Évaluation des risques écologiques liés aux effets des activités humaines dans la zone de protection marine des récifs d’éponges siliceuses du détroit d’Hécate et du bassin de la Reine-Charlotte

Lucie Hannah¹
Kate Thornborough¹
Mary Thiess²

¹Institut des sciences de la mer
Pêches et Océans Canada
C.P. 6000
Sidney (C.-B.) V8L 4B2

²Station biologique du Pacifique
Pêches et Océans Canada
3190, chemin Hammond Bay
Nanaimo (C.-B.) V9T 6N7
Avant-propos

La présente série documente les fondements scientifiques des évaluations des ressources et des écosystèmes aquatiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d’étape sur les études en cours.

Publié par :
Pêches et Océans Canada
Secrétariat canadien de consultation scientifique
200, rue Kent
Ottawa (Ontario) K1A 0E6
http://www.dfo-mpo.gc.ca/csas-sccs/

© Sa Majesté la Reine du chef du Canada, 2019
ISSN 2292-4272

La présente publication doit être citée comme suit :

Also available in English :
TABLE DES MATIÈRES

RÉSUMÉ .. xi

1. INTRODUCTION ... 1
 1.1. Localisation des récifs d’éponges siliceuses dans la région du Pacifique du Canada 3
 1.2. Formation, structure, croissance et physiologie des récifs d’éponges siliceuses 3
 1.3. Importance écologique des récifs d’éponges siliceuses ... 4
 1.4. Menaces anthropiques pesant sur les récifs d’éponges siliceuses .. 6
 1.5. La zone de protection marine des récifs d’éponges siliceuses du détroit d’Hécate et du bassin de la Reine-Charlotte ... 7

2. MÉTHODES .. 9
 2.1. Phase d’établissement de la portée des CIE ... 9
 2.1.1. Recensement des composantes importantes de l’écosystème (CIE) 9
 2.1.2. Examen par des experts ... 12
 2.2. Détermination des activités, des sous-activités et des facteurs de stress connexes 12
 2.2.1. Détermination des activités et des sous-activités ... 12
 2.2.2. Détermination des facteurs de stress associés aux activités recensées à l’aide de modèles de séquence des effets ... 12
 2.2.3. Types de facteurs de stress et conséquences pour la cotation 13
 2.3. Évaluation semi-quantitative d’ES risques de niveau 2 ... 14
 2.3.1. Matrice des interactions entre les CIE et les facteurs de stress 14
 2.3.2. Cotation et calcul des termes de risque .. 15

3. RÉSULTATS ... 23
 3.1. Phase d’établissement de la portée .. 23
 3.1.1. Détermination des CIE relatives aux espèces .. 23
 3.1.2. Détermination des CIE relatives aux habitats .. 24
 3.1.3. Détermination des CIE relatives aux attributs des communautés et de l’écosystème ... 24
 3.1.4. Examen par des experts ... 27
 3.1.5. Récapitulatif des CIE sélectionnées .. 28
 3.2. Détermination des activités, des sous-activités et des facteurs de stress connexes 35
 3.2.1. Trafic maritime .. 35
 3.2.2. Recherche ... 37
 3.2.3. Pêche ... 39
 3.2.4. Activités et sous-activités actuellement exclues ... 42
 3.3. Évaluation semi-quantitative d’ES risques de niveau 2 ... 42
 3.3.1. Matrice des interactions entre les CIE et les facteurs de stress 42
 3.3.2. Cotation des composantes des risques ... 43
 3.3.3. Calcul du risque relatif (Risque_{sc}), du RisqueC_{c} et de la Puissance_{s} 46
 3.3.4. Comparaison des résultats selon différents modèles de répartition de l’incertitude .64

4. DISCUSSION ... 64
4.1. Résultats de l’évaluation semi-quantitative des risques de niveau 2 ..64
 4.1.1. Processus de sélection des CIE ...64
 4.1.2. Facteurs de stress potentiels ...65
4.2. Efficacité du cadre ...67
 4.2.1. Facteurs à l’origine des cotes de Risque élevé et prise en compte de l’incertitude68
 4.2.2. Pertinence des résultats pour les recherches futures ..71
 4.2.3. Autres résultats importants ..71
4.3. Défis, limites et travaux futurs ...72
 4.3.1. La méthode semi-quantitative ..73
 4.3.2. Distinction entre les sous-terms « chevauchement temporel » et « intensité (fréquence) » de l’Expositionsc ...73
 4.3.3. Interprétation de l’intégration de l’incertitude ...74
 4.3.4. Risque cumulatif par CIE (RisqueC) ...74
 4.3.5. Cotation des facteurs de Rétablissement, des CIE relatives aux attributs des communautés ..75
 4.3.6. Cotation des facteurs de stress indirects et de longue portée, et stades biologiques des CIE ..75
 4.3.7. Travaux à venir ...76
 4.3.8. Élaboration d’indicateurs et plan de surveillance ..79
5. CONCLUSIONS ET RECOMMANDATIONS ...79
6. RÉFÉRENCES ...81
7. ANNEXES ...87
 Annexe A. La zone de protection marine des récifs d’éponges siliceuses du détroit d’Hécate et du bassin de la Reine-Charlotte ...87
 Annexe B. Définitions des critères de sélection des COMPOSANTES IMPORTANTES DE L’ÉCOSYSTÈME (CIE) relatives aux espèces, aux habitats et aux attributs des communautés 93
 Annexe C. Sources utilisées pour identifier les espèces observées dans la ZONE DE PROTECTION MARINE des récifs d’éponges siliceuses du détroit d’Hécate et du bassin de la Reine-Charlotte (ZPM DH-BRC) ...101
 Annexe D. Questionnaire destiné aux experts et commentaires des examinateurs103
 Annexe E. Établissement de la portée des activités et des facteurs de stress connexes d’après les évaluations antérieures menées à l’aide du CERE ..115
 Annexe F. Activités, sous-activités et facteurs de stress connexes dont l’utilisation a été envisagée dans le cadre de l’évaluation des risques pour la ZPM DH-BRC116
 Annexe G. Matrice des interactions ENTRE LES COMPOSANTES IMPORTANTES DE L’ÉCOSYSTÈME (CIE) ET LES facteurs de stress ..123
 Annexe H. Tableaux des facteurs de rétablissement pour les CIE relatives aux espèces, aux habitats et aux attributs des communautés et de l’écosystème124
 Annexe I. Analyses PAR SIG pour estimer le chevauchement spatial et temporel (composantes de l’exposition) ...127
 Annexe J. Script R pour calculer le risque et intégrer l’incertitude138
Annexe K. Résultats pour toutes les interactions entre LEs composantes importante de l’écosystème (CIE) et les facteurs de stress ...139
Annexe L. Résultats obtenus à l'aide d'autres hypothèses analytiques147
LISTE DES TABLEAUX

Tableau 1. Résumé des critères utilisés pour la sélection des CIE relatives aux espèces, aux habitats et aux attributs des communautés ou de l’écosystème (O et al., 2015) et des considérations supplémentaires pour les espèces (élaborées pour la présente application et ne figurant pas dans O et al., 2015). ...10

Tableau 2. Catégories de cotation qualitatives pour la Superficie_{sc}, la Profondeur_{sc} et le Temps_{sc} (les sous-termes relatifs au chevauchement de l’équation sur l’Exposition_{sc}) mesurées en pourcentage de chevauchement, d’après O et al. (2015)..........................17

Tableau 3. Catégories de cotation qualitatives pour l’Intensité(quantity)_{sc} et l’Intensité(fréquence)_{sc} (les sous-termes relatifs à l’intensité pour l’équation sur l’Exposition_{sc}), d’après O et al. (2015)..17

Tableau 4. Catégories de cotation qualitatives pour Changement_Aigu_{sc} et Changement_Cronique_{sc}, (les sous-termes pour l’équation sur la Résilience_{sc}) mesurées en tant que pourcentage de variation du taux de mortalité à l’échelle d’une population (Changement_Aigu_{sc}) ou en tant que pourcentage de variation de la valeur adaptative à long terme (Changement_Cronique_{sc}), d’après O et al. (2015)...17

Tableau 6. Niveaux d’écarts-types attribués pour chaque cote d’incertitude lors du calcul de la distribution pour chaque sous-composante. ..20

Tableau 7. Résultats de l’exercice initial d’établissement de la portée et de détermination des CIE relatives aux espèces. ..23

Tableau 8. CIE relatives aux attributs des communautés et de l’écosystème potentiels et justification en vue d’une sélection future, lorsqu’elle est disponible. ...25

Tableau 9. CIE relatives aux espèces et justification de leur sélection ...29

Tableau 10. CIE relatives aux habitats et justification de leur sélection ...33

Tableau 11. Liste des activités et des sous-activités recensées pour l’évaluation des risques écologiques dans la ZPM DH-BRC. ..35

Tableau 12. Types de navires naviguant le long de côte Ouest du Canada qui devraient circuler dans le détroit d’Hécate et le bassin de la Reine-Charlotte (adapté de Hemmera [2010])......36

Tableau 13. Résumé des pêches et des types d’engins actuellement autorisés dans les trois zones de la ZPM DH-BRC. ..41

Tableau 14. Résumé des interactions possibles entre les CIE et les activités présentées dans la matrice des interactions ..43

Tableau 15. Nombre de facteurs de Rétablissement_{sc} cotés pour chaque CIE45

Tableau 16. Numéros des facteurs de stress utilisés dans la figure 6-7.47

Tableau 17. Pour chaque CIE, les quatre facteurs de stress affichant la cote de Risque_{sc} la plus élevée (triés dans l’ordre décroissant) ainsi que les cotes d’Exposition_{sc} et de Conséquence_{sc} moyennes (intervalles d’incertitude des 10^e et 90^e percentiles). ...51

Tableau 18. Cotes du risque cumulatif (Risque_{C}) pour toutes les CIE, accompagnées des 10^e et 90^e percentiles et du nombre de facteurs de stress contribuant à la cote (nombre total n’incluant que les facteurs de stress dont la cote de résilience n’est pas nulle)60
Tableau 19. Valeurs du risque cumulatif par facteur de stress (Puissance) triés par ordre décroissant avec les 10ᵉ et 90ᵉ percentiles et le nombre de CIE contribuant à la cote. ...62

Tableau 20. Orientations pour traiter les interactions entre des CIE et des facteurs de stress affichant des cotes de Risque élevées relevées durant l'évaluation des risques en examinant les facteurs à l'origine de ces cotes. ...69

Tableau 21. Superficie et Profondeur de la ZPC, de la ZGA et de la ZVGA pour chacun des quatre complexes de récifs inclus dans la ZPM (adapté de Boutillier et al., 2012) ...92

Tableau 22. Critères de sélection des CIE relatives aux espèces décrits dans O et al. (2015), avec des renseignements supplémentaires propres aux récifs d'éponges siliceuses ...93

Tableau 23. Considérations supplémentaires utilisées pour guider la sélection des CIE relatives aux espèces dans l'écosystème des récifs d'éponges siliceuses. Ces éléments s'ajoutent aux critères énoncés dans O et al. (2015) ...97

Tableau 24. Considérations pour la sélection des CIE relatives aux habitats, O et al. (2015)99

Tableau 25. Considérations pour la sélection des CIE relatives aux attributs des communautés et de l'écosystème, O et al. (2015) ...100

Tableau 26. Sources utilisées pour rassembler les espèces observées sur les récifs d'éponges siliceuses du détroit d'Hécate et du bassin de la Reine-Charlotte ou à proximité de ceux-ci ...101

Tableau 27. Résumé des commentaires et des conseils formulés par les examinateurs aux différentes étapes de l'évaluation des risques ..103

Tableau 28. Extrait de l'annexe envoyée aux examinateurs ...106

Tableau 29. Liste initiale des activités fournies par la Direction des océans du MPO (2011) et activités supplémentaires recensées en vue d'une inclusion à partir d'autres sources.115

Tableau 30. Liste des modèles de séquences des effets avec la date de leur dernière modification et indication de l'examen officiel dont ils ont fait l'objet, le cas échéant.115

Tableau 31. Liste des activités, sous-activités et facteurs de stress connexes pris en compte dans l'évaluation des risques pour la ZPM des récifs d'éponges siliceuses du détroit d'Hécate et du bassin de la Reine-Charlotte (ZPM DH-BRC; avec des noms de facteurs de stress normalisés). ...116

Tableau 32. Descriptions de tous les facteurs de stress dont l'utilisation a été envisagée dans l'évaluation des risques ..119

Tableau 33. Facteurs pour l'évaluation des risques que posent les activités et les facteurs de stress pour les CIE relatives aux espèces (O et al., 2015). ...124

Tableau 34. Facteurs de risque pour l'évaluation des risques potentiels que posent les activités et les facteurs de stress pour les CIE relatives aux habitats (O et al., 2015).125

Tableau 35. Attributs des facteurs de rétablissement pour l'évaluation des risques potentiels que posent les activités et les facteurs de stress pour les CIE relatives aux attributs des communautés et de l'écosystème (O et al., 2015) ..126

Tableau 36. Description des croisières de recherche menées dans la ZPM DH-BRC.130

Tableau 37. Prises cumulatives de toutes les espèces de sébastes (Sebastes spp.) dans le cadre de la pêche au chalut pélagique dans l'empreinte de la ZPM (2007-2013) ..136

Tableau 38. Zone d'intérêt du détroit d'Hécate : nombre total d'événements de pêche (2007-2013) et moyenne annuelle par zone de la ZPM (ZPC, ZGA, ZVGA), type d'engin utilisé
et estimation du nombre maximal de jours de pêche par année en pourcentage, selon les données des observateurs.

Tableau 40. Les six principales interactions entre les CIE et les facteurs de stress actuels uniquement.

Tableau 41. Pour chaque composante importante de l’écosystème (CIE), voici les six principales interactions à résilience non nulle.
LISTE DES FIGURES

Figure 1. Limites de la ZPM des récifs d’éponges siliceuses du détroit d’Hécate et du bassin de la Reine-Charlotte. .. 1

Figure 2. Différences entre le contexte géologique des récifs d’éponges du détroit d’Hécate et du bassin de la Reine-Charlotte (A) et celui des récifs d’éponges du détroit de Georgie et de la baie Howe (B). .. 6

Figure 3. Zones de gestion interne pour la protection dans le contexte des ZPM (reproduite avec l’aimable autorisation du Secteur de gestion des océans du MPO, région du Pacifique). ... 8

Figure 4. Exemple illustrant les différences de distribution entre la méthode axée sur l’incertitude normale et la méthode axée sur l’incertitude normale tronquée sur une plage d’incertitudes avec une cote réelle égale à 0...21

Figure 5. Exemple illustrant les différences de distribution entre la méthode axée sur l’incertitude normale et la méthode axée sur l’incertitude normale tronquée sur une plage d’incertitudes avec une cote réelle égale à 2...22

Figure 6. A. Diagrammes des cotes de risque médianes pour les CIE relatives aux espèces H. calyx, A. vastus et F. occa avec les facteurs de stress numérotés (voir le tableau 16 pour obtenir des précisions concernant le nom de chaque facteur de stress); B. Diagrammes de projection de l’exposition et des conséquences (les quatre facteurs de stress affichant les cotes les plus élevées sont étiquetés). ...48

Figure 7. A. Diagrammes des cotes de risque médianes pour les CIE relatives aux espèces R. dawsoni, M. quadrispina et S. paucispinis avec les facteurs de stress numérotés (voir le tableau 16 pour obtenir des précisions concernant le nom de chaque facteur de stress); B. Diagrammes de projection de l’exposition et des conséquences (les quatre facteurs de stress affichant les cotes les plus élevées sont étiquetés). ...49

Figure 8. A. Diagrammes des cotes de risque médianes pour les CIE relatives aux habitats des jardins d’éponges siliceuses et des squelettes d’éponges siliceuses avec les facteurs de stress numérotés (voir le tableau 16 pour obtenir des précisions concernant le nom de chaque facteur de stress); B. Diagrammes de projection de l’exposition et des conséquences (les quatre facteurs de stress affichant les cotes les plus élevées sont étiquetés). ...50

Figure 9. A. Diagrammes des cotes de risque médianes pour les facteurs de stress actuels uniquement (H. calyx, A. vastus, F. occa) avec les facteurs de stress numérotés (voir le tableau 16 pour obtenir des précisions concernant le nom de chaque facteur de stress); B. Diagrammes de projection de l’exposition et des conséquences (les quatre facteurs de stress affichant les cotes les plus élevées sont étiquetés). ...57

Figure 10. A. Diagrammes des cotes de risque médianes pour les facteurs de stress actuels uniquement (R. dawsoni, M. quadrispina, S. paucispinis) avec les facteurs de stress numérotés (voir le tableau 16 pour obtenir des précisions concernant le nom de chaque facteur de stress); B. Diagrammes de projection de l’exposition et des conséquences (les quatre facteurs de stress affichant les cotes les plus élevées sont étiquetés). ...58

Figure 11. A. Diagrammes des cotes de risque médianes pour les facteurs de stress actuels uniquement (jardins d’éponges siliceuses et squelettes d’éponges siliceuses) avec les facteurs de stress numérotés (voir le tableau 16 pour obtenir des précisions concernant le nom de chaque facteur de stress); B. Diagrammes de projection de l’exposition et des conséquences (les quatre facteurs de stress affichant les cotes les plus élevées sont étiquetés).................................59
Figure 12. Risque cumulatif (RisqueC_{C}) pour chaque CIE, classé par ordre décroissant, avec des barres d'erreur des 10e et 90e percentiles...61

Figure 13. Risque cumulatif par facteur de stress (Puissance_{s}) reporté par ordre décroissant avec les 10e et 90e percentiles et montrant le nombre de CIE (sur huit) contribuant à la cote (au-dessus de la barre correspondante)...63

Figure 14. La ZPM des récifs d'éponges siliceuses du détroit d'Hécate et du bassin de la Reine-Charlotte, comprenant les ZPM des récifs nord, centraux et sud..........................87

Figure 15. Points de cheminement délimitant les zones de gestion de la ZPM du récif nord.....88

Figure 16. Points de cheminement délimitant les zones de gestion de la ZPM des récifs centraux..89

Figure 17. Points de cheminement délimitant les zones de gestion de la ZPM du récif sud.90

Figure 18. Les données sur le trafic des navires de charge montrent le nombre annuel moyen d'heures de navigation par jour reporté sur une grille de 5 x 5 km² (2008-2010). Les données ont fait l'objet d'une normalisation logarithmique pour contrebalancer les effets du trafic maritime côtier intense. Source des données : Hillard et Pelot, 2012. Figure fournie par P. O'Hara, Environnement Canada...127

Figure 19. Carte de la densité moyenne (tout le trafic maritime) en 2013 (d'après les rapports du système d'identification automatique [SIA] des navires; l'unité de mesure est le nombre quotidien d'heures de navigation par jour)..128

