.92 0.95 0.95 0.94 
 

2.5km        1.00 0.96 0.93 0.95 0.95 
 

5 km         1.00 0.84 0.88 0.94 

5 km none          1.00 0.99 0.94 
 

2.5km           1.00 0.97 
 

5 km            1.00 
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Table A 14. Pearson’s correlation between the 12 models for the autumn SDMs for Atlantic white-sided Dolphin.  

Bias map  None 1 km  2.5 km  5 km  

 Subsampling none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  

none none 1.00 0.98 0.99 0.27 0.24 0.17 0.28 0.26 0.21 0.35 0.30 0.29 
 

2.5km 0.98 1.00 0.98 0.26 0.24 0.16 0.27 0.26 0.20 0.33 0.29 0.28 
 

5 km 0.99 0.98 1.00 0.26 0.24 0.17 0.27 0.25 0.21 0.33 0.29 0.28 

1 km none 0.27 0.26 0.26 1.00 0.96 0.90 0.90 0.89 0.88 0.82 0.82 0.83 
 

2.5km 0.24 0.24 0.24 0.96 1.00 0.96 0.86 0.89 0.90 0.75 0.80 0.83 
 

5 km 0.17 0.16 0.17 0.90 0.96 1.00 0.81 0.84 0.89 0.67 0.73 0.80 

2.5 km none 0.28 0.27 0.27 0.90 0.86 0.81 1.00 0.97 0.94 0.93 0.92 0.93 
 

2.5km 0.26 0.26 0.25 0.89 0.89 0.84 0.97 1.00 0.96 0.89 0.93 0.93 
 

5 km 0.21 0.20 0.21 0.88 0.90 0.89 0.94 0.96 1.00 0.85 0.89 0.94 

5 km none 0.35 0.33 0.33 0.82 0.75 0.67 0.93 0.89 0.85 1.00 0.97 0.93 
 

2.5km 0.30 0.29 0.29 0.82 0.80 0.73 0.92 0.93 0.89 0.97 1.00 0.96 
 

5 km 0.29 0.28 0.28 0.83 0.83 0.80 0.93 0.93 0.94 0.93 0.96 1.00 
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Figure A 15. Habitat suitability index for short-beaked common dolphin during summer, based on the averaged relative 

occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic 

locations of sightings in summer from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution 

and bias map grid resolutions. 
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Figure A 16. Habitat suitability index for short-beaked common dolphin during autumn, based on the averaged relative 

occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic 

locations of sightings in autumn from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution 

and bias map grid resolutions. 
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Table A 15. Pearson’s correlation between the 12 models for the summer SDMs for short-beaked common dolphin.  

Bias map  None 1 km  2.5 km  5 km  

 Subsampling none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  

none none 1.00 1.00 0.99 0.62 0.60 0.55 0.78 0.77 0.70 0.87 0.85 0.82 
 

2.5km  1.00 0.99 0.62 0.60 0.55 0.78 0.77 0.70 0.87 0.85 0.82 
 

5 km   1.00 0.63 0.61 0.57 0.79 0.77 0.72 0.87 0.86 0.83 

1 km none    1.00 1.00 0.97 0.94 0.94 0.95 0.87 0.89 0.90 
 

2.5km     1.00 0.98 0.93 0.94 0.95 0.86 0.88 0.90 
 

5 km      1.00 0.89 0.91 0.95 0.81 0.84 0.87 

2.5 km none       1.00 0.99 0.97 0.97 0.97 0.97 
 

2.5km        1.00 0.98 0.95 0.97 0.97 
 

5 km         1.00 0.91 0.93 0.96 

5 km none          1.00 1.00 0.98 
 

2.5km           1.00 0.99 
 

5 km            1.00 
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Table A 16. Pearson’s correlation between the 12 models for the autumn SDMs for short-beaked common dolphin.  

Bias map  None 1 km  2.5 km  5 km  

 Subsampling none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  

none none 1.00 0.99 0.99 0.60 0.58 0.57 0.64 0.62 0.62 0.74 0.72 0.72 
 

2.5km  1.00 0.99 0.60 0.58 0.57 0.64 0.62 0.62 0.73 0.71 0.71 
 

5 km   1.00 0.62 0.60 0.59 0.65 0.64 0.64 0.75 0.73 0.74 

1 km none    1.00 1.00 1.00 0.97 0.97 0.96 0.93 0.93 0.93 
 

2.5km     1.00 1.00 0.96 0.96 0.96 0.92 0.93 0.93 
 

5 km      1.00 0.96 0.96 0.96 0.92 0.92 0.92 

2.5 km none       1.00 1.00 0.99 0.97 0.97 0.96 
 

2.5km        1.00 0.99 0.96 0.97 0.96 
 

5 km         1.00 0.96 0.97 0.96 

5 km none          1.00 1.00 0.99 
 

2.5km           1.00 0.99 
 

5 km            1.00 
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Figure A 17. Habitat suitability index for white-beaked dolphin during summer, based on the averaged relative occurrence 

rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of 

sightings in summer from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias 

map grid resolutions.  
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Table A 17. Pearson’s correlation between the 12 models for the summer SDMs for white-beaked dolphin.  

Bias map  None 1 km  2.5 km  5 km  

 Subsampling none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  

none none 1.00 0.99 0.97 0.71 0.70 0.69 0.74 0.73 0.72 0.77 0.75 0.75 
 

2.5km  1.00 0.98 0.70 0.69 0.67 0.73 0.71 0.71 0.75 0.73 0.73 
 

5 km   1.00 0.71 0.70 0.70 0.72 0.72 0.72 0.74 0.74 0.74 

1 km none    1.00 1.00 0.98 0.96 0.97 0.96 0.96 0.97 0.97 
 

2.5km     1.00 0.99 0.95 0.96 0.96 0.95 0.96 0.97 
 

5 km      1.00 0.94 0.95 0.97 0.93 0.95 0.96 

2.5 km none       1.00 1.00 0.98 0.98 0.98 0.98 
 

2.5km        1.00 0.99 0.98 0.98 0.98 
 

5 km         1.00 0.96 0.97 0.98 

5 km none          1.00 1.00 0.99 
 

2.5km           1.00 0.99 
 

5 km            1.00 
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Figure A 18. Habitat suitability index for harbour porpoise during summer, based on the averaged relative occurrence rate 

output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of 

sightings in summer from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias 

map grid resolutions. 
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Figure A 19. Habitat suitability index for harbour porpoise during autumn, based on the averaged relative occurrence rate 

output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of 

sightings in autumn from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias map 

grid resolutions. 
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Table A 18. Pearson’s correlation between the 12 models for the summer SDMs for harbour porpoise.  

Bias map  None 1 km  2.5 km  5 km  

 Subsampling none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  

none none 1.00 0.99 0.98 0.62 0.64 0.59 0.69 0.69 0.66 0.75 0.75 0.73 
 

2.5km  1.00 0.99 0.63 0.64 0.60 0.69 0.69 0.66 0.75 0.75 0.73 
 

5 km   1.00 0.58 0.61 0.58 0.65 0.65 0.63 0.71 0.72 0.70 

1 km none    1.00 0.99 0.92 0.97 0.96 0.95 0.96 0.95 0.94 
 

2.5km     1.00 0.96 0.96 0.96 0.96 0.95 0.95 0.95 
 

5 km      1.00 0.89 0.91 0.95 0.90 0.91 0.92 

2.5 km none       1.00 0.99 0.97 0.99 0.98 0.97 
 

2.5km        1.00 0.99 0.99 0.99 0.98 
 

5 km         1.00 0.97 0.97 0.98 

5 km none          1.00 1.00 0.99 
 

2.5km           1.00 0.99 
 

5 km            1.00 
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Table A 19. Pearson’s correlation between the 12 models for the autumn SDMs for harbour porpoise.  

Bias map  None 1 km  2.5 km  5 km  

 Subsampling none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  none 2.5km  5km  

none none 1.00 0.99 0.98 0.78 0.78 0.76 0.83 0.82 0.75 0.85 0.85 0.82 
 

2.5km  1.00 0.99 0.79 0.79 0.77 0.84 0.83 0.76 0.85 0.86 0.83 
 

5 km   1.00 0.80 0.80 0.79 0.83 0.83 0.77 0.84 0.85 0.84 

1 km none    1.00 1.00 0.98 0.97 0.97 0.93 0.94 0.95 0.94 
 

2.5km     1.00 0.97 0.94 0.97 0.96 0.90 0.92 0.95 
 

5 km      1.00 0.85 0.91 0.96 0.80 0.84 0.91 

2.5 km none       1.00 0.99 0.92 0.98 0.98 0.95 
 

2.5km        1.00 0.96 0.96 0.97 0.98 
 

5 km         1.00 0.88 0.91 0.97 

5 km none          1.00 0.99 0.94 
 

2.5km           1.00 0.96 
 

5 km            1.00 

 