Figure 20. Relevés en submersibles effectués près de l'empreinte de la ZPM; données fournies par L. Barton, Secteur des sciences du MPO, base de données du MPO sur les mollusques et crustacés (J. Nephin, Secteur des sciences du MPO, 2017)..129

Figure 21. Événements de pêche au chalut de fond (2006-2013) près de l'empreinte de la ZPM (S. Davies, Secteur des sciences du MPO, 2015)..132

Figure 22. Événements de pêche au chalut pélagique (2006-2013) près de l'empreinte de la ZPM (S. Davies, Secteur des sciences du MPO, 2015)..133

Figure 23. Événements de pêche avec ligne et hameçon (2006-2013) près de l'empreinte de la ZPM (S. Davies, Secteur des sciences du MPO, 2015)..134

Figure 24. Événements de pêche aux casiers (2006-2013) près de l'empreinte de la ZPM (S. Davies, Secteur des sciences du MPO, 2015)..135

Figure 25. Risque cumulatif pour chaque CIE lié aux facteurs de stress actuels uniquement..151

Figure 26. Puissance des facteurs de stress actuels uniquement pour l'ensemble des CIE....152

Figure 27. Risque cumulatif pour chaque CIE limité aux interactions à résilience non nulle et utilisant une distribution normale pour l'estimation de l'incertitude............................156

Figure 28. Puissance des facteurs de stress (limitée aux interactions à résilience non nulle) dans toutes les CIE...157
RÉSUMÉ

1. INTRODUCTION

En février 2017, les récifs d’éponges siliceuses du détroit d’Hécate et du bassin de la Reine-Charlotte (DH-BRC) ont été désignés zone de protection marine (ZPM) en vertu de la Loi sur les océans [DORS/2017-15]. Ils s’agissent des plus grands récifs d’éponges hexactinellides (siliceuses) connus dans le Nord-Est du Pacifique, et on estime que leur âge peut atteindre jusqu’à 9 000 ans (Conway et al., 2001; Conway et al., 2005; Stone et al., 2014). Les récifs d’éponges siliceuses affichent des structures complexes à trois dimensions, qui sont composées d’une matrice remplie de sédiments de squelettes d’éponges mortes et sur laquelle croissent des éponges vivantes. Les récifs d’éponges peuvent se présenter sous la forme de biohermes (monticules) et de biostromes (lits ou plaques) [Lehnert et al., 2005]. Bien que les éponges vivantes à la surface des récifs ne mesurent généralement que de 1 à 2 mètres (m) de hauteur, les monticules formés par les récifs squelettiques sur lesquels elles poussent mesurent en moyenne de 5 à 8 m de hauteur, mais peuvent atteindre 25 m (Conway et Barrie, 2007; Lehnert et al., 2005; Shaw et al., 2018). Les récifs d’éponges siliceuses de la ZPM des récifs d’éponges siliceuses du détroit d’Hécate et du bassin de la Reine-Charlotte (ZPM DH-BRC) sont composés de trois espèces d’éponges : Aphrocallistes vastus, Heterochone calyx et Farrea occa (Conway et al., 2001).

Figure 1. Limites de la ZPM des récifs d’éponges siliceuses du détroit d’Hécate et du bassin de la Reine-Charlotte.
La croissance lente et la fragilité des espèces d’éponges hermatypiques les rendent particulièrement vulnérables aux dommages et aux perturbations, car leur rétablissement peut prendre des dizaines à plusieurs centaines d’années. Les activités humaines à l’intérieur et autour des récifs pourraient poser un risque pour l’habitat structurel, la diversité biologique et la fonction écosystémique de ces habitats fragiles et sensibles. Une évaluation objective et complète des risques anthropiques est nécessaire pour assurer une gestion écosystémique appropriée de cet écosystème diversifié et fragile.

Une façon d’y parvenir consiste à mener une évaluation des risques, comme l’approche décrite dans le Cadre d’évaluation des risques écologiques (CERE) mis au point par la région du Pacifique de Pêches et Océans Canada (MPO), une méthode transparente, systématique et fondée sur la science (O et al., 2015). Le CERE est un outil précieux pour les gestionnaires des océans, car il peut servir à l’évaluation des menaces individuelles et cumulatives que les facteurs de stress associés aux activités anthropiques font peser sur les composantes importantes de l’écosystème (CIE). Les CIE sont des composantes écologiques jugées importantes pour la santé et le fonctionnement d’un écosystème particulier au niveau des espèces, des habitats et des communautés. La première phase du CERE consiste à en déterminer la portée en recensant les CIE, les activités anthropiques et les facteurs de stress connexes. S’ensuit une phase d’évaluation des risques, où un risque est défini comme étant la probabilité qu’une CIE subisse des répercussions négatives inacceptables de l’exposition à un ou à plusieurs facteurs de stress (O et al., 2015). Au cours de cette phase, les composantes de l’exposition et les conséquences (réparties en fonction de facteurs de résilience et de rétablissement) sont assorties de cotes pour les facteurs de stress et les CIE susceptibles d’interagir. Trois types de risques sont estimés par le CERE : le risque relatif pesant sur une CIE, le risque cumulatif de plusieurs facteurs de stress pesant sur une CIE, et la puissance des facteurs de stress parmi toutes les CIE. Le CERE prévoit également trois options pour la phase d’évaluation des risques : niveau 1 (qualitative), niveau 2 (semi-quantitative) ou niveau 3 (quantitative).

À ce jour, l’utilité du processus du CERE a été évaluée par l’intermédiaire d’une évaluation des risques de niveau 1 (qualitative) à la zone de gestion intégrée de la côte Nord du Pacifique (Murray et al., 2016) et d’une évaluation des risques de niveau 2 (semi-quantitative) à deux ZPM de la région du Pacifique : la ZPM du mont sous-marin SGaen Kinghas-Bowie (Rubidge et al., 2018) et la ZPM du champ hydrothermal Endeavour (ZPM CHE; Thornborough et al., 2017). Dans la présente étude, une évaluation des risques de niveau 2 est appliquée à la ZPM DH-BRC (Figure 1). Il convient de noter qu’à l’heure actuelle, le manque de données empêche une évaluation entièrement quantitative de niveau 3 pour cette ZPM.

L’analyse des résultats déterminera l’efficacité de la méthode du CERE lorsqu’elle est appliquée à un écosystème de récifs d’éponges siliceuses tout en vérifiant si les résultats de l’établissement de la portée et du classement des risques relatifs qui en résulte sont appropriés et pertinents pour cette ZPM. Les trois principaux résultats de l’évaluation des risques sont les suivants : un classement du risque relatif pour chaque CIE (en fonction de l’interaction entre chaque CIE et les facteurs de stress), le risque cumulatif lié à tous les facteurs de stress pour chaque CIE et la puissance des facteurs de stress pour chaque CIE. Les gestionnaires accordent une importance particulière à la liste des CIE classées en fonction du risque cumulatif de dommages et à la détermination des activités ou des facteurs de stress qui sont à l’origine des risques (y compris l’estimation de l’incertitude connexe), car ces renseignements sont importants pour éclairer les décisions en matière de gestion des océans. La liste des CIE classées et l’information sur les facteurs de risque sont également nécessaires si l’on veut étayer l’étape suivante, à savoir l’élaboration d’indicateurs et de plans de surveillance fondés sur les risques pour les récifs d’éponges siliceuses de la ZPM DH-BRC.
1.1. LOCALISATION DES RÉCIFS D’ÉPONGES SILICEUSES DANS LA RÉGION DU PACIFIQUE DU CANADA

Les récifs d’épues siliceuses sont uniques au Nord-Est du Pacifique et ont été découverts pour la première fois dans le détroit d’Hécate et le bassin de la Reine-Charlotte en Colombie-Britannique (C.-B.), lorsque les études de cartographie des fonds marins menées par la Commission géologique du Canada en 1984 et en 1986 ont permis de découvrir des anomalies acoustiques dans des régions qui auraient dû être plates. En 1987, des photographies sous-marines prises dans le détroit d’Hécate ont révélé la présence d’épues siliceuses et, en 1999, un relevé en submersible a permis de constater que les épues siliceuses avaient formé de vastes récifs dans toute la région (Krautter et al., 2006). Au cours des 17 dernières années, des relevés ont permis de recenser d’autres récifs d’épues siliceuses le long de la côte du Pacifique du Canada : dans le détroit de Georgie et la baie Howe (Cook, 2005; Dunham et al., 2018), dans le canal Portland et le chenal Chatham (Shaw et al., 2018) et dans plusieurs secteurs le long de la côte Nord et de la côte centrale de la C.-B. (Stone et al., 2014). Parmi les récifs connus, les récifs de la ZPM DH-BRC ont une taille et une étendue particulières (Krautter et al., 2006).

Les récifs d’épues se distinguent des « jardins » d’épues, qui représentent d’autres populations denses d’épues siliceuses que l’on trouve dans les eaux de la Colombie-Britannique. Les jardins d’épues se distinguent des récifs, car les épues qui les composent ne poussent pas sur les squelettes d’épues mortes des générations précédentes et ne présentent donc pas les formations caractéristiques des monticules de récifs (Chu et al., 2010). Les récifs d’épues siliceuses que l’on trouve dans le détroit d’Hécate et le bassin de la Reine-Charlotte se composent de quatre récifs distincts (le plus grand affichant une superficie de près de 120 kilomètres-carrés [km²]) qui forment ensemble une bande discontinue couvrant près de 390 km² à une profondeur comprise entre 165 et 240 mètres (Conway et al., 2004). On estime que ces structures de récifs sont âgées de 6 000 à 9 000 ans (Conway et al., 2001; Conway et al., 2005a).

1.2. FORMATION, STRUCTURE, CROISSANCE ET PHYSIOLOGIE DES RÉCIFS D’ÉPONGES SILICEUSES

Les épues hexactinellides (siliceuses) sont regroupées en deux types, selon les caractéristiques de leur squelette : les épues lyssacines qui ont un squelette de spicules lâches, et les épues dicytonales qui ont un squelette dont les spicules ont fusionné (Leys et al., 2004). Les récifs d’épues siliceuses sont composés d’épues siliceuses dicytonales. Les spicules des épues siliceuses hermatyphiques fusionnent pour créer des squelettes de silice qui restent intacts après la mort des tissus de l’éponge. Cette matrice squelettique est enfermée dans une structure rigide lorsqu’elle se remplit de sédiments, et c’est ce qui compose la base de la formation de larges récifs d’épues, avec des épues vivantes qui se fixent aux squelettes des épues mortes et qui s’y développent (Conway et al., 2001; Conway et al., 2005b; Krautter et al., 2001; Leys et al., 2007). Les récifs d’épues se forment grâce à un équilibre entre l’apport en sédiments et la croissance des épues et, bien qu’ils soient naturellement éparés, ces récifs peuvent afficher des densités élevées lorsqu’un équilibre entre une turbidité élevée et un courant d’eau suffisant empêche l’accumulation excessive de sédiments, car une telle accumulation pourrait provoquer un étouffement (MPO, 2013). La croissance et la forme des monticules de récifs d’épues varient également entre les différents récifs de la ZPM, ce qui peut être attribuable à la concurrence que se livrent les épues pour avoir accès à l’eau (Cook, 2005). Les variations que l’on constate dans la forme de chaque éponge en fonction des sites peuvent être liées aux courants et aux charges sédimentaires (Cook, 2005). La structure d’un récif d’épues se développe par l’intermédiaire de la fixation.
de larves, qui stabilise les excroissances accessoires et les soudures du squelette (lieu où une éponge vivante envahit ou intègre le squelette d’une éponge adjacente). Tous ces processus exigent la présence d’un squelette d’éponges hexactinellides nu. Le développement d’un récif d’éponges dépend également du recrutement préférentiel de larves à la surface du récif plutôt que sur les substrats durs présents à proximité. La surface d’un récif d’éponges ne peut être colonisée avec succès que par des larves d’éponges que lorsque des squelettes non enfouis font saillie sur le fond marin. Les éponges siliceuses ahermatypiques (p. ex. les éponges de Dawson [Rhabdocalyptus dawsoni]) peuvent également constituer une portion de la partie vivante d’un récif (Conway et al., 1991; Cook, 2005; Krautter et al., 2002).

On ne sait que peu de choses sur les taux de croissance des éponges hermatypiques dans la ZPM DH-BRC, mais on a estimé que la croissance des éponges siliceuses hermatypiques dans certains sites du détroit de Georgie varie de 1 à 9 centimètres (cm) par année (Dunham et al., 2015, Kahn et al., 2016).

Sur le plan physiologique, l’une des caractéristiques importantes des éponges hexactinellides qui les distinguent des autres éponges et de la plupart des autres animaux, est que leurs tissus ne sont pas divisés en cellules distinctes. Au lieu de cela, l’un des principaux composants tissulaires des éponges hexactinellides consiste d’un syncytium multinucléé qui produit un squelette rigide de spicules siliceux et qui le recouvre d’une couche fine (Leys, 2003; Reiswig et Mackie, 1983). Par conséquent, ces éponges sont interconnectées au niveau cytoplasmique et sont en mesure de transmettre des signaux électriques à travers un corps dépourvu de nerfs (Leys, 2003; Leys et al., 2007), ce qui permet l’arrêt coordonné du courant d’alimentation en réponse à des perturbations, comme des augmentations des concentrations de sédiments (Leys et al., 1999; Mackie et al., 1983).

1.3. IMPORTANCE ÉCOLOGIQUE DES RÉCIFS D’ÉPONGES SILICEUSES

Les récifs d’éponges siliceuses sont uniques au Nord-Est du Pacifique et se trouvent sur le plateau continental du Nord-Ouest du Pacifique (Cook et al., 2008). Ils contribuent à la productivité benthique et au maintien de la biodiversité en offrant un habitat tridimensionnel stable, complexe et étendu pour divers vertébrés et invertébrés, et en offrant un refuge contre les facteurs de stress comme les prédateurs et les conditions défavorables (p. ex. forts courants de fond) [Cook et al., 2008; Chu et Leys, 2010; Stone et al., 2014]. Les éponges d’eau profonde servent également de sites d’alimentation importants pour certaines espèces proies qui se regroupent dans les habitats constitués d’éponges (Krautter et al., 2001; Stone et al., 2011). Il a été signalé que les poissons utilisent les éponges comme un substrat de frai, tandis que d’autres espèces utilisent probablement les habitats constitués d’éponges en tant que sites de reproduction (Stone et al., 2011). Dans les récifs du détroit de Georgie, le biote diversifié qui est associé aux récifs comprend des animaux de 7 embranchements et de 14 classes. Bien qu’on trouve beaucoup plus de crustacés et de poissons en présence de ces éponges, l’abondance de mollusques et d’autres éponges est nettement inférieure dans certains récifs du détroit de Georgie (Chu et Leys, 2010). Outre les éponges vivantes, les parties nues et chargées de sédiments de la matrice de squelettes d’éponges mortes des récifs sont également utilisées par une gamme d’organismes. Le squelette nu est utilisé par des vers annélides tubicoles (trébéllidés et serpulidés), des bryozoaires, des éponges encroûtantes (Cook, 2005) et divers foraminifères (Guilbault et al., 2006). Les squelettes chargés de sédiments contiennent des organismes endobenthiques et semi-endofauniques ainsi qu’un assemblage diversifié de vers annélides (Cook, 2005). Les éponges hermatypiques sont consommées par au moins deux espèces de nudibranches (Chu et Leys, 2012) et aussi potentiellement par d’autres organismes, dont des étoiles de mer (Leys et al., 2007). On a également vu des éponges siliceuses être
mordues par des poissons alors qu’ils capturaient des proies qui s’y trouvaient (Kahn et al., 2016).

Les récifs d’éponges représentent un lien important entre les milieux benthiques et pélagiques. Ils peuvent modifier les processus de sédimentation et les courants de fond, influencer les attributs de l’eau à l’échelle locale, et leur grande capacité de filtration leur permet de consommer de grandes quantités de bactéries et de recycler de la matière organique, ce qui leur confère un rôle important dans le traitement de l’azote et du carbone (Kahn et al., 2015; Yahel et al., 2007). En fait, on pense que les communautés d’éponges siliceuses d’eau profonde consomment la majorité des bactéries et sont constituées de la majeure partie de la matière organique recyclée exportée vers ces régions (Yahel et al., 2007). Ces récifs d’éponges jouent un rôle dans le cycle local de la silice en agissant comme un puits important de la silice biogénique. Ils absorbent l’acide silicique qui se trouve dans la colonne d’eau pour former leur matrice squelettique, séquestrant ainsi la silice longtemps après la mort de l’éponge vivante (Chu et al., 2011).

Figure 2). Il peut s’avérer important de tenir compte de ces différences pour étudier l’impact de la remise en suspension des sédiments, par exemple.
1.4. MENACES ANTHROPIQUES PESANT SUR LES RÉCIFS D’ÉPONGES SILICEUSES

Les récifs d’éponges siliceuses sont des zones d’importance écologique et biologique particulièrement vulnérables aux dommages et aux perturbations (MPO, 2013). Leur fragilité rend les perturbations physiques particulièrement préoccupantes, et tout impact physique peut avoir des conséquences graves et durables sur les espèces d’éponges dont le rétablissement prend du temps. Trois catégories d’activités humaines ont lieu à proximité des récifs et peuvent avoir des répercussions sur ces derniers : le trafic maritime, la recherche et la pêche. Bien que toutes ces activités puissent avoir une incidence sur les récifs d’éponges, les engins de pêche entrant en contact avec le fond ont été désignés comme une menace très importante. Les études visuelles menées sur de nombreux récifs de la région du Pacifique ont révélé que les engins de pêche entrant en contact avec le fond (p. ex. pêche au chalut de fond) ont causé d’importants dommages avant la mise en œuvre des fermetures de pêche (Austin et al., 2007; Conway et al., 2000; Conway et al., 2005b; Jamieson et Chew, 2002; Krautter et al., 2001). Outre les effets de l’impact physique des activités de pêche, les effets de la remise en
La superficie totale de la ZPM est d'environ 2 410 km² et comprend quatre complexes de récifs : le récif nord, les récifs centraux et le récif sud. Outre les récifs d'éponges siliceuses en tant que tels, la ZPM englobe également la colonne d'eau, une zone tampon comprenant les eaux environnantes (c.-à-d. la zone verticale de gestion adaptative et la zone de gestion adaptative) et le fond marin jusqu'à une profondeur de 20 m sous la surface du sous-sol (Figure 3), et ce, pour chaque complexe. Ces zones de protection visent à protéger l'habitat structurel, la biodiversité et la fonction écosystémique des récifs d'éponges siliceuses, conformément à l'objectif de conservation énoncé dans Règlement sur les zones de protection marine des récifs d'éponges siliceuses du détroit d'Hécate et du bassin de la Reine-Charlotte (le Règlement sur les ZPM). Les zones de gestion sont définies comme suit :

- La zone de protection centrale (ZPC), qui se compose du fond marin, du sous-sol jusqu'à une profondeur de 20 mètres sous le fond marin et de la colonne d'eau au-dessus de celui-ci, jusqu'à une profondeur précise par rapport à la surface de l'océan (cette profondeur dépend de chaque complexe de récifs).

- La zone verticale de gestion adaptative (ZVGA), qui comprend la colonne d'eau qui se prolonge au-delà de la ZPC jusqu'à la surface de l'océan.

- La zone de gestion adaptative (ZGA), qui comprend le fond marin, le sous-sol jusqu'à une profondeur de 20 m et les eaux au-dessus de chaque complexe de récifs de la ZPM ne faisant pas partie de la ZPC ou de la ZVGA. La ZGA est conçue pour atténuer le risque d'impacts indirects grâce à une gestion adaptative des activités autorisées qui sont conformes aux objectifs de conservation de la ZPM.

Il convient de noter que l'étendue exacte de chaque zone diffère légèrement d'un récif à l'autre (des précisions supplémentaires sur les caractéristiques de chaque zone pour chacun des complexes de récifs de la ZPM sont présentées à l'annexe A).
La désignation d’une ZPM en vertu de la Loi sur les océans constitue un mécanisme de réglementation permettant d’interdire les activités humaines qui ne sont pas compatibles avec l’objectif de conservation de la ZPM (c.-à-d. la conservation et la protection de la diversité biologique, de l’habitat structurel et de la fonction écosystémique des récifs d’éponges siliceuses).

Figure 3. Zones de gestion interne pour la protection dans le contexte des ZPM (reproduite avec l’aimable autorisation du Secteur de gestion des océans du MPO, région du Pacifique). Il faut souligner que la structure d’éponges qui se trouve sous le fond marin est morte et enterrée et qu’il faut donc la différencier de la structure d’éponges vivantes que l’on trouve sur le récif, au-dessus du fond marin.

Ce document présente la première application du CERE (O et al., 2015) sur l’écosystème des récifs d’éponges siliceuses. Cette étude est utile, car elle examine l’utilité de l’approche du CERE dans cet écosystème, y compris les modifications qui permettraient de l’adapter pour mieux tenir compte des récifs d’éponges dans l’évaluation. Toutefois, il convient de noter que les travaux liés à cette étude ont été menés, à l’origine, en 2015, alors que les récifs d’éponges du détroit d’Hécate et du bassin de la Reine-Charlotte étaient désignés comme une « zone d’intérêt », soit avant leur désignation en tant que ZPM. À cette époque, seules des lignes directrices recommandées étaient en place pour guider les premières phases d’établissement
de la portée et de cotation de l’évaluation des risques. Bien que de nombreuses mises à jour aient été intégrées au présent document pour tenir compte de certains des changements survenus depuis 2015, il est fortement recommandé qu’une seconde version soit obtenue dès que possible, compte tenu des nouvelles recherches en cours et du fait que le règlement associé à la désignation de la ZPM est désormais en vigueur. Il est probable que certaines des lacunes dans les connaissances relevées dans ce document auront commencé à être comblées avant même sa publication grâce aux nouvelles recherches qui sont menées sur cet écosystème.

2. MÉTHODES

Le présent document déterminera d’abord les CIE dans les récifs d’éponges siliceuses de la ZPM DH-BRC, puis recensera les activités anthropiques et les facteurs de stress connexes qui sont présents dans la ZPM, ou susceptibles de l’être, à l’aide des lignes directrices sur l’établissement de la portée du CERE du MPO (O et al., 2015). L’étape suivante consistera à examiner l’impact attendu des facteurs de stress liés aux activités sur les CIE recensées à l’aide du système de cotation décrit dans le CERE, qui tient compte des éléments d’exposition, de résilience et de rétablissement (O et al., 2015). La dernière étape consistera à évaluer l’efficacité du CERE lorsqu’il est appliqué à la ZPM DH-BRC en examinant les résultats de l’établissement de la portée et le classement des risques relatifs qui en découle pour déterminer s’ils sont appropriés et pertinents pour cet écosystème. Les résultats de cette évaluation des risques serviront à élaborer des protocoles et des plans de surveillance fondés sur les risques pour cette ZPM récente, ainsi qu’à éclairer d’autres décisions en matière de gestion des océans.

2.1. PHASE D’ÉTABLISSEMENT DE LA PORTÉE DES CIE

2.1.1. Recensement des composantes importantes de l’écosystème (CIE)

Dans le cadre de cette étude, une CIE est un élément environnemental qui présente une importance écologique pour un écosystème. Même si toutes les espèces, tous les habitats et toutes les communautés ont une certaine importance écologique, la phase d’établissement de la portée vise à recenser les composantes de l’écosystème qui ont la plus grande importance relative.

On a utilisé la documentation scientifique existante pour dresser une liste des espèces, des habitats et des attributs des communautés ou de l’écosystème à évaluer par rapport aux critères de sélection des CIE et à d’autres considérations propres à l’écosystème. Bien qu’il soit important de recenser toutes les CIE potentielles, il est impossible de toutes les évaluer dans le cadre du processus du CERE et, par conséquent, un nombre limité d’entre elles, considérées comme ayant une importance écologique relativement élevée, ont finalement été retenues aux fins d’évaluation des risques (O et al., 2015).
Tableau 1. Résumé des critères utilisés pour la sélection des CIE relatives aux espèces, aux habitats et aux attributs des communautés ou de l’écosystème (O et al., 2015) et des considérations supplémentaires pour les espèces (élaborées pour la présente application et ne figurant pas dans O et al., 2015). Voir l’annexe B pour une description complète des critères et des considérations.

<table>
<thead>
<tr>
<th>Type de CIE</th>
<th>Critères de la CIE et considérations supplémentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espèce</td>
<td>Critères principaux (O et al., 2015)</td>
</tr>
<tr>
<td></td>
<td>1. Espèce importatrice/exportatrice d’éléments nutritifs</td>
</tr>
<tr>
<td></td>
<td>2. Rôle clé/spécialisé dans le réseau trophique</td>
</tr>
<tr>
<td></td>
<td>3. Espèce créant un habitat</td>
</tr>
<tr>
<td></td>
<td>4. Espèce rare, endémique ou unique</td>
</tr>
<tr>
<td></td>
<td>5. Espèce sensible</td>
</tr>
<tr>
<td></td>
<td>6. Espèce (inscrite) en déclin</td>
</tr>
<tr>
<td></td>
<td>Considérations supplémentaires (non inclues dans O et al., 2015)</td>
</tr>
<tr>
<td></td>
<td>1. Espèce vivant sur les récifs d’éponges</td>
</tr>
<tr>
<td></td>
<td>2. Espèce dépendante de l’écosystème des récifs d’éponges</td>
</tr>
<tr>
<td></td>
<td>3. Espèce abondante dans la zone sur ou autour des récifs d’éponges</td>
</tr>
<tr>
<td></td>
<td>4. Espèce dont la présence a été observée directement dans les récifs d’éponges</td>
</tr>
<tr>
<td></td>
<td>5. Espèce adaptée au suivi à long terme</td>
</tr>
<tr>
<td></td>
<td>6. Espèce faisant l’objet de nombreuses études</td>
</tr>
<tr>
<td>Habitat</td>
<td>1. Habitat biogénique</td>
</tr>
<tr>
<td></td>
<td>2. Habitat sensible</td>
</tr>
<tr>
<td></td>
<td>3. Habitat essentiel pour des espèces sensibles</td>
</tr>
<tr>
<td></td>
<td>4. Habitat menacé ou en déclin</td>
</tr>
<tr>
<td></td>
<td>5. Habitat essentiel au maintien d’espèces rares, uniques ou endémiques</td>
</tr>
<tr>
<td></td>
<td>6. Habitat qui appuie les stades biologiques critiques</td>
</tr>
<tr>
<td></td>
<td>7. Habitat assurant des fonctions ou des services écosystémiques essentiels</td>
</tr>
<tr>
<td>Attributs des communautés ou de l’écosystème</td>
<td>1. Communauté unique</td>
</tr>
<tr>
<td></td>
<td>2. Communauté d’importance écologique</td>
</tr>
<tr>
<td></td>
<td>3. Groupe fonctionnel jouant un rôle essentiel dans le fonctionnement de l’écosystème</td>
</tr>
<tr>
<td></td>
<td>4. Processus écologiques essentiels au fonctionnement de l’écosystème</td>
</tr>
<tr>
<td></td>
<td>5. Groupe fonctionnel sensible</td>
</tr>
</tbody>
</table>

2.1.1.1. Sélection des CIE relatives aux espèces

Une liste exhaustive des espèces a été dressée à partir d’un certain nombre de sources : les espèces recensées à partir de relevés de recherche (p. ex. à l’aide de véhicules sous-marins téléguidés [VTG]) dans l’environnement récifal (p. ex. Cook, 2005; Jamieson et Chew, 2002); les espèces recensées dans les données sur les prises des pêches dans cette région (p. ex. Jamieson et Chew, 2002); les espèces dont on suppose la présence dans les récifs d’après des données concernant les régions avoisinantes (p. ex. travaux réalisés dans la zone de gestion intégrée de la côte Nord du Pacifique [Hemmera, 20101]); travaux non publiés

Les six critères de sélection des CIE relatives aux espèces se trouvant dans O et al. (2015) ont été utilisés pour recenser les espèces ayant la plus grande importance écologique relative en raison de leur rôle dans l’écosystème et pour passer au crible la liste complète d’espèces. Il s’est avéré nécessaire d’inclure des descriptions supplémentaires par rapport aux critères initiaux du CERE (voir le Tableau 1 et l’annexe B) pour indiquer clairement comment ils seraient appliqués à l’écosystème des récifs d’éponges siliceuses du détroit de Hécate et du bassin de la Reine-Charlotte. L’ajout de plus de détails a permis d’obtenir des lignes directrices claires et cohérentes pour la cotation, réduisant ainsi au minimum les erreurs d’interprétation et les incertitudes connexes. Les espèces ont obtenu la cote de 1 si elles respectaient un critère ou la cote de 0 si elles n’en respectaient aucun; les espèces qui respectaient trois critères ou plus ont été sélectionnées pour faire l’objet d’un examen plus approfondi. Toutefois, un grand nombre d’espèces respectaient au moins trois des critères initiaux, et bon nombre d’entre elles faisaient partie de groupes semblables (p. ex. plusieurs espèces de décapodes et un certain nombre d’espèces de poissons).

Pour améliorer encore le processus de sélection des CIE relatives aux espèces (et pour améliorer la différenciation au sein des autres grands groupes d’organismes ayant des fonctions similaires), six considérations supplémentaires adaptées aux écosystèmes des récifs d’éponges et aux types de données disponibles ont été ajoutées au processus de sélection (voir le Tableau 1 et l’annexe B). Par exemple, l’utilisation de critères supplémentaires permettrait de mettre en évidence une espèce observée directement sur le récif par un VTG, mais pas une espèce observée dans les prises accessoires pêchées dans la région générale.

2.1.1.2. Sélection des CIE relatives aux habitats

Bien qu’il soit recommandé d’utiliser un système de classification biorégionale pour recenser les CIE relatives aux habitats, ces renseignements n’étaient pas disponibles à une résolution appropriée pour cette étude. De plus, même si de tels renseignements avaient été disponibles, ils ne seraient pas forcément appropriés pour ce type d’évaluation, qui se concentre sur des sous-habitats plus petits qui sont peu susceptibles d’être inclus à l’échelle d’un système de classification biorégionale. En l’absence de ces renseignements, O et al. (2015) proposent des considérations pour la sélection des CIE relatives aux habitats qui ont été utilisées ici (voir le Tableau 1 et l’annexe B).

2.1.1.3. Sélection des CIE relatives aux attributs des communautés et de l’écosystème

Les CIE relatives aux attributs des communautés et de l’écosystème permettent de prendre en compte des aspects importants de l’écosystème, comme la diversité des espèces, la diversité trophique, la redondance fonctionnelle (c.-à-d. les caractéristiques des communautés) et les attributs de l’écosystème, comme la production primaire et le cycle des éléments nutritifs (O et al., 2015). À l’heure actuelle, nous manquons généralement de données complètes et à haute résolution sur les attributs des communautés et de l’écosystème de cette ZPM, mais des études menées dans d’autres systèmes ont décrit les méthodes nécessaires pour prendre en compte ce type de données de base (p. ex. Chu et Leyts, 2010), et on s’attend à obtenir des renseignements semblables pour cette ZPM dans un avenir proche. Pour l’instant, il est possible de recenser les attributs généraux des communautés et de l’écosystème qui sont importants pour l’écosystème à l’échelle spatiale d’une ZPM. Les considérations pour la sélection des CIE relatives aux attributs des communautés et de l’écosystème proposés par O et al. (2015) et utilisées dans la présente évaluation sont énumérées au Tableau 1.
2.1.2. Examens par des experts

Après l’exercice initial d’établissement de la portée, la liste proposée de CIE ainsi qu’une liste abrégée d’autres options ont été fournies à des experts en la matière aux fins d’examen et de commentaires. Ces experts avaient pour tâche principale d’évaluer la pertinence des CIE relatives aux espèces et aux habitats sélectionnés, ainsi que le caractère approprié des critères principaux et des considérations supplémentaires utilisés pour la sélection des CIE relatives aux espèces. Le résultat de la phase d’établissement de la portée est une liste définitive de CIE relatives aux espèces, aux habitats et aux attributs des communautés et de l’écosystème.

2.2. DÉTERMINATION DES ACTIVITÉS, DES SOUS-ACTIVITÉS ET DES FACTEURS DE STRESS CONNEXES

2.2.1. Détermination des activités et des sous-activités

L’application de cette évaluation des risques s’appuie sur le Règlement sur les ZPM qui est entré en vigueur en février 2017. De plus, la liste des activités humaines incluses dans l’évaluation des risques ne comprend que les activités légales connues à l’intérieur des limites de la ZPM ou susceptibles de s’y dérouler dans un avenir prévisible. À l’inverse, elle n’évalue pas l’existence ou le potentiel d’activités illégales ou de nouveaux projets imprévisibles qui auraient lieu dans les limites de la ZPM.

En septembre 2011, en consultation avec les intervenants, les chercheurs et les décideurs, les responsables du Programme des océans du MPO ont compilé une liste d’activités pour la zone d’intérêt des récifs d’éponges siliceuses du détroit d’Hécate et du bassin de la Reine-Charlotte. Cette liste a dû être complétée et mise à jour pour la présente étude (annexe E). Chaque activité et sous-activité a ensuite été évaluée afin de déterminer si elle se déroulait actuellement ou si elle pourrait se dérouler dans un avenir prévisible dans la région, ce qui a donné lieu à une liste définitive à utiliser dans l’évaluation des risques.

2.2.2. Détermination des facteurs de stress associés aux activités recensées à l’aide de modèles de séquence des effets

Les modèles de séquence des effets décrivent les relations entre les activités humaines, les facteurs de stress connexes ainsi que la séquence de leurs effets (impact), et les facteurs de stress constituent dans ces modèles des facteurs d’ordre environnemental ou anthropique qui causent ou déclenchent un comportement ou un résultat (Busch et al., 2003). Les modèles de séquence des effets sont élaborés à l’aide de documents évalués par des pairs afin d’examiner la façon dont les activités influent sur l’environnement, notamment en facilitant la détermination des facteurs de stress associés à chaque activité et leur impact potentiel sur l’environnement. Des modèles de séquence des effets ont été utilisés pour guider la détermination des facteurs de stress qui découlent des activités/sous-activités pertinentes à la ZPM DH-BRC et pour fournir des précisions sur l’impact potentiel de ces facteurs à l’aide de tableaux de preuves (annexe E). L’annexe E présente une liste des modèles de séquence des effets et de ceux élaborés pour les activités pertinentes à la ZPM DH-BRC, ainsi que la date à laquelle les modèles ont été modifiés pour la dernière fois.

Des modèles de séquence des effets ont déjà été élaborés pour le transport maritime (qu’on appelle ici trafic maritime) et les activités de recherche, ainsi que pour la pêche aux casiers (annexe E, tableau 30). Afin d’évaluer les facteurs de stress relatifs à la pêche en général, un modèle générique de séquence des effets liés à la pêche a été élaboré en collaboration avec un expert en la matière (L. Yamanaka, Secteur des sciences du MPO) et a été jugé applicable à toutes les pêches dans la présente évaluation des risques. Bien que la pêche menée avec des
engins entrant en contact avec le fond ne soit pas autorisée au sein de la ZPC en vertu du Règlement sur les ZPM, elle peut l’être dans la ZGA. Pour ces pêches, l’inclusion des facteurs de stress directs (p. ex. l’écrasement) n’a pas été jugée pertinente, contrairement à celle des facteurs de stress indirects. Par exemple, le facteur de stress indirect « Remise en suspension des sédiments » des pêches menées avec des engins entrant en contact avec le fond dans la ZGA (chalut de fond, palangre et casiers) est considéré comme pouvant avoir un impact sur les récifs dans la ZPC si les courants déplacent les sédiments dans cette zone; il est donc inclus dans l’évaluation. Une exception a été faite pour la pêche au chalut pélagique (merlu du Pacifique) en raison des incertitudes quant à la possibilité qu’elle soit autorisée dans la ZVGA dans le futur et donc qu’elle ait un impact direct sur la ZPM (p. ex. si un engin perdu dans la ZVGA coule et touche directement des parties de la ZPC).

2.2.3. Types de facteurs de stress et conséquences pour la cotation

Dans la présente évaluation des risques, comme dans d’autres applications du CERE, deux types de facteurs de stress sont relevés :

1. Les facteurs de stress potentiels se produisent à des fréquences faibles et imprévisibles, mais affichent un potentiel élevé de conséquences. La présence de ces facteurs de stress n’a pas encore été répertoriée dans la région, mais elle est susceptible de l’être. Un certain nombre de facteurs de stress potentiels sont relevés dans cette évaluation; par exemple, l’échouement (c.-à-d. naufrage d’un navire), le pétrole provenant de déversements d’hydrocarbures, l’introduction d’EAE et les perturbations sismiques (provenant de levés sismiques). Sous réserve de la disponibilité de données actuelles, les facteurs de stress potentiels sont cotés comme dans le cadre d’un scénario de la pire éventualité avec un niveau élevé d’incertitude (parce que les termes de l’exposition sont difficiles à prévoir). En voici quelques exemples : pour les EAE, lorsque la cotation suppose l’établissement d’une EAE; pour les déversements d’hydrocarbures, lorsque la cotation suppose un déversement à grande échelle provenant d’un pétrolier; pour les perturbations sismiques, lorsque la cotation suppose que la réalisation d’essais a été approuvée au sein de la ZPM.

2. Les facteurs de stress actuels se produisent dans la région récemment ou se produisent actuellement à une fréquence prévisible et avec une certaine régularité. La cotation s’appuie sur une évaluation ponctuelle des éléments connus dans la région en utilisant les données disponibles ou les meilleures estimations. La cotation du scénario de la pire éventualité
n’est pas utilisée, mais l’exposition peut être prise en compte pour guider la cotation de la résilience. Autrement dit, comme les facteurs d’exposition sont généralement connus dans ces cas, ils peuvent être cotés sur une base plus réaliste. Pour ce type de facteur de stress, il existe deux sous-types :

- de source ponctuelle – l’impact d’un facteur de stress se limite à une ou plusieurs zones bien définies (p. ex. le facteur de stress « Écrasement », qui est causé par l’échouement d’un navire);
- de source diffuse – le facteur de stress peut toucher une vaste zone (p. ex. le facteur de stress « Introduction de matières biologiques », à partir de navires [comme les eaux noires]).

Les facteurs de stress inclus dans la présente application du CERE ainsi que le type de chacun sont présentés à l’annexe F. Il est à noter que la présente évaluation des risques n’inclut pas les facteurs de stress de longue portée qui proviennent d’une zone beaucoup plus vaste ou qui opèrent sur une échelle temporelle beaucoup plus longue, et qui ne proviennent pas de la ZPM (p. ex. les microplastiques, qui sont peu susceptibles de provenir de la ZPM, ou les changements climatiques qui se déroulent sur une échelle temporelle se comptant en dizaines d’années, voire plus). Ces facteurs de stress devraient être inclus dans une prochaine analyse de l’état de l’écosystème et, à ce titre, ne sont pas pris en compte ici.

Cotation de la résilience en tenant compte de l’exposition

Dans certains cas, il est nécessaire de tenir compte de l’exposition pour pouvoir estimer avec précision la part de la population qui devrait être affectée (en ce qui concerne la résilience). Pour illustrer ces cas, on peut citer les facteurs de stress de source ponctuelle (p. ex. les navires échoués) pour lesquels certaines connaissances de base concernant l’exposition sont importantes pour être en mesure d’estimer la part de la population qui pourrait être touchée de façon chronique ou aiguë.

2.3. ÉVALUATION SEMI-QUANTITATIVE DES RISQUES DE NIVEAU 2

Après l’établissement des CIE, des activités et des facteurs de stress durant la phase d’établissement de la portée, le processus d’évaluation des risques se poursuit par une phase analytique d’estimation des risques. Un risque se définit ici comme la probabilité qu’une CIE subisse des répercussions négatives inacceptables de l’exposition à un ou plusieurs facteurs de stress (O et al., 2015). Nous analyserons ici deux types de risques :

1. Le risque relatif pour une CIE ($Risque_{\text{rel}}$), qui décrit la probabilité qu’une CIE subisse un déclin en raison d’un facteur de stress (lié à une activité particulière dans la ZPM DH-BRC) en fonction des cotes qui lui sont attribuées pour l’exposition et les conséquences.

2. Le risque cumulatif ($Risque_{\text{cum}}$), qui tient compte du risque relatif pour une CIE découlant de plusieurs facteurs de stress qui peuvent la toucher au sein de la ZPM DH-BRC. Il peut être utilisé pour déterminer le risque global pour une CIE donnée.

2.3.1. Matrice des interactions entre les CIE- et les facteurs de stress

La première étape de l’évaluation des risques de niveau 2 consiste à utiliser une matrice des interactions entre les CIE et les facteurs de stress pour éliminer les combinaisons de CIE et de facteurs de stress qui ne devraient pas interagir. Les facteurs de stress recensés au cours de la phase d’établissement de la portée sont comparés aux CIE, et chaque combinaison est évaluée pour en déterminer l’interaction potentielle, avant de se voir attribuer la cote de 1 pour signaler la présence d’une interaction négative potentielle ou la cote de 0 pour signaler l’absence de
toute interaction négative d'après les données biologiques. Les interactions potentielles sont explorées plus en détail à l’étape de la cotation en consultant des publications spécialisées et des experts (section 2.2.2).
Les éléments suivants doivent être pris en compte lors de la création de la matrice des interactions :

- Seules les interactions négatives entre les CIE et les facteurs de stress sont prises en compte (c.-à-d. les impacts des facteurs de stress qui nuisent à la santé ou à l’intégrité des CIE). Pour l’instant, les interactions positives ne sont pas incluses dans le CERE.
- Seuls les impacts directs d’un facteur de stress sur les CIE au stade adulte sont pris en compte. Parmi les exemples d’impacts indirects qui ne sont pas évalués ici, mentionnons l’augmentation de la prédation ou de la concurrence pour les ressources alimentaires découlant de perturbations lumineuses ou sonores. Il convient de noter que le CERE pourrait être utilisé pour évaluer les impacts indirects dans de prochaines versions. De plus, les stades juvéniles sont exclus de l’évaluation des interactions, car leur inclusion aurait très peu d’impact sur les organismes matures. Cela aurait pour conséquence de concentrer l’évaluation sur les facteurs de stress qui ont un impact sur les juvéniles sensibles (p. ex. les stades juvéniles pélagiques chez les invertébrés benthiques), plutôt que sur ceux ayant plus généralement des répercussions sur l’écosystème dans son ensemble. Les travaux à venir devraient intégrer l’évaluation des stades juvéniles qui sont clairement associés à l’habitat des récifs d’éponges (p. ex. les sébastes juvéniles, qui préfèrent les habitats des récifs d’éponges siliceuses à d’autres habitats). De manière générale, les stades larvaires et non établis de toutes les espèces devraient être exclus de la cotation pour les raisons indiquées ci-dessus.
Cette phase permet d’obtenir une liste des facteurs de stress présélectionnés pour chaque CIE et pour lesquels les termes de risque sont prêts à être évalués.

2.3.2. Cotation et calcul des termes de risque

La procédure de cotation de la présente évaluation des risques suit généralement la méthode élaborée par O et al. (2015) puis mise en œuvre par Thornborough et al. (2017) et Rubidge et al. (2018), avec des variations mineures (section 2.3.2.6 et annexe L). Un résumé est fourni ici, mais les lecteurs sont invités à consulter ces sources pour obtenir plus de renseignements. Les résultats préliminaires de la cotation ont ensuite été examinés par des experts pour en vérifier l’exactitude et l’exhaustivité.

2.3.2.1. Calcul du risque relatif (Risque_{sc}) pour une CIE à partir d’un seul facteur de stress

Le risque relatif pour une CIE, c, découlant d’un seul facteur de stress, s, (désigné Risque_{sc}) se calcule à l’aide des équations suivantes :

\[
\text{Risque}_{sc} = \text{Exposition}_{sc} \times \text{Conséquence}_{sc}
\]

\[
\text{Exposition}_{sc} = \left(\frac{\text{Superficie}_{sc} \times \text{Profondeur}_{sc} \times \text{Temps}_{sc}}{\text{Intensité(quantité)}_{sc} \times \text{Intensité(fréquence)}_{sc}}\right)
\]

\[
\text{Conséquence}_{sc} = \text{Résilience}_{c} \times \text{Rétablissement}_{c}
\]

\[
\text{Résilience}_{c} = \text{ChangementAigu}_{c} + \text{ChangementChronique}_{c}
\]

\[
\text{Rétablissement}_{c} = \text{Moyenne} (\text{RétablissementFacteur1}, \text{RétablissementFacteur2}, ..., \text{RétablissementFacteur n})
\]

où
Exposition\textsubscript{sc} quantifie la portée de l’interaction spatiale et temporelle (chevauchement et intensité) entre le facteur de stress et la CIE;

Superficie\textsubscript{sc} représente le pourcentage de chevauchement de la superficie entre un facteur de stress et la CIE;

Profondeur\textsubscript{sc} représente le pourcentage de chevauchement de la profondeur entre un facteur de stress et la CIE;

Temps\textsubscript{sc} représente le pourcentage de chevauchement temporel entre un facteur de stress et la CIE;

Intensité (quantité)\textsubscript{sc} représente la mesure de l’intensité (niveau d’effort ou densité) de l’activité ou du facteur de stress;

Intensité (fréquence)\textsubscript{sc} représente la fréquence à laquelle se produit le facteur de stress.

Consequence\textsubscript{sc} quantifie le potentiel de préjudice à long terme pour la CIE découlant de l’interaction avec le facteur de stress (désigné Résilience\textsubscript{c}) ainsi que la capacité de la CIE à résister ou à se rétablir après une exposition audit facteur de stress (désignée Rétablissement\textsubscript{c}).

Résilience\textsubscript{c} : le Changement Aigu (ca) est évalué en fonction du pourcentage de variation du taux de mortalité à l’échelle d’une population (pour une CIE relative aux espèces exposée à un facteur de stress donné), de la perte de superficie et de capacité de production (pour une CIE relative aux habitats) ou du pourcentage d’espèces touchées (pour une CIE relative aux attributs des communautés et de l’écosystème);

Résilience\textsubscript{c} : le Changement Chronique (cc) est évalué en fonction du pourcentage de variation de la valeur adaptative à long terme - y compris la condition et la diversité génétique (pour une CIE relative aux espèces), de l’intégrité structurale, de la condition ou de la perte de la capacité de production (pour une CIE relative aux habitats) ou des groupes fonctionnels touchés (pour une CIE relative aux attributs des communautés et de l’écosystème).

Le Rétablissement\textsubscript{c} est évalué en fonction des facteurs qui pourraient avoir des répercussions sur la capacité de la CIE de revenir à des niveaux semblables à ceux qui existaient avant l’interaction. Les facteurs de rétablissement pris en compte dans cette évaluation (p. ex. caractéristiques du cycle biologique, de l’habitat ou de la communauté) sont énumérés à l’annexe H. Les facteurs de rétablissement des espèces, des habitats et des communautés énumérés dans O et al. (2015) ne s’appliquaient pas tous à l’ensemble des CIE (p. ex. bon nombre des facteurs de rétablissement des espèces sont propres aux poissons). Les facteurs qui ne s’appliquaient pas à une CIE donnée et ceux pour lesquels on ne disposait d’aucune information propre aux CIE n’ont pas été inclus dans le calcul du Rétablissement\textsubscript{c}. L’examen des facteurs de rétablissement pour lesquels il manque de l’information, mais auxquels on pourrait s’attendre devrait être utilisé pour déterminer les domaines de recherche prioritaires (afin d’obtenir des estimations objectives améliorées pour le rétablissement).

2.3.2.2. Calcul et application de l’équation du Risque\textsubscript{sc}

L’Exposition\textsubscript{sc} est calculée à l’aide de la moyenne géométrique (définie comme la racine \(n\)e du produit de \(n\) nombres) du chevauchement estimé (c.-à-d. superficie, profondeur et temps), multipliée par la moyenne géométrique des deux variables d’intensité (c.-à-d. quantité et fréquence). La moyenne géométrique a été choisie plutôt que la moyenne arithmétique afin que la composante concernant le chevauchement spatio-temporel (trois termes) ne l’emporte pas sur la composante concernant l’intensité (deux termes). L’utilisation de la moyenne géométrique
garantit que l'**Exposition**$_{sc}$ (cinq termes) et la **Conséquence**$_{sc}$ (deux termes) utilisent sur la même échelle (1-16 et 1-18 respectivement) pour le calcul des risques.

Des lignes directrices concernant la cotation par catégories qualitatives pour chaque terme de l’équation du **Risque**$_{sc}$ sont fournies dans la prochaine section.

2.3.2.3. Catégories de cotation qualitatives utilisées pour coter les sous-termes de l’équation du **Risque**$_{sc}$

Contrairement à de nombreux autres cadres qui n’utilisent que des mesures qualitatives et catégoriques des risques (c.-à-d. risque élevé, risque moyen et risque faible), la présente évaluation des risques de niveau 2 tient compte de renseignements quantitatifs sur l’exposition en utilisant un système de cotation raffiné afin de mieux refléter l’étendue relative de l’impact des facteurs de stress sur une CIE donnée (O et al., 2015). Les plages précises utilisées pour créer des catégories de cotation pour chaque terme de risque sont fournies ci-dessous (tableaux 2 à 4).

Tableau 2. Catégories de cotation qualitatives pour la Superficie$_{sc}$, la Profondeur$_{sc}$ et le Temps$_{sc}$ (les sous-terms relatifs au chevauchement de l’équation sur l’Exposition**$_{sc}$) mesurées en pourcentage de chevauchement, d’après O et al. (2015).**

<table>
<thead>
<tr>
<th>Catégorie de pourcentage du chevauchement</th>
<th>Très faible (de 0,1 à 1 %)</th>
<th>Faible (de 1 à 20 %)</th>
<th>Moyen (de 20 à 50 %)</th>
<th>Élevé (> 50 %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cote</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Tableau 3. Catégories de cotation qualitatives pour l’Intensité**(quantité)$_{sc}$ et l’**Intensité**(fréquence)$_{sc}$ (les sous-terms relatifs à l’intensité pour l’équation sur l’**Exposition**$_{sc}$), d’après O et al. (2015).**

<table>
<thead>
<tr>
<th>Intensité (quantité)$_{sc}$</th>
<th>Très faible (de 0,1 à 1 %)</th>
<th>Faible (de 1 à 20 %)</th>
<th>Moyenne (de 20 à 50 %)</th>
<th>Élevée (> 50 %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensité (fréquence)$_{sc}$</td>
<td>Se produit rarement (une fois par période de 100 ans)</td>
<td>Se produit peu fréquemment (p. ex. une fois par période de 5 à 50 ans)</td>
<td>Se produit occasionnellement, mais pas régulièrement (p. ex. plus d’une fois par période de cinq ans, mais pas tous les ans au cours de cette période).</td>
<td>Se produit fréquemment (p. ex. chaque année)</td>
</tr>
<tr>
<td>Cote</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Tableau 4. Catégories de cotation qualitatives pour **ChangementAigu$_{c}$ et **ChangementChronique$_{c}$ (les sous-terms pour l’équation sur la **Résilience$_{c}$) mesurés en tant que pourcentage de variation du taux de mortalité à l’échelle d’une population (ChangementAigu$_{c}$) ou en tant que pourcentage de variation de la valeur adaptative à long terme (**ChangementChronique$_{c}$), d’après O et al. (2015).**

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Négligeable/aucun effet</th>
<th>Faible (changement < 10 %)</th>
<th>Moyen (changement de 10 à 30 %)</th>
<th>Élevé (changement > 30 %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cote</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
2.3.2.4. Calcul du risque cumulatif (RisqueCᵢ) pour une CIE découlant de plusieurs facteurs de stress

Le risque cumulatif (désigné RisqueCᵢ) pour une CIE pour tous les facteurs de stress pertinents peut se calculer en additionnant les cotes de risque individuelles (Risqueᵢsc) concernant tous les facteurs de stress interagissant avec ladite CIE. Bien que les effets cumulatifs puissent être de quatre types généraux (c.-à-d. additifs, synergiques, compensatoires et masquants), le calcul le plus simple du risque cumulatif a été utilisé (on a supposé que toutes les cotes de risque des facteurs de stress pouvaient être additionnées) en raison du manque actuel de compréhension des interactions entre les facteurs de stress et des effets cumulatifs. Les études menées actuellement sur les effets cumulatifs devraient établir cette hypothèse dans les prochaines versions du CERE.

Pour une CIE donnée, le RisqueCᵢ est donc défini par l’équation suivante :

\[\text{RisqueC}_c = \sum_{s=1}^{n} \text{Risque}_{sc} \]

Équation 6

où n correspond au nombre de facteurs de stress interagissant avec la CIE.

L’estimation du RisqueCᵢ (pour l’ensemble des CIE) permet d’évaluer les risques relatifs pour toutes les CIE à l’étude au sein de la ZPM DH-BRC.

2.3.2.5. Calcul du risque cumulatif (Puissanceₛ) pour un seul facteur de stress dans l’ensemble des CIE

Pour comprendre quels facteurs de stress représentent la plus grande menace pour la zone évaluée, on a calculé la puissance (Puissanceₛ) de chaque facteur de stress en additionnant les cotes de risque médianes (Risqueᵢsc) pour toutes les CIE avec lesquelles le facteur de stress en question a interagi.

Pour un facteur de stress donné, la Puissanceₛ est définie par l’équation suivante :

\[\text{Puissance}_s = \sum_{c=1}^{m} \text{médiane} (\text{Risque}_{sc}) \]

Équation 7

où m correspond au nombre de CIE interagissant avec le facteur de stress.

2.3.2.6. Cotation et intégration de l’incertitude

Une valeur d’incertitude de 1 à 5 a été attribuée à chaque cote de risque pour représenter le niveau de confiance (ou la quantité de preuves) disponible pour étayer cette cote, 1 indiquant un faible niveau d’incertitude et 5 indiquant un niveau élevé d’incertitude (Tableau 5).

<table>
<thead>
<tr>
<th>Cote</th>
<th>Éléments de preuve</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Considérables</td>
<td>Vaste quantité d'information scientifique; information évaluée par les pairs; données propres à l’endroit; données soutenues par des ensembles de données à long terme.</td>
</tr>
<tr>
<td>2</td>
<td>Importants</td>
<td>Renseignements scientifiques importants; renseignements non examinés par des pairs; données propres à la région.</td>
</tr>
<tr>
<td>3</td>
<td>Modérés</td>
<td>Niveau modéré d’information; données provenant de régions comparables à la zone d’intérêt.</td>
</tr>
</tbody>
</table>
Deux bases principales sont utilisées pour évaluer l’incertitude dans l’approche de cotation des risques : 1) l’évaluation de la quantité et du caractère spécifique des publications disponibles à propos de l’interaction entre les CIE et les facteurs de stress (c.-à-d. les publications disponibles portent-elles sur des espèces et des lieux précis, ou sont-elles généralisées à partir de résultats concernant d’autres espèces ou d’autres lieux?); 2) l’existence ou non d’un consensus scientifique sur le risque inhérent lié à l’interaction entre les CIE et les facteurs de stress. Dans certains cas, il existe une mine de données scientifiques, mais il n’y a pas de consensus sur les conséquences. Ce deuxième type d’incertitude n’est pas explicitement représenté dans le Tableau 5. Afin d’évaluer de manière implicite ce type d’incertitude, la cote d’incertitude est augmentée d’un point (n + 1) en l’absence de consensus scientifique.

L’incertitude associée à chaque variable cotée a été intégrée à la cote de risque à l’aide d’une des deux méthodes suivantes. La première consistait à appliquer l’approche décrite dans Murray et al. (2016), où l’incertitude de chaque variable de risque est modélisée à partir d’une distribution normale dont la moyenne est égale à la cote de risque et l’écart-type correspond au niveau d’incertitude attribué (Tableau 6). La cote attribuée à chaque variable du Risque c. a ensuite été échantillonnée aléatoirement à 10 000 reprises à partir de cette distribution pour produire un ensemble pour chaque variable. Les échantillons obtenus ont été délimités par les cotes maximales et minimales possibles pour chaque variable de Risque c. afin de s’assurer que les cotes ne peuvent pas dépasser la plage de cotes définie pour cette variable (les échantillons aléatoires qui présentaient une valeur inférieure ou supérieure à la plage en question se sont vus automatiquement attribuer la cote minimale ou maximale, respectivement). Cette méthode pouvait fortement fausser les résultats (c.-à-d. dans les cas où un grand nombre d’échantillons se situaient à l’extérieur de la plage de cotes définie et se voyaient attribuer une cote automatiquement), et la distribution de probabilités résultante ne reflétait pas précisément la plage d’incertitude prévue (la moyenne pouvait être orientée vers la limite des cotes et les intervalles d’incertitude des 10e et 90e percentiles connexes pouvaient s’avérer artificiellement étroits, ce qui entraînait une confiance excessive dans les résultats; se reporter aux graphiques de la colonne A de la Figure 4 et de la Figure 5). Pour cette version du CERE, une autre méthode utilisant une distribution normale tronquée a été mise au point et mise en œuvre afin d’essayer de remédier à cette limitation. La distribution normale tronquée limite les résultats de l’échantillonnage aléatoire de sorte que la distribution de probabilités qui en découle est répartie de façon appropriée sur l’ensemble de la plage des limites de cotes admissibles (colonne B de la Figure 4 et de la Figure 5). Ces deux figures illustrent ces deux méthodes en utilisant les catégories de cotation pour la résilience (limitées par 0 et 3, la cote étant égale à 0 à la Figure 4 et à 2 à la Figure 5). L’impact de l’utilisation d’une distribution normale tronquée est plus prononcé pour les cotes égales aux limites de cotes (quel que soit le niveau d’incertitude). Dans l’exemple, cet effet est évident lorsque les cotes moyennes sont égales à 0 ou à 3 (Figure 4). L’impact de l’utilisation de la distribution normale tronquée est également évident pour les cotes moyennes intermédiaires (dans l’exemple, des cotes de 1 ou de 2) associées à des niveaux d’incertitude plus élevés (incertitude supérieure à 2; Figure 5). Les résultats obtenus à l’aide de ces deux méthodes d’estimation de l’incertitude sont présentés aux fins d’analyse et de comparaison avec les évaluations antérieures menées à l’aide du CERE.

<table>
<thead>
<tr>
<th>Cote</th>
<th>Éléments de preuve</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Limités</td>
<td>Information restreinte; opinion d’expert fondée sur des données d’observation ou des preuves circonstancielles.</td>
</tr>
<tr>
<td>5</td>
<td>Faibles à nuls</td>
<td>Peu ou pas d’information; opinion d’expert fondée sur des connaissances générales.</td>
</tr>
</tbody>
</table>
La cote de *Risque*$_{sc}$ finale pour chaque interaction entre les CIE et les facteurs de stress correspond au produit des ensembles de variables d’*Exposition*$_{sc}$ et de *Conséquence*$_{sc}$ (équation 1), où la première cote tirée de chaque ensemble de variables est calculée à l’aide de toutes les variables du *Risque*$_{sc}$ figurant à la première ligne, l’opération étant ensuite répétée pour les 9 999 réplicats suivants pour donner un ensemble de risque final de 10 000 cotes. La valeur médiane ainsi que les 10e et 90e percentiles de cet ensemble final sont rapportés en tant que cote de *Risque*$_{sc}$ finale pour chaque interaction entre les CIE et les facteurs de stress. Des percentiles ont été utilisés au lieu d’un écart-type ou d’une erreur-type en raison du caractère non normal de la distribution des cotes de risque ainsi obtenue (avec les deux méthodes d’estimation de l’incertitude). Le programme statistique R a été utilisé pour générer et exécuter le code d’estimation de l’incertitude (R Core Team, 2016; annexe J).

<table>
<thead>
<tr>
<th>Cote d’incertitude</th>
<th>Écart-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
Figure 4. Exemple illustrant les différences de distribution entre la méthode axée sur l’incertitude normale et la méthode axée sur l’incertitude normale tronquée sur une plage d’incertitudes avec une cote réelle égale à 0. Dans tous les cas, les cotes aléatoires étaient limitées par les valeurs 0 et 3, sur une plage d’écarts-types comprise entre 0,2 et 1,0.
Figure 5. Exemple illustrant les différences de distribution entre la méthode axée sur l’incertitude normale et la méthode axée sur l’incertitude normale tronquée sur une plage d’incertitudes avec une cote réelle égale à 2. Dans tous les cas, les cotes aléatoires étaient limitées par les valeurs 0 et 3, sur une plage d’écarts-types comprise entre 0,2 et 1,0. Il convient de noter que, dans ce cas, les deux méthodes donnent des résultats pour l’essentiel égaux si l’incertitude est égale ou inférieure à 0,4.
3. RÉSULTATS

3.1. PHASE D’ÉTABLISSEMENT DE LA PORTÉE

3.1.1. Détermination des CIE relatives aux espèces

Une liste de près de 400 espèces présentes sur ou à proximité des récifs d’éponges siliceuses de la ZPM DH-BRC a été dressée pour cette étude à partir des publications et des rapports disponibles (n = 397; voir l’annexe C pour les sources de données et les résultats complets). La représentation des espèces de certains groupes dans la liste est influencée par les types d’échantillonnages effectués sur les sites. Par exemple, le grand nombre d’espèces de polychètes et de foraminitères répertoriées (par rapport à d’autres groupes) est dû au fait que la recherche initiale était axée sur le carottage. Au fur et à mesure que le nombre d’études sur cette ZPM augmentera, la liste des espèces devrait s’allonger et s’équilibrer.

Tableau 7. Résultats de l’exercice initial d’établissement de la portée et de détermination des CIE relatives aux espèces. Les chiffres indiqués dans les cellules indiquent le nombre d’espèces respectant le nombre indiqué de critères principaux du CERE et de considérations supplémentaires. Les chiffres en gras indiquent les espèces présélectionnées pour être prises en compte en tant que CIE relatives aux espèces.

<table>
<thead>
<tr>
<th>Nombre de critères du CERE respectés</th>
<th>Nombre de considérations supplémentaires respectées</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
</tr>
</tbody>
</table>

Conformément au protocole d’évaluation des critères du CERE établi, toutes les espèces ont été évaluées en fonction des critères du CERE énumérés au Tableau 1. Toutefois, une étape supplémentaire a été nécessaire pour guider la sélection des CIE pour la présente évaluation et permettre une discrimination plus claire entre les espèces. Cette étape a consisté en l’évaluation des espèces en fonction d’un certain nombre de considérations supplémentaires propres à l’environnement des récifs d’éponges (ces considérations sont également énumérées au Tableau 1). Dans les prochaines versions de cette étude, une plus grande efficacité pourra être obtenue en ne cotant les espèces pour des considérations supplémentaires que si elles respectent au moins 50 % des critères du CERE (trois critères sur six). Les espèces ayant obtenu une cote élevée pour les deux ensembles de critères (figurant dans l’encadré noir en caractères gras au Tableau 7) appartiennent principalement à trois groupes : les polychètes, les sébastes et les porifères (33, 15 et 34 espèces, respectivement, sur 94).

La liste restreinte d’espèces ainsi obtenue a été utilisée pour proposer une liste initiale de CIE relatives aux espèces. Cette liste proposée a ensuite fait l’objet d’un examen par des experts en la matière (annexe D) afin d’obtenir une sélection finale de CIE relatives aux espèces. Il
convient de noter que, même si toutes les espèces ayant obtenu une cote élevée n’ont pas été incluses dans la liste finale de CIE relatives aux espèces, bon nombre de ces espèces (et d’autres) sont prises en compte dans les CIE relatives aux habitats ou aux attributs des communautés et de l’écosystème. Parmi ces espèces, on compte notamment les assemblages de foraminifères et de polychètes ainsi que les éponges ahermatypiques.

3.1.2. Détermination des CIE relatives aux habitats
Les critères utilisés pour la sélection des CIE relatives aux habitats dans le cadre du CERE (O et al., 2015) sont les suivants : types d’habitats biogéniques; habitat sensible; habitat essentiel pour les espèces sensibles; habitat pour les espèces menacées ou en déclin; habitat essentiel au maintien d’espèces rares, uniques ou endémiques; habitat qui appuie les stades biologiques critiques; habitat assurant des fonctions ou des services écosystémiques essentiels (Tableau 1).

Ces critères relatifs à l’habitat se sont révélés efficaces pour déterminer les CIE relatives aux habitats dans l’écosystème de la ZPM DH-BRC. Deux habitats ont finalement été sélectionnés en tant que CIE : l’habitat des squelettes d’éponges siliceuses et l’habitat des jardins d’éponges ahermatypiques. Le Tableau 10 décrit en quoi ces habitats respectent les critères établis. Bien que la désignation d’espèce de récif d’éponges siliceuses en tant que CIE ait été initialement envisagée, il a été décidé que l’habitat biogénique créé par les trois espèces d’éponges siliceuses ahermatypiques est mieux pris en compte par l’inclusion desdites espèces en tant que CIE relatives aux espèces.

3.1.3. Détermination des CIE relatives aux attributs des communautés et de l’écosystème
Les CIE relatives aux attributs des communautés et de l’écosystème visent à prendre en compte la composante des communautés et la structure de l’écosystème, en intégrant les CIE à un niveau plus élevé et plus complexe que ne le permettent les CIE relatives aux espèces ou aux habitats (O et al., 2015). Les critères de sélection des CIE relatives aux attributs des communautés et de l’écosystème sont les suivants : communauté unique, communauté d’importance écologique; groupe fonctionnel jouant un rôle essentiel dans le fonctionnement de l’écosystème; groupe fonctionnel sensible; processus écologiques essentiels (Tableau 1).

Un examen antérieur de la ZPM DH-BRC avait permis de recenser une série de communautés écologiques importantes choisies comme facteurs contribuant à la santé et à la résilience des récif d’éponges ou comme éléments importants des éponges pour la santé et la diversité globales de l’écosystème (Hemmera, 2010). Toutefois, la plupart de ces éléments ne se prêtaient pas à la présente évaluation, car ils ne sont pas gérables à l’échelle de la ZPM ou ne sont pas parfaitement adaptés à la méthode de cotation du CERE.

et d’autres facteurs. Ce niveau de connaissances n’est pas encore atteint pour l’écosystème de la ZPM DH-BRC; il pourrait toutefois l’être grâce aux nouvelles initiatives de recherche qui suivront la désignation de cette ZPM, et les connaissances ainsi obtenues pourraient s’avérer appropriées pour les futures versions de cette évaluation des risques (S. Archer, bourse de recherche postdoctorale [BRP], MPO, comm. pers.). La liste des CIE relatives aux attributs des communautés et de l’écosystème potentielles figurant dans Hemmera (2010) et au Tableau 8 peut servir de première orientation pour une intégration future. La détermination de la structure trophique et des groupes fonctionnels au sein de la communauté des récifs d’éponges siliceuses constituerait une première étape pour l’analyse à l’échelle de la communauté, laquelle serait suivie par des recherches sur l’abondance et la diversité des espèces et des associations entre les espèces et les habitats.

Tableau 8. CIE relatives aux attributs des communautés et de l’écosystème potentielles et justification en vue d’une sélection future, lorsqu’elle est disponible.

<table>
<thead>
<tr>
<th>CIE</th>
<th>Remarques</th>
</tr>
</thead>
</table>
| **Communauté des squelettes d’éponges siliceuses** [sédiments, foraminifères, polychètes, etc.] | Critères : Communauté unique et d’importance écologique
<p>| Communauté des jardins d’éponges | Même si l’on sait que la fonction d’habitat des jardins d’éponges à la périphérie des récifs est importante pour le sébaste, on en sait moins sur les communautés associées aux jardins d’éponges et sur la manière dont elles interagissent avec celles des récifs et différentes de celles-ci. Jusqu’à ce que l’on en sache plus, cette communauté est représentée dans le cadre de la CIE relative à l’habitat des jardins d’éponges. |</p>
<table>
<thead>
<tr>
<th>CIE</th>
<th>Remarques</th>
</tr>
</thead>
</table>
| **Communauté de sébastes** | Critères : Communauté d’importance écologique; groupe fonctionnel jouant un rôle essentiel dans le fonctionnement de l’écosystème; groupe fonctionnel sensible
Cette CIE relative aux attributs des communautés comprend toutes les espèces de sébastes, juvéniles et adultes, associées aux récifs d’éponges et aux jardins d’éponges connexes. Bien que représentant à l’origine une CIE relative aux attributs des communautés, il s’est avéré qu’à ce stade, on n’en savait pas assez sur les différentes espèces, les relations du réseau trophique, la diversité et l’abondance, entre autres, pour permettre une évaluation à l’échelle de la communauté. Au lieu de cela, une espèce représentative des sébastes a été choisie et cotée en tant que CIE relative aux espèces. Les sébastes sont abondants dans et autour des récifs d’éponges et des jardins d’éponges qu’ils utilisent comme refuges ([Krautter et al.], 2001). De fortes densités de petits sébastes juvéniles sont associées aux éponges moutonnées sur les substrats rocheux du bassin de Georgie (Richards, 1986) et en Alaska ([Freese et Wing, 2003] et ces types de jardins d’éponges sont considérés comme des aires de croissance pour les stades précoces des juvéniles du sébaste à dos épineux ([Sebastes maliger]) ([Marliave et al.], 2009; Richards, 1986]. Les biohermes des récifs d’éponges abritent un éventail d’espèces de poissons commerciales, avec des prises de poissons plus élevées en bordure des récifs que dans les zones adjacentes qui ne sont pas constituées de récifs ([Jamieson et Chew, 2002]). Ils représentent également un habitat de croissance pour les sébastes juvéniles ([Cook, 2005]). Dans le bassin de Georgie, des larves de poissons et des femelles de sébastes gravides ont été observées dans les récifs d’éponges. Les profils acoustiques correspondant aux halos d’organismes planctoniques constatés pendant la nuit sur le récif indiquent un modèle diurne d’utilisation de l’habitat ([Conway et al.], 2007). Des associations sébastes-éponges ont été clairement démontrées chez des sébastes juvéniles utilisant les espèces *Aphrocallistes* sp. et *Heterochone calyx* comme habitats dans les eaux du plateau alaskien ([Freese et Wing, 2003]. Jusqu’à ce que l’on en sache plus sur la composition de la communauté de sébastes dans les récifs et les jardins d’éponges, cette CIE est bien représentée par les CIE relatives aux habitats choisies et par la sélection d’une CIE relative aux espèces représentant les sébastes (sébaste bocace). |
| **Communauté benthique des récifs d’éponges siliceuses (vivantes)** | Critères : Communauté unique et d’importance écologique
La communauté des récifs d’éponges siliceuses est unique ([Cook, 2005]). Il existe certaines données sur la communauté associée aux récifs d’éponges provenant d’observations et d’échantillonnages effectués à l’aide de VTG, et il s’agit principalement de données sur la présence d’espèces. Aujourd’hui, nous ne disposons pas de suffisamment de renseignements sur la diversité et l’abondance des espèces ainsi que sur la structure du réseau trophique et les liens avec d’autres groupes et habitats/communautés de récifs. Pour l’instant, cette communauté est bien représentée par les trois CIE relatives aux espèces d’éponges siliceuses hermatypiques qui constituent l’habitat de cette communauté. |
<table>
<thead>
<tr>
<th>CIE</th>
<th>Remarques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surfaces glaciaires et amélioration topographique de la fonction des récifs</td>
<td>Contrairement aux récifs d’éponges du détroit de Georgie, où le till glaciaire favorise l’écoulement et peut être sensible aux impacts physiques, l’amélioration de l’écoulement dans les récifs de la ZPM DH-BRC est assurée par une concentration des courants de marée sur les fonds marins en direction des complexes récifaux qui se trouvent dans les principales fosses qui traversent le plateau (K. Conway, Ressources naturelles Canada, comm. pers.). Les récifs d’éponges ont besoin de till exposé et de surfaces glaciaires pour s’y fixer, ce qui permet leur développement. Un expert a proposé une CIE qui inclurait l’importance des surfaces glaciaires et de l’amélioration topographique de la fonction des récifs pour couvrir tous les aspects de cet élément essentiel de l’habitat (K. Conway, Ressources naturelles Canada, comm. pers.). Pour l’instant, cet élément n’est pas inclus en tant que CIE relative aux attributs des communautés, car il n’est pas gérable à l’échelle de la ZPM.</td>
</tr>
<tr>
<td>Bactéries et picoplankton/débits d’eau entrants/courants/sédiments en suspension</td>
<td>L’écosystème de récifs d’éponges siliceuses de la ZPM DH-BRC dépend de l’apport de bactéries et de plancton dans l’eau qui traverse les récifs pour fournir les niveaux d’éléments nutritifs nécessaires à sa croissance et à son maintien. Les récifs dépendent également du dépôt de sédiments en suspension pour se former et s’étendre sur leur forme structurelle. Cependant, cet élément n’a pas encore été inclus en tant que CIE relative aux attributs des communautés et de l’écosystème, car il n’est pas gérable à l’échelle de la ZPM.</td>
</tr>
<tr>
<td>Fonction vivante des récifs : Filtration</td>
<td>Bien qu’il s’agisse d’une composante évidente des récifs d’éponges siliceuses vivantes et qu’elle soit étroitement liée aux CIE relatives aux espèces d’éponges hermatypiques, il reste difficile de déterminer comment coter cette CIE relative aux attributs de l’écosystème ou la gérer à l’échelle de la ZPM. D’autres orientations concernant la cotation et l’intégration des CIE relatives aux attributs des communautés et de l’écosystème sont requises.</td>
</tr>
</tbody>
</table>

3.1.4. Examen par des experts

S. Leys et A. Kahn (Université de l’Alberta), K. Conway (Ressources naturelles Canada) et A. Dunham (Secteur des sciences du MPO) faisaient partie des examinateurs. Un résumé de leurs constatations se trouve à l’annexe D. Les experts ont estimé que le processus de sélection des CIE relatives aux espèces était approprié. Le processus d’examen par des experts a abouti à l’inclusion de deux CIE relatives aux espèces supplémentaires par rapport à la proposition initiale : la galathée (Munida quadrispina) et l’éponge de Dawson (Rhabdocalyptus dawsoni). Un examinateur a souligné l’importance des galathées en raison de leur abondance sur les récifs, ce qui pourrait en faire un lien très important entre les récifs d’éponges et les poissons. Les éponges de Dawson sont passées d’une CIE relative aux habitats à une CIE relative aux espèces afin de permettre une meilleure caractérisation de leur fonction au cours du processus de cotation. La section 4.1.1 traite de la pertinence des CIE relatives aux espèces utilisées dans la présente évaluation des risques.

Au bout du compte, six CIE relatives aux espèces ont été sélectionnées au total, parmi lesquelles cinq sont des invertébrés. Dans la plupart des cas, ces espèces respectaient la totalité ou la plupart des critères du CERE et des considérations supplémentaires, à l’exception des galathées. De plus, certaines espèces ayant obtenu des cotes élevées en tant qu’espèces candidates n’ont finalement pas été sélectionnées pour créer des CIE relatives aux espèces (p. ex. les polychètes). De toute évidence, toutes les espèces d’importance écologique
recensées dans notre liste restreinte d’espèces n’ont pas pu être incluses en tant que CIE relatives aux espèces, mais grâce à la sélection des trois espèces d’éponges hermatypiques et de deux autres CIE relatives aux habitats, les risques pour les espèces exclues et leur habitat demeurent probablement couverts par cette évaluation des risques. Les foraminifères associés aux squelettes d’éponges ont obtenu une cote élevée (respectant jusqu’à 7 critères sur 12), mais leur habitat sera également intégré à la CIE relative à l’habitat des squelettes d’éponges siliceuses (section 3.1.2.).

L’un des éléments importants dans la sélection de ces CIE relatives aux habitats a été la consultation d’experts des récifs d’éponges (S. Leys et A. Kahn, Université de l’Alberta; et K. Conway, Ressources naturelles Canada, comm. pers.), qui ont souligné et confirmé l’importance des habitats choisis dans leur examen de la liste de CIE proposées.

3.1.5. Récapitulatif des CIE sélectionnées

Bien que bon nombre d’espèces, d’habitats et d’attributs des communautés et de l’écosystème aient respecté les critères de sélection (et les considérations supplémentaires) lors de la phase d’établissement de la portée, la quantité de cotes requises lors de la phase d’évaluation des risques du CERE signifie que seuls quelques-uns de ces éléments peuvent au bout du compte être sélectionnés comme des CIE, idéalement moins de dix au total (O et al., 2015).

Dans le cadre de cette version, des CIE relatives aux attributs des communautés et de l’écosystème ont été recensées, mais elles n’ont pas été incluses dans l’évaluation des risques pour les raisons expliquées à la section 3.1.3. Toutefois, il est important de noter que bon nombre de CIE relatives aux attributs des communautés à l’étude sont bien représentées par les CIE relatives aux espèces et aux habitats qui ont été sélectionnées. Cela vaut également pour bon nombre des espèces et des habitats qui n’ont pas été sélectionnés en tant que CIE.

Il est important de souligner que les CIE sélectionnées pour cette première évaluation des risques pourront être remplacées par d’autres lors de prochaines versions, en particulier lorsque des études supplémentaires sur le terrain auront été menées (celles-ci permettront peut-être l’inclusion d’espèces ou de groupes pour lesquels il n’existe aujourd’hui que peu d’informations propres aux récifs, comme les étoiles de mer et diverses espèces de sébastes, ou encore l’inclusion éventuelle de CIE relatives aux attributs des communautés et de l’écosystème).

Pour la présente évaluation des risques, la liste définitive de CIE sélectionnées pour la ZPM DH-BRC est fournie au Tableau 9 et au Tableau 10, avec une description de la manière dont elles répondent aux critères du CERE (et aux considérations supplémentaires, dans le cas des CIE relatives aux espèces).
Tableau 9. CIE relatives aux espèces et justification de leur sélection

<table>
<thead>
<tr>
<th>CIE 1. Heterochone calyx</th>
<th>CIE 2. Aphrocallistes vastus</th>
<th>CIE 3. Farrea occa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Les trois espèces d’éponges siliceuses hermatypiques ont été sélectionnées en tant que CIE relatives aux espèces. Ensemble, ces trois CIE comprennent également l’habitat des récifs d’éponges. Peu d’éléments distinguent actuellement ces espèces, même si A. vastus a fait l’objet d’études plus approfondies.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. Critères respectés : 6 sur 6</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Espèce importatrice/exportatrice d’éléments nutritifs</td>
<td>Les espèces qui composent les récifs d’éponges siliceuses sont des importatrices/exportatrices d’éléments nutritifs très importants qui consomment de grandes quantités de bactéries et de picoplancton qui se trouvent au sein de la colonne d’eau.</td>
</tr>
<tr>
<td>2. Rôle clé/spécialisé dans le réseau trophique</td>
<td>Ces espèces d’éponges hermatypiques sont les espèces de base de l’écosystème, et c’est sur celles-ci que repose le réseau trophique.</td>
</tr>
<tr>
<td>3. Espèce créant un habitat structurel</td>
<td>Ces trois espèces créent un habitat structurel complexe en trois dimensions.</td>
</tr>
<tr>
<td>4. Espèce rare, endémique ou unique</td>
<td>Bien que ces trois espèces soient présentes dans d’autres régions, il est rare qu’elles soient toutes les trois présentes dans une même formation récifale. Par ailleurs, il s’agit de l’un des rares récifs où l’espèce F. occa peut être observée.</td>
</tr>
<tr>
<td>5. Espèce sensible</td>
<td>Les espèces d’éponges siliceuses sont connues pour être sensibles aux impacts mécaniques et à l’apport de sédiments.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Considérations respectées : 5 sur 6 (l’espèce A. vastus en respecte 6 sur 6)</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Espèce vivant sur les récifs</td>
<td>Ces espèces sessiles vivent dans la région toute l’année.</td>
</tr>
<tr>
<td>2. Espèce dépendante</td>
<td>Ces espèces dépendent de la structure des récifs (y compris les squelettes d’éponges) pour leur survie.</td>
</tr>
<tr>
<td>3. Espèce abondante</td>
<td>Ces espèces sont abondantes dans la zone d’étude.</td>
</tr>
<tr>
<td>4. Espèce observée sur les récifs</td>
<td>Les relevés par VTG ont révélé que ces espèces constituent les récifs.</td>
</tr>
<tr>
<td>5. Espèce simple à surveiller</td>
<td>Les espèces sessiles qui composent ces récifs devraient être relativement simples à observer et à surveiller.</td>
</tr>
<tr>
<td>6. Espèce faisant l’objet de nombreuses études</td>
<td>Il y a eu des études sur ces espèces, mais plus sur A. vastus que sur les deux autres. De nouvelles études sont en cours. Actuellement, les espèces F. occa et H. calyx ne respectent pas ce critère.</td>
</tr>
</tbody>
</table>
CIE 4. Rhabdocalyptus dawsoni

Cette éponge siliceuse ahermatypique de la famille des Rossellidae se trouve sur les récifs d’éponges siliceuses de la ZPM DH-BRC et à la périphérie de ces récifs. Elle a également été observée sur des récifs d’éponges siliceuses dans d’autres régions de la C.-B., dont le détroit de Georgie et les récifs limitrophes du Nord de la C.-B. (Stone et al., 2014; Cook, 2005; Cook et al., 2008).

<table>
<thead>
<tr>
<th>Critères respectés : 4 sur 6</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Espèce importatrice/exportatrice d’éléments nutritifs</td>
<td>Ces éponges sont des importatrices/exportatrices d’éléments nutritifs qui consomment les bactéries et le plancton qui se trouvent dans la colonne d’eau.</td>
</tr>
<tr>
<td>2. Rôle clé/spécialisé dans le réseau trophique</td>
<td>Cette espèce peut avoir un rôle spécialisé, car sa couche de spicules agit comme un microhabitat unique (Boyd, 1981).</td>
</tr>
<tr>
<td>3. Espèce créant un habitat structurel</td>
<td>Cette éponge crée un habitat structurel et un microhabitat dans la jungle de spicules dont elle est recouverte (Boyd, 1981) ainsi qu’un habitat structurel ou un refuge pour des animaux comme les poissons.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Considérations respectées : 6 sur 6</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Espèce vivant sur les récifs</td>
<td>Cette espèce sessile vit dans la région toute l’année.</td>
</tr>
<tr>
<td>2. Espèce dépendante</td>
<td>Cette espèce vit dans les récifs d’éponges et à la périphérie de ces derniers, et elle est susceptible de dépendre de la proximité des récifs pour sa protection (p. ex. contre les courants marins).</td>
</tr>
<tr>
<td>3. Espèce abondante</td>
<td>D’après les observations par VTG, cette espèce est abondante.</td>
</tr>
<tr>
<td>4. Espèce observée sur les récifs</td>
<td>Cette espèce a été observée dans les récifs d’éponges et à la périphérie de ces derniers.</td>
</tr>
<tr>
<td>5. Espèce simple à surveiller</td>
<td>Cette espèce sessile, facile à identifier, est facile à surveiller.</td>
</tr>
</tbody>
</table>
CIE 5. *Munida quadrispina*

Cette espèce ne respecte que deux des six critères du CERE et n’a donc pas sélectionnée à l’origine en tant que CIE relative aux espèces. Cependant, un expert en la matière (S. Leys, Université de l’Alberta) a fortement suggéré qu’elle soit incluse, car il considère qu’elle joue un rôle important dans cet écosystème en raison des facteurs suivants : i. elle représente probablement un lien important entre les éponges et les poissons; ii. des espèces rares ou sensibles pourraient ne pas exister en son absence; iii. c’est une espèce qui représente bien les décapodes mobiles, lesquels sont abondants sur les récifs; iv. son abondance joue probablement un rôle clé dans le cycle des éléments nutritifs (son abondance diminue entre les récifs vivants et les récifs morts dans la ZPM DH-BRC [Cook, 2005], et elle est également plus abondante lorsque des éponges siliceuses sont présentes dans les récifs du détroit de Georgie [Chu, 2010]); vi. bien qu’elle soit présente dans de nombreux endroits, il est inhabituel de la trouver dans les fonds vaseux qui entourent les récifs éponges, de sorte qu’elle peut représenter un indicateur d’habitat pouvant faire l’objet d’une surveillance.

<table>
<thead>
<tr>
<th>6. Critères respectés : 2 sur 6</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Espèce importatrice/exportatrice d’éléments nutritifs</td>
<td>Cette espèce devrait constituer un lien important entre les récifs et les poissons (en tant que proie), et entre la communauté vivant dans les sédiments meubles et les récifs (en tant que prédateur).</td>
</tr>
<tr>
<td>2. Rôle clé/spécialisé dans le réseau trophique</td>
<td>Le rôle de cette espèce abondante serait important dans le réseau trophique, en particulier en tant que lien entre les récifs et les poissons.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Considérations respectées : 6 sur 6</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Espèce vivant sur les récifs</td>
<td>Elle devrait vivre sur les récifs tout au long de l’année.</td>
</tr>
<tr>
<td>2. Espèce dépendante</td>
<td>Elle dépend des récifs pour disposer d’un habitat, d’un refuge ou d’une source de nourriture.</td>
</tr>
<tr>
<td>3. Espèce abondante</td>
<td>Elle est observée en abondance sur tous les récifs.</td>
</tr>
<tr>
<td>4. Espèce observée sur les récifs</td>
<td>Elle est observée sur tous les récifs dans le cadre des relevés par VTG.</td>
</tr>
<tr>
<td>5. Espèce simple à surveiller</td>
<td>Sa nature défensive signifie qu’en cas de perturbation, elle sera susceptible de rester sur place, ce qui peut simplifier la surveillance.</td>
</tr>
<tr>
<td>6. Espèce faisant l’objet de nombreuses études</td>
<td>Cette espèce a bien été étudiée dans d’autres régions.</td>
</tr>
</tbody>
</table>
CIE 6. Sébaste bocace (*Sebastes paucispinis*)

L’assemblage de sébastes n’a pas pu être inclus dans cette version en tant que CIE relative aux attributs des communautés. Par conséquent, le sébaste bocace a été choisi pour représenter les sébastes dans l’évaluation des risques en tant que CIE relative aux espèces. Cette espèce a été sélectionnée parce qu’elle a été jugée comme l’espèce de sébastes la plus sensible de notre liste et que la cote qui lui serait attribuée serait donc la plus prudente. Cette espèce est l’une des rares espèces de poissons désignées comme étant en voie de disparition par le COSEPAC dans le bassin de la Reine-Charlotte (COSEWIC, 2013). Le sébaste bocace a également une valeur commerciale et était pêché au chalut sur les récifs avant la fermeture des pêches (Jamieson et Chew, 2002). Nous ne savons pas aujourd’hui dans quelle mesure cette espèce est étroitement associée aux récifs d’éponges benthiques, mais on suppose qu’elle est représentative des sébastes associés aux récifs d’éponges.

<table>
<thead>
<tr>
<th>Critères respectés : 4 sur 6</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Espèce importatrice/exportatrice d’éléments nutritifs</td>
<td>On présume que les sébastes utilisent les récifs d’éponges comme une source importante de nourriture : ils se nourrissent des décapodes qui s’y trouvent et des organismes comme les vers qui composent la communauté des sédiments meubles dans les squelettes d’éponges.</td>
</tr>
<tr>
<td>2. Rôle clé/spécialisé dans le réseau trophique</td>
<td>Les sébastes seraient des prédateurs supérieurs influents dans cet écosystème.</td>
</tr>
<tr>
<td>3. Espèce sensible</td>
<td>Les sébastes ont une longue durée de vie (50 ans ou plus) et un faible taux de reproduction et sont généralement territoriaux (ils ne migrent pas). Cela les rend particulièrement sensibles aux perturbations locales et aux pressions exercées par la pêche.</td>
</tr>
<tr>
<td>4. Espèce en déclin</td>
<td>Le sébaste bocace est en déclin continu au Canada depuis 60 ans, avec une baisse de 28 % dans les 10 ans qui ont suivi l’évaluation du COSEPAC. Les déclins récents ont eu lieu dans les régions où la biomasse est la plus élevée (côte Ouest de l’île de Vancouver et dans le détroit de la Reine-Charlotte). Les prises accessoires constituent la principale menace pour cette population.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Considérations respectées : 5 sur 6</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Espèce vivant sur les récifs</td>
<td>Cette espèce de sébastes passerait une partie importante de son cycle biologique sur les récifs.</td>
</tr>
<tr>
<td>2. Espèce dépendante</td>
<td>La population de cette espèce de sébastes dépendrait des récifs pour trouver de la nourriture et un refuge.</td>
</tr>
<tr>
<td>4. Espèce simple à surveiller</td>
<td>Les sébastes adultes sont relativement simples à identifier, bien qu’il soit possible que la rareté de cette espèce particulière puisse rendre sa surveillance difficile.</td>
</tr>
<tr>
<td>5. Espèce faisant l’objet de nombreuses études</td>
<td>En tant qu’espèce commerciale, elle a bien été étudiée et on dispose de données de base sur son cycle biologique (Love et al., 1990).</td>
</tr>
</tbody>
</table>
La plus grande partie des récifs d’éponges n’est pas constituée d’éponges vivantes, mais de squelettes d’éponges remplis de sédiments qui constituent la base des récifs (Stone et al., 2014). Les sédiments qui remplissent les cavités des squelettes appuient la croissance des récifs et ralentissent la dissolution de la silice des squelettes (Whitney et al., 2005). Les croûtes d’oxyde de fer découvertes récemment sur les squelettes d’éponges (dans les récifs du Nord de la C.-B.) pourraient également jouer un rôle dans la préservation des récifs, car les squelettes siliceux se dissolvent plus lentement lorsqu’ils en sont recouverts (Stone et al., 2014).

Critères respectés : 5 sur 9

<table>
<thead>
<tr>
<th>Critères respectés</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat formé par des espèces biogènes</td>
<td>Les squelettes sont les vestiges d’éponges hermatypiques qui forment les récifs.</td>
</tr>
<tr>
<td>Habitat rare ou unique</td>
<td>Il s’agit d’un habitat rare et unique; il existe peu d’autres exemples de vastes habitats de squelettes d’éponges siliceuses dans le monde.</td>
</tr>
<tr>
<td>Habitat sensible ou affichant une faible tolérance à l’égard des perturbations, des dégradations ou des pertes, lesquelles peuvent provoquer un impact direct sur les espèces, les communautés ainsi que la structure et la fonction de l’écosystème</td>
<td>Les squelettes d’éponges sont fragiles et sensibles aux perturbations physiques. Les parties plus anciennes et plus basses du squelette peuvent être moins fragiles une fois qu’elles sont remplies de sédiments. Ces squelettes soutiennent l’ensemble de l’écosystème des récifs d’éponges siliceuses, de sorte que leur endommagement ou leur perte auraient des répercussions graves sur la structure et la fonction de l’écosystème. L’habitat de la partie la plus exposée des squelettes est essentiel à l’établissement de nouvelles recrues d’éponges et au développement continu de la partie vivante des récifs.</td>
</tr>
<tr>
<td>Habitat essentiel au soutien d’espèces dont la conservation est préoccupante (menacées ou en déclin), d’espèces sensibles ou encore d’espèces endémiques ou rares</td>
<td>Les squelettes d’éponges siliceuses sont essentiels à la survie et au soutien la partie vivante des récifs, un écosystème sensible dont la conservation est une préoccupation. Les sédiments contenus dans les squelettes contiennent des espèces rares pour les récifs d’éponges, comme des vers et des bivalves. La grande communauté de vers polychètes vivant dans les sédiments fournit de la nourriture aux poissons vivant sur les récifs, comme les sébastes, parmi lesquels certains sont menacés. La communauté de foraminifères associée aux squelettes contient également certaines espèces que l’on croit propres à cet écosystème, voire à ces récifs (Guilbault et al., 2006).</td>
</tr>
<tr>
<td>Habitat assurant des fonctions ou des services écosystémiques essentiels</td>
<td>Cet habitat est essentiel à la préservation des récifs et est à la base de tout l’écosystème des récifs d’éponges. Tout comme les éponges vivantes, les squelettes d’éponges mortes représentent également une partie importante du cycle de la silice (Chu et al., 2011).</td>
</tr>
</tbody>
</table>
Les jardins d’éponges désignent ici des assemblages denses d’éponges siliceuses et de démosponges ahermatypiques se trouvant sur les récifs ou à la périphérie de ces derniers. Les jardins d’éponges se distinguent des récifs d’éponges, car ils poussent sur la roche et non sur les squelettes morts des générations précédentes d’éponges (Chu et al., 2010). Les jardins d’éponges représentent un habitat essentiel pour certains poissons, comme les sébastes juvéniles à un stade de croissance avancé, car ils fournissent un couvert et des regroupements d’espèces proies (Collie et al., 1997; Stone et al., 2011). Dans le détroit de Georgie et la baie Howe, les sébastes juvéniles nouvellement recrutés préfèrent les jardins d’éponges (définis dans la publication comme des éponges moutonnées poussant sur la roche) aux biohermes des récifs d’éponges en tant qu’habitats de croissance, car les jardins d’éponges offrent les apports alimentaires nécessaires et affichent une plus grande diversité d’espèces (Marliave et al., 2009).

Critères respectés : 4 sur 9

Justification

<table>
<thead>
<tr>
<th>Critères respectés</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat formé par des espèces biogènes</td>
<td>Cet habitat se compose d’éponges siliceuses et de démosponges ahermatypiques.</td>
</tr>
<tr>
<td>Habitat essentiel au soutien d’espèces dont la conservation est préoccupante (menacées ou en déclin), d’espèces sensibles ou encore d’espèces endémiques ou rares</td>
<td>Les jardins d’éponges sont un habitat important à la périphérie des récifs (Freese et Wing, 2003; Marliave et al., 2009). Les récifs d’éponges et les jardins d’éponges fournissent ensemble un habitat important pour les sébastes juvéniles, à différents stades (Marliave et al., 2009; Stone et al., 2011, Stone et al., 2014), et plusieurs espèces dont la conservation est préoccupante ont été observées dans cette région. Par exemple, les jardins d’éponges constituent un habitat important pour les jeunes recrues du sébaste à dos épineux, une espèce menacée selon le COSEPAC, en lui offrant à la fois un refuge et une source de nourriture (Marliave et al., 2009; Richards, 1986). Certaines études indiquent également que d’autres associations entre les éponges et les poissons pourraient exister (Freese et Wing, 2003). Les jardins d’éponges sont considérés comme un habitat très important, non seulement pour les poissons, mais aussi pour les crustacés (S. Leys, Université de l’Alberta, comm. pers.).</td>
</tr>
<tr>
<td>Habitat sensible ou affichant une faible tolérance à l’égard des perturbations, des dégradations ou des pertes, lesquelles peuvent provoquer un impact direct sur les espèces, les communautés ainsi que la structure et la fonction de l’écosystème</td>
<td>Les éponges sont des espèces à la structure fragile dont la tolérance à l’égard des perturbations physiques est faible. Les dommages ou les pertes auraient un impact direct sur les communautés qui en dépendent.</td>
</tr>
<tr>
<td>Habitat qui appuie les stades biologiques critiques</td>
<td>Les jardins d’éponges fournissent un habitat de croissance important aux sébastes juvéniles nouvellement recrutés et offrent les ressources alimentaires nécessaires aux jeunes sébastes de l’année (Marliave et al., 2009). Plusieurs espèces de sébastes que l’on trouve dans cette région suscitent des préoccupations en matière de conservation.</td>
</tr>
</tbody>
</table>
3.2. DÉTERMINATION DES ACTIVITÉS, DES SOUS-ACTIVITÉS ET DES FACTEURS DE STRESS CONNEXES

Les activités et sous-activités fournies par le Programme des océans du MPO, à la suite de consultations avec des intervenants, des chercheurs et des décideurs (septembre 2011), ont été évaluées afin de déterminer si elles risquaient d’avoir lieu dans la ZPM DH-BRC ou si elles pouvaient être autorisées en vertu du Règlement sur les ZPM (annexe E). Cette évaluation a donné lieu à des modifications et à des ajouts pour produire la liste finale des activités et des sous-activités connues ou susceptibles de se produire aujourd’hui dans la ZPM DH-BRC (Tableau 11).

Tableau 11. Liste des activités et des sous-activités recensées pour l’évaluation des risques écologiques dans la ZPM DH-BRC.

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trafic maritime</td>
<td>Rejet</td>
</tr>
<tr>
<td></td>
<td>Échouement</td>
</tr>
<tr>
<td></td>
<td>Circulation</td>
</tr>
<tr>
<td></td>
<td>Déversement d’hydrocarbures</td>
</tr>
<tr>
<td>Recherche</td>
<td>Cartographie acoustique</td>
</tr>
<tr>
<td></td>
<td>Abandon d’équipement</td>
</tr>
<tr>
<td></td>
<td>Installation/utilisation d’équipement</td>
</tr>
<tr>
<td></td>
<td>Échantillonnage</td>
</tr>
<tr>
<td></td>
<td>Activités sismiques</td>
</tr>
<tr>
<td></td>
<td>Utilisation de submersibles</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond</td>
</tr>
<tr>
<td></td>
<td>Pêche à la palangre</td>
</tr>
<tr>
<td></td>
<td>Pêche aux casiers</td>
</tr>
<tr>
<td></td>
<td>Pêche au chalut pélagique</td>
</tr>
<tr>
<td></td>
<td>Pêche à la canne et au moulinet</td>
</tr>
</tbody>
</table>

La liste des activités recensées vise à rendre compte de l’éventail d’activités humaines considérées comme présentant un risque pour la ZPM DH-BRC. Une description de chaque activité est incluse ci-dessous.

3.2.1. Trafic maritime

La région du détroit d’Hécate et du bassin de la Reine-Charlotte est une voie de transport maritime importante reliant le Sud de la Colombie-Britannique à des régions septentrionales et occidentales, tant à l’échelle nationale qu’à l’échelle internationale. Divers types de navires naviguant le long de la côte Ouest du Canada peuvent passer près de la ZPM ou la traverser (tableau 12).
Tableau 12. Types de navires naviguant le long de côte Ouest du Canada qui devraient circuler dans le détroit d’Hécate et le bassin de la Reine-Charlotte (adapté de Hemmera [2010]).

<table>
<thead>
<tr>
<th>Type de navires</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vraquiers</td>
<td>Transportent des cargaisons en vrac (p. ex. grains, minerai de fer, mais aussi pétrole).</td>
</tr>
<tr>
<td>Navires de marchandises</td>
<td>Transportent des cargaisons diverses (non conteneurisées) [p. ex. machines agricoles, biens marchands].</td>
</tr>
<tr>
<td>Porte-conteneurs</td>
<td>Transportent principalement des cargaisons conteneurisées.</td>
</tr>
<tr>
<td>Chimiquiers</td>
<td>Navires-conteneurs qui transportent des produits chimiques liquides (à l’exclusion des produits pétrochimiques).</td>
</tr>
<tr>
<td>Transporteurs de GPL/GNL</td>
<td>Navires conçus pour transporter du gaz de pétrole liquéfié (GPL) ou du gaz naturel liquéfié (GNL).</td>
</tr>
<tr>
<td>Navires à passagers</td>
<td>Transportent principalement des passagers humains (p. ex. navires de croisière), à l’exclusion des traversiers.</td>
</tr>
<tr>
<td>Traversiers</td>
<td>Transportent des passagers ou des véhicules et transitent régulièrement entre deux ports.</td>
</tr>
<tr>
<td>Bateaux de pêche</td>
<td>Tout bateau utilisé, équipé ou conçu pour pêcher, transformer ou transporter du poisson (Loi sur les pêches).</td>
</tr>
<tr>
<td>Navires du gouvernement</td>
<td>Navires appartenant au gouvernement d’un pays, quel qu’il soit, et ne se livrant à aucun échange commercial.</td>
</tr>
<tr>
<td>Remorqueurs et barges</td>
<td>Navires spécialement conçus pour remorquer ou être remorqués.</td>
</tr>
<tr>
<td>Remorqueurs avec barges</td>
<td>Toute barge utilisée pour le transport d’hydrocarbures et propulsée par un remorqueur.</td>
</tr>
</tbody>
</table>

Les complexes récifaux de la ZPM sont situés dans une région où le trafic maritime est modérément élevé (par rapport aux régions avoisinantes) [Simard et al., 2014] (annexe I), et celui-ci devrait augmenter après les nouveaux aménagements portuaires réalisés à Vancouver, à Prince-Rupert et peut-être à Kitimat. Les navires transportant du pétrole sont particulièrement préoccupants. En 2013 seulement, environ 1 500 pétroliers ont navigué le long de la côte Ouest du Canada (ITOPF, 2013). Le renouvellement de l’eau de ballast (qui peut entraîner l’introduction d’EAE ou le rejet de contaminant) constitue une autre source de risques potentiels associées aux navires. En vertu de la réglementation actuelle (Règlement sur le contrôle et la gestion de l’eau de ballast, DORS/2011-237), aucun renouvellement de l’eau de ballast n’est permis dans le détroit d’Hécate ou dans le bassin de la Reine-Charlotte, ce qui limite le risque d’impacts directs liés à cette sous-activité. Les impacts indirects résultant de la dispersion naturelle de l’eau de ballast renouvelée à l’extérieur des limites de la ZPM demeurent toutefois une préoccupation.

En plus de la navigation commerciale, la côte de la C.-B. est aussi un endroit populaire pour les bateaux de tourisme et de plaisance, avec des paquebots de croisière, des traversiers et de petites embarcations de plaisance qui naviguent le long de la côte. Dans les eaux canadiennes, les navires doivent se trouver à au moins trois mille marins de la terre pour rejeter leurs eaux
usées traitées (eaux grises) et à au moins douze mille marins de la terre pour rejeter leurs eaux d’égout (eaux noires) [Transports Canada, 2013]. Les paquebots de croisière suivent un itinéraire semblable et peuvent déverser leurs déchets au même endroit chaque fois qu’ils empruntent cet itinéraire (Hemmera, 2010). La navigation des navires est permise au sein de la ZPM lorsqu’elle a lieu (i) conformément à la Loi de 2001 sur la marine marchande du Canada et à ses règlements d’application et (ii) pourvu que les navires ne jetent pas l’ancre dans une zone de protection centrale (DORS/2017-15; voir le règlement à l’annexe A).

Sur la base de ces éléments, les hypothèses suivantes sont formulées au sujet des activités liées au trafic maritime au sein de la ZPM pour la phase de cotation de la présente évaluation des risques :

- Aucune ancre ne pénètrera la ZPC (selon les lignes directrices de la ZPM).
- Le rejet de matériaux comme le bois ou les déchets miniers n’est pas autorisé dans la zone.
- Les navires peuvent rejeter des eaux noires dans les secteurs de la ZPM situées à une distance supérieure ou égale à douze milles marins de la terre ferme.
- Les navires peuvent rejeter des eaux grises dans les secteurs de la ZPM situées à une distance supérieure ou égale à trois milles marins de la terre ferme.
- Aucun renouvellement de l’eau de ballast n’est permis dans les secteurs de la ZPM.
- Les navires, y compris ceux qui transportent du pétrole, peuvent traverser les secteurs de la ZPM.

3.2.1.1. Sous-activités du trafic maritime

Les sous-activités suivantes du trafic maritime sont jugées pertinentes pour les navires traversant la ZPM DH-BRC :

1. **Rejet** : Déversement de tout élément solide ou liquide se trouvant à bord, comme les eaux noires (eaux d’égout), les eaux grises (eaux usées), les déchets, les débris de pont jetés ou perdus et l’eau de ballast. Bien que les courants puissent apporter les rejets de navires provenant des zones avoisinantes, seuls les rejets survenant à l’intérieur de la ZPM sont pris en compte. Aucun renseignement n’est actuellement disponible à propos de la concentration ou de la fréquence des rejets des navires.

2. **Échouement** : Dans le cadre de la présente évaluation des risques, cette sous-activité ne concerne que l’échouement de navires sur le fond marin à l’intérieur des limites de la ZPM et peut donc être reliée aux données sur les épaves de navires.

3. **Circulation** : Dans le cadre de la présente évaluation des risques, cette sous-activité ne porte que sur les éléments de perturbation (bruit ou lumière) associés aux navires qui traversent la ZPM.

4. **Déversement d’hydrocarbures** : Cette sous-activité se rapporte aux impacts associés à un déversement grave et catastrophique d’hydrocarbures provenant d’un navire transportant des hydrocarbures. (Remarque : les rejets chroniques d’hydrocarbures et de contaminants en provenance de n’importe quel navire sont pris en compte dans la sous-activité « Rejet ».)

3.2.2. Recherche

Depuis la découverte des récifs d’éponges du détroit d’Hécate et du bassin de la Reine-Charlotte en 1986, un certain nombre de croisières de recherche se sont rendues sur place (annexe I, Tableau 36), ce qui a permis d’obtenir des ensembles de données biologiques et géologiques, y compris des levés à l’aide de sonars à balayage latéral, des enregistrements
sismiques à haute résolution, des carottes, des échantillons de sédiments, des échantillons biologiques ainsi que des images fixes et des séquences vidéo (voir les références du tableau 33). En vertu du Règlement sur les ZPM, il est interdit « d’exercer toute activité de recherche ou de suivi scientifique ou toute activité éducative qui ne fait pas partie d’un plan d’activité approuvé par le ministre » (DORS/2017-15).

Pour la présente évaluation des risques, les hypothèses suivantes sont formulées au sujet des activités de recherche au sein de la ZPM :

- Les activités sismiques associées à la production de pétrole et de gaz ne seront pas autorisées.
- La recherche scientifique continuera de se servir de méthodes ayant un impact similaire à celles déjà utilisées lorsque la région était une zone d’intérêt.

3.2.2.1. Sous-activités de recherche

Les sous-activités de recherche suivantes ont été déterminées en fonction des activités de recherche passées et futures au sein de la ZPM DH-BRC :

1. **Cartographie acoustique** : Les chercheurs utilisent des sonars pour la cartographie bathymétrique, avec des fréquences allant de 12 kHz pour les eaux profondes à 70-100 kHz pour les eaux moins profondes. Les sonars multifaisceaux présentent des niveaux de source élevés, mais l’orientation des faisceaux est très précise. Des levés géophysiques à haute résolution ont été effectués sur les récifs (sonar latéral EG&G, sonar latéral Simrad et échosondeur multifaisceaux EM 1002 Kongsberg-Simrad montés sur la coque en 1999 et peut-être d’autres fois depuis). Les instruments utilisés sont remorqués par des navires de recherche, à l’exception du système multifaisceaux, qui est monté sur la coque.

2. **Abandon d’équipement** : Cette sous-activité concerne l’équipement de recherche abandonné dans la région, comme les poids de type « roues de train » (utilisés pour l’ancrage des postes d’amarrage destinés à la recherche).

3. **Installation/utilisation d’équipement** : Cette sous-activité comprend l’installation et l’utilisation d’équipement, comme les enregistreurs de température et de salinité, les hydrophones, les courantomètres et les dispositifs de mesure des sédiments.

4. **Échantillonnage** : Cette sous-activité comprend les échantillonnages menés à des fins scientifiques dans les zones de récifs d’éponges et comprenant la collecte de matériaux, comme le prélèvement de carottes, l’échantillonnage par aspiration et le prélèvement de spécimens.

6. **Utilisation de submersibles** : Des submersibles (pilotés ou télécommandés) ont été utilisés dans le passé pour étudier les récifs d’éponges de la ZPM. Cette utilisation devrait se poursuivre à des fins de surveillance et de recherche.

3.2.3. **Pêche**

L’habitat fragile et complexe en trois dimensions des récifs d’éponges est facilement endommagé par les impacts mécaniques des engins de pêche (Rogers *et al.*, 2008). Le Règlement sur les ZPM interdit d’y exercer toute activité qui perturbe, endommage, détruit ou retire de la zone tout organisme marin vivant ou toute partie de son habitat, ou qui est susceptible de le faire. Aucune pêche (commerciale, récréative ou autochtone) n’est permise au sein de la ZPC, mais l’application des principes de gestion adaptative dans la ZGA et la ZVGA permet certains types de pêches et peut faire l’objet de révisions et de modifications. Tout comme d’autres activités de l’évaluation des risques, la pêche a été évaluée en vertu du principe de précaution et sa portée n’était pas nécessairement limitée par le règlement actuel sur les ZPM.

Les hypothèses particulières formulées au sujet de la pêche dans la ZPM au cours de la phase de cotation de l’évaluation des risques sont les suivantes :

- Aucune pêche n’est permise dans la ZPC (ce qui inclut tout type de pêche commerciale, récréative ou autochtone).
- Aucune pêche non commerciale utilisant des engins entrant en contact avec le fond n’est autorisée dans la ZGA (casiers, hameçons ou chaluts).
- Bien que certaines pêches soient actuellement fermées en vertu du Règlement sur les ZPM, ces pêches pourraient être de nouveau autorisées dans la ZGA ou la ZVGA. Ces zones sont désignées à des fins de gestion adaptative, ce qui pourrait permettre à des pêches qui s’y déroulaient avant la désignation de la ZPM de reprendre si certaines conditions sont réunies. Par exemple, la pêche au chalut semi-pélagique pourrait être autorisée dans la ZVGA (au-dessus de la ZPC) dans le futur (si des méthodes sont trouvées pour assurer que les engins ne pénètrent pas dans la ZPC).
- Si un engin est perdu pendant la pêche, le chalutage à la recherche de l’engin en question ne sera pas autorisé dans la ZPC.

Seuls les facteurs de stress indirects (comme la remise en suspension des sédiments) et non les facteurs de stress directs (comme l’écrasement) sont pertinents pour les pêches ayant lieu dans la ZGA. Dans la ZVGA (au-dessus de la ZPC), les facteurs de stress directs sont pertinents puisqu’un engin peut atteindre les récifs d’éponges siliceuses et leur causer des dommages directs (p. ex. un engin perdu coulant dans la ZPC).

3.2.3.1. **Sous-activités de pêche**

Les pêches suivantes ont été déterminées comme étant celles ayant les impacts potentiels les plus importants à l’intérieur des limites de la ZPM DH-BRC à l’heure actuelle :

1. **Pêche au chalut de fond** : Cette pêche cible diverses espèces de sébastes et de poissons plats démersaux vivant sur le talus et le plateau continentaux. Elle n’a pas eu lieu dans la ZPC depuis 2002 en raison des fermetures de pêche établies en vertu de la *Loi sur les pêches*. Les effets indirects (comme la sédimentation) liés à la pêche au chalut de fond pratiquée dans la ZGA sont encore pris en compte dans l’évaluation des risques, car ils pourraient survenir dans le futur.
2. **Pêche à la palangre** : Cette pêche cible le flétan du Pacifique, la morue-lingue et les sébastes. La palangre est considérée comme un engin fixe stationnaire, mais des préoccupations ont été soulevées au sujet de l’effet coupant des palangres sur les éponges lorsque des poissons démersaux accrochés se débattent (K. Conway, Ressources naturelles Canada, comm. pers.) et lorsqu’ils sont remontés à la surface. Cette pêche était auparavant autorisée dans la zone centrale des récifs d’éponges, mais en vertu du Règlement sur les ZPM, elle n’est désormais autorisée que dans la ZGA.

3. **Pêche aux casiers** : Cette pêche cible la crevette tachetée qui vit dans la ZPM (Boutillier et al., 2013). Elle est réalisée à l’aide d’un engin fixe stationnaire constitué d’un train de casiers attaché à une palangre ancrée à chaque extrémité. En vertu du Règlement sur les ZPM, cette pêche ne peut être autorisée que dans la ZGA. Bien que l’empreinte de chaque casier soit faible, l’effet cumulatif de plusieurs trains de casiers doit être évalué.

4. **Pêche au chalut pêlagique** : Cette pêche cible le merlu du Pacifique (Boutillier et al., 2013). Elle est actuellement interdite dans la ZPC, la ZVGA et la ZGA en vertu du Règlement sur les ZPM. En effet, un contact peut avoir lieu avec le fond pendant les opérations de pêche et il n’existe actuellement aucun moyen de surveiller ce contact ou d’empêcher qu’il se produise. En cas de contact avec le fond, les effets sur les organismes benthiques peuvent être semblables à ceux de la pêche au chalut de fond (Rogers et al., 2008). Cette pêche pourrait être autorisée dans la ZVGA et la ZGA lorsque la technologie nécessaire aura été mise au point pour surveiller et prévenir adéquatement les contacts avec le fond. C’est pourquoi elle a été incluse dans la présente version de l’évaluation des risques.

5. **Pêche à la canne et au moulinet (pêche récréative)** : L’utilisation de poids à billes pour lester les engins de pêche a également été signalée dans la région (L. Yamanaka, Secteur des sciences du MPO, comm. pers.). Bien que la pêche récréative, quel qu’en soit le type, ait été interdite dans la ZPC, aucune donnée n’existe quant à l’étendue ou la fréquence de cette pêche au sein de la ZGA.

Voici les autres pêches actuellement exclues de la présente évaluation des risques (mais qui devront peut-être être réévaluées dans les prochaines versions du CERE) :

1. **Pêches à des fins alimentaires, sociales et rituelles (ASR)** : Des données remontant à 2016 indiquent que la Nation Haisla et la Première Nation Gitga’at ont obtenu 27 permis de pêche ASR dans une zone de gestion (sous-zone 106-2, une vaste sous-zone qui chevauche la partie centrale des récifs d’éponges) [M. Anthony, Gestion des pêches du MPO, comm. pers.]. Toutefois, il n’est pas possible de déterminer si les activités de pêche entreprises chevauchent réellement la zone des récifs ou si elles se déroulent dans d’autres parties de la zone de gestion. Sur les 27 permis délivrés, dix concernaient le saumon, trois l’eulakane et la morue charbonnière, trois les palourdes et les coques, deux le hareng, deux le flétan du Pacifique, deux les mammifères marins (phoques et otaries), deux les poissons de fond (autres que le flétan et la morue charbonnière) et deux les mollusques et crustacés. Les pêches ASR ne sont pas incluses dans la présente évaluation parce qu’on s’attend à ce que leurs impacts soient négligeables et peu susceptibles de se produire aussi loin des côtes. Les prochaines versions de l’évaluation des risques devront distinguer les cas de double pêche (cas dans lesquels la pêche ASR peut être menée avec des engins commerciaux). Aujourd’hui, ce type de pêche n’est pas exclu de la ZGA.

2. **Pêches récréatives (autres que la pêche à la canne et au moulinet)** : Il n’existe actuellement aucune donnée ou information sur ces pêches dans la ZPM DH-BRC. Il est peu probable que ce type de pêches ait lieu aussi loin des côtes, et l’ampleur de ces pêches devrait être négligeable.
3. **Pêches destinées à la recherche** : La pêche expérimentale (chalut de fond, chalut pélagique, hameçon et ligne) n’est pas incluse, car on suppose qu’elle n’aura plus lieu dans la ZPC. Il est possible que les prochaines versions de cette évaluation des risques aient à revenir sur cette hypothèse à la lumière d’un examen des demandes de plans d’activités et des rapports finaux reçus depuis la désignation de la ZPM. En particulier, il est encore possible que des relevés de recherche soient menés dans la ZGA, et les impacts indirects de ces relevés devront être évalués.

Pour simplifier, seule la pêche commerciale à l’aide d’engins entrant en contact avec le fond est interdite dans toutes les zones de la ZPM. Les pêches autochtones et récréatives sont toujours autorisées dans la ZGA et la ZVGA. En raison de la disponibilité limitée des données, il est difficile d’évaluer l’ampleur de l’utilisation des engins de fond dans le cadre des pêches autochtones dans la ZVGA et la ZGA. À titre d’estimation approximative, on a supposé que les pêcheurs autochtones utilisent les types d’engins figurant sur leur permis de pêche.

La liste suivante est tirée des ordonnances de modification qui interdisent les différentes pêches au sein de la ZPC, de la ZGA et de la ZVGA. L’ordonnance de modification concernant la ZPC est complète et vise à recenser toutes les pêches possibles dans les eaux de la ZPM, de sorte qu’elle est considérée comme une liste exhaustive de toutes les pêches.

Tableau 13. Résumé des pêches et des types d’engins actuellement autorisés dans les trois zones de la ZPM DH-BRC.

<table>
<thead>
<tr>
<th>Pêche</th>
<th>Secteur</th>
<th>Types d’engins</th>
<th>Zones de la ZPM. Pêche autorisée dans la :</th>
</tr>
</thead>
</table>
| Crabe | Pêche récréative | Épuisette, bulinche, casier, ramassage manuel en plongée, ramassage manuel | ZPC : Non
ZGA : Oui
ZVGA : Oui |
| Pieuvre | Pêche récréative | Casier, ramassage manuel en plongée, ramassage manuel, pêche à la ligne | ZPC : Non
ZGA : Oui
ZVGA : Oui |
| Crevette | Pêche récréative | Casier, pêche au harpon en plongée, bulinche | ZPC : Non
ZGA : Oui
ZVGA : Oui |
| Poissons autres que le saumon| Pêche récréative | Pêche à la ligne, pêche au harpon en plongée, filet maillant, épuisette, turlutte, râteau à hareng, épervier | ZPC : Non
ZGA : Oui
ZVGA : Oui |
| Saumon | Pêche récréative | Pêche à la ligne | ZPC : Non
ZGA : Oui
ZVGA : Oui |
| Toutes les espèces | Pêches ASR/ | Tous types d’engins | ZPC : Non
ZGA : Oui
ZVGA : Oui |
| Poissons de fond | commerciale | Chalut de fond, chalut pélagique, hameçon et ligne (palangre et traine) | ZPC : Non
ZGA : Non
ZVGA : Non |
| Thon/bonite | Pêche commerciale | Hameçon et ligne (palangre et traine) | ZPC : Non
ZGA : Oui
ZVGA : Oui |
| Hareng | Pêche commerciale | Filet maillant, senne coulissante, chalut | ZPC : Non
ZGA : Oui
ZVGA : Oui |
| Saumon | Pêche commerciale | Filet maillant, senne coulissante, hameçon et ligne (traîne) | ZPC : Non
ZGA : Oui
ZVGA : Oui |
| Mollusques et crustacés | Pêche commerciale | Plongée, filet maillant, ramassage manuel, hameçon et ligne, senne, casier, chalut | ZPC : Non
ZGA : Non
ZVGA : Non |
<table>
<thead>
<tr>
<th>Pêche</th>
<th>Secteur</th>
<th>Types d'engins</th>
<th>Zones de la ZPM. Pêche autorisée dans la :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flétan</td>
<td>Pêche commerciale</td>
<td>Hameçon et ligne (palangre), casier</td>
<td>ZPC: Non, ZGA: Non, ZVGA: Non</td>
</tr>
<tr>
<td>Morue charbonnière</td>
<td>Pêche commerciale</td>
<td>Chalut, hameçon et ligne (palangre), casier</td>
<td>ZPC: Non, ZGA: Non, ZVGA: Non</td>
</tr>
</tbody>
</table>

1 Certaines pêches autorisées dans la ZVGA utilisent des engins qui entrent en contact avec le fond, mais ne pourraient pas utiliser ces engins dans la ZVGA sans pénétrer dans la ZPC et sont donc de facto exclues de la ZVGA.

2 Les pêches ASR ne sont pas répertoriées par espèce ou par engin dans le Règlement sur les permis de pêche communautaires des Autochtones et ce dernier stipule qu’« il est interdit à quiconque [...] de pêcher, de prendre ou de garder toute espèce de poisson [...] ».

3 Les poissons de fond comprennent : la morue du Pacifique, le merlu du Pacifique, le poulamon du Pacifique, la goberge de l’Alaska, le sourcil, le grenadier, la morue-lingue, la grande castagnole, la chimère, le sébaste, le chabot, le requin (autre que l’aiguillat commun), la raie, la sole, la plie, l’aiguillat commun, l’esturgeon et toutes les espèces autres que le flétan, le hareng, le saumon, les mollusques et crustacés, et les espèces visées aux articles 1 à 21 de l’annexe III du Règlement de pêche du Pacifique (1993).

3.2.4. Activités et sous-activités actuellement exclues

Les activités et les sous-activités recensées au cours de l’étape de détermination de la portée, mais qui ne sont pas incluses dans l’évaluation des risques, comprennent :

- la pose, l’entretien ou la réparation de câbles dans la ZGA/ZVGA (en raison d’un manque de données);
- les activités liées à la sécurité et à la défense maritimes (aucune donnée disponible en raison de contraintes de sécurité);
- l’exploration et la production pétrolières et gazières extracôtières (qui n’ont pas eu lieu depuis 1972 en raison de l’adoption d’un moratoire fédéral);
- les activités liées aux projets d’énergie renouvelable (aucun n’est en cours aujourd’hui et aucune donnée n’est disponible).

Il sera peut-être nécessaire d’évaluer ces éléments dans le cadre des prochaines versions de l’évaluation des risques en cas d’évolution de leur statut ou de leur niveau d’activité au fil du temps.

3.3. ÉVALUATION SEMI-QUANTITATIVE DES RISQUES DE NIVEAU 2

3.3.1. Matrice des interactions entre les CIE et les facteurs de stress

Une matrice des interactions entre les CIE et les facteurs de stress a été conçue pour recenser toutes les interactions négatives potentielles entre les CIE et les facteurs de stress dans l’évaluation des risques (annexe G). Les facteurs de stress se limitant aux eaux de surface et n’étant pas susceptibles d’avoir un impact aux profondeurs occupées par les récifs d’éponges siliceuses ont été éliminés à ce stade (p. ex. tous les facteurs de stress liés à la circulation maritime ont été éliminés à ce stade, sauf le facteur de stress « Perturbation [bruit] », qui peut atteindre le fond marin et avoir des interactions négatives avec les poissons).

Lorsqu’une interaction négative était incertaine, la combinaison CIE-facteur de stress a été retenue et donc incluse à l’étape suivante de l’évaluation des risques. Les interactions positives (lorsque la CIE profite de l’interaction avec le facteur de stress), comme l’introduction de
matières biologiques (eaux noires/déchets de transformation du poisson) offrant un milieu plus riche en éléments nutritifs et une source de nourriture pour les organismes marins, n’ont pas été prises en compte dans le CERE ni inclues dans la matrice des interactions. Par la suite, on a attribué aux interactions les cotes de 0 ou 1, selon que le facteur de stress était susceptible de présenter une interaction négative négligeable (0) ou plus que négligeable (1) avec la CIE.

Tableau 14. Résumé des interactions possibles entre les CIE et les activités présentées dans la matrice des interactions (annexe G).

<table>
<thead>
<tr>
<th>CIE</th>
<th>Type de CIE</th>
<th>Nombre d'interactions possibles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trafic maritime (max. 22)</td>
<td>Recherche (max. 25)</td>
</tr>
<tr>
<td>H. calyx</td>
<td>Espèce</td>
<td>13</td>
</tr>
<tr>
<td>A. vastus</td>
<td>Espèce</td>
<td>13</td>
</tr>
<tr>
<td>F. occa</td>
<td>Espèce</td>
<td>13</td>
</tr>
<tr>
<td>R. dawsoni</td>
<td>Espèce</td>
<td>13</td>
</tr>
<tr>
<td>M. quadrispina</td>
<td>Espèce</td>
<td>12</td>
</tr>
<tr>
<td>S. paucispinis</td>
<td>Espèce</td>
<td>6</td>
</tr>
<tr>
<td>Squelettes d’éponges siliceuses</td>
<td>Habitat</td>
<td>11</td>
</tr>
<tr>
<td>Jardins d’éponges</td>
<td>Habitat</td>
<td>13</td>
</tr>
<tr>
<td>Communauté des récifs d’éponges siliceuses</td>
<td>Communauté</td>
<td>Non coté</td>
</tr>
<tr>
<td>Communauté de sébastes</td>
<td>Communauté</td>
<td>Non coté</td>
</tr>
</tbody>
</table>

Comme les deux CIE relatives aux habitats sont d’origine biogène, elles ont interagi avec un nombre similaire de facteurs de stress que les CIE relatives aux espèces. Dans certains cas, différentes CIE comptent différents facteurs de stress dans la matrice des interactions; par exemple, l’énergie sismique peut causer des dommages aux espèces et aux communautés vivantes, mais ne devrait pas avoir d’impact sur les squelettes d’éponges siliceuses mortes.

Il convient de noter que le Tableau 14 ne sert qu’à résumer les résultats de la matrice des interactions. D’après les utilisations antérieures du CERE, ce tableau ne devrait pas être utilisé aux fins d’analyse dans l’évaluation des risques. En particulier, il a été recommandé de ne pas considérer les facteurs de stress comme un groupe pour chaque activité, car il est peu probable que tous les facteurs de stress liés à une activité donnée surviennent en même temps.

3.3.2. Cotation des composantes des risques

3.3.2.1. Cotation des termes de la Résilience.

La cotation des facteurs de Résilience (changements aigus et chroniques) a été relativement simple pour les CIE relatives aux espèces, mais elle a nécessité une interprétation supplémentaire pour les CIE relatives aux habitats. Les lignes directrices de Thornborough et al. (2017) ont été utilisées pour coter les CIE relatives aux habitats comme suit :

- changement aigu (ca) : perte dans la superficie couverte par l’habitat en question;
- changement chronique (cc) : perte dans l’intégrité structurale, la condition ou la capacité de production de l’habitat en question.
Des difficultés ont été rencontrées lors de la cotation de la Résilience, pour les CIE relatives aux attributs des communautés et de l’écosystème en raison d’un manque de données sur la composition des communautés recensées. La cotation de la Résilience, dans les communautés qui présentent peu de données a été tentée dans une autre application du CERE (Thornborough et al., 2017) en utilisant des facteurs de l’habitat (superficie/capacité de production). Cependant, cela n’a pas été fait pour les communautés choisies dans le présent CERE (communauté de sébastes et communauté des récifs d’éponges siliceuses). Il a plutôt été décidé que les communautés sélectionnées étaient actuellement mieux représentées dans les CIE relatives aux espèces et aux habitats de l’évaluation des risques. Les futures versions de l’évaluation des risques devront régler cette question.

Pour les facteurs de stress potentiels (voir la description des deux types de facteurs de stress à la section 2.2.3), la Résilience a été cotée selon le scénario de la pire éventualité. Par exemple, les introductions d’EAE ont été cotées comme si les espèces étaient établies, et non comme s’il ne s’agissait que de simples propagules, le pétrole provenant de déversements d’hydrocarbures a été coté comme si un déversement important provenant d’un pétrolier s’était produit, et les perturbations sismiques ont été cotées avec un chevauchement élevé (car les ondes sonores peuvent parcourir de grandes distances sous l’eau) pouvant provoquer la mort de certains organismes.

Les cotes de Résilience ont tendance à être faibles pour les changements aigus (cote de 1 [perte de superficie < 10 %]), car la perte dans une zone devrait être relativement étendue pour être supérieure à 10 % par rapport à l’étendue de la ZPM et de l’habitat de squelettes d’éponges siliceuses qui s’y trouve. L’habitat des jardins d’éponges a été le plus difficile à coter, car il y a peu de données sur son étendue ou sa couverture spatiale (bien que l’on sache qu’il est présent à l’intérieur et à la périphérie des récifs d’éponges siliceuses dont les contours ont été définis sur le plan géologique). Autre aspect n’ayant pas été abordé explicitement dans cet exercice de cotation relative : la prise en compte de l’état actuel des récifs et de la manière dont cela aura des répercussions sur leur résilience future (c.-à-d. qu’il est probablement inapproprié de supposer que tous les récifs sont actuellement dans un état normal et qu’ils ne sont pas déjà fortement compromis). Une zone dont 50 % de la superficie avait fait l’objet de chalutages au moment de sa découverte ne devrait pas être aussi résiliente que d’autres zones plus préservées (K. Conway, Ressources naturelles Canada, comm. pers.).

3.3.2.2. Cotation des facteurs de Rétablissement

Bien que la plupart des facteurs de Rétablissement aient bien fonctionné lorsqu’ils ont été appliqués aux CIE relatives aux espèces et aux habitats de la ZPM DH-BRC, ils ne s’appliquaient pas tous à chaque CIE. Les facteurs suivants s’appliquaient aux invertébrés : âge à la maturité, stade biologique, connectivité des populations et fécondité. Les facteurs suivants n’ont été appliqués qu’aux poissons : taux de mortalité naturelle, stratégie de reproduction, tendance du recrutement, âge maximal, taille maximale et coefficient de croissance de Von Bertalanffy. On espère que les recherches à venir permettront d’appliquer certains de ces facteurs, voire tous, aux autres CIE relatives aux espèces. Bien que le facteur « Statut d’espèce inscrite » soit théoriquement pertinent pour les invertébrés, ces derniers sont souvent sous-représentés dans de telles listes ou ne font tout simplement l’objet d’aucune évaluation (Cardoso et al., 2011; idem, 2012). Par conséquent, ce facteur n’est actuellement pertinent que pour la CIE relative au sébaste bocace. Le nombre de facteurs de rétablissement cotés pour chaque CIE est indiqué au Tableau 15. Les catégories de cotation et les justifications pour chaque niveau sont présentées à l’annexe H.
Tableau 15. Nombre de facteurs de Rétablissementc cotés pour chaque CIE.

<table>
<thead>
<tr>
<th>Type de CIE</th>
<th>CIE</th>
<th>Facteurs de Rétablissementc cotés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espèce</td>
<td>Heterchone calyx</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Aphrocallistes vastus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Farrea occa</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Rhabdocalypus dawsoni</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Munida quadrispina</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sebastes paucispinis</td>
<td>9</td>
</tr>
<tr>
<td>Habitat</td>
<td>Squelettes d’éponges siliceuses</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Jardins d’éponges</td>
<td>6</td>
</tr>
</tbody>
</table>

Tous les facteurs de Rétablissementc sont des mesures relatives, et O et al. (2015) ne précise pas en fonction de quelle échelle relative ces mesures doivent être jugées. Par exemple, la richesse des espèces comprend trois catégories :

1. « la mesure relative de la richesse des espèces est élevée »;
2. « la mesure relative de la richesse des espèces est moyenne »;
3. « la mesure relative de la richesse des espèces est faible ».

Des processus antérieurs du CERE ont révélé qu’il serait possible de coter les communautés à l’aide des facteurs de Rétablissementc, des CIE relatives aux habitats (Thornborough et al., 2017). On s’attend à ce que les mesures relatives soient (et c’est donc le cas des facteurs Rétablissementc relatifs aux communautés) plus facilement mesurables une fois que suffisamment de données de référence auront été obtenues concernant l’écosystème des récifs d’éponges siliceuses.

3.3.2.3. Cotation des termes de l’Expositionsc

Pour coter les termes qui composent l’Expositionsc, nous avons formulé les hypothèses suivantes à des fins de simplification et en raison du manque de données :

1. Les récifs d’éponges vivantes s’étendent de façon relativement constante dans toute la ZPC, même si l’on sait qu’ils sont un peu discontinus.
2. Les trois espèces d’éponges siliceuses hermatypiques affichent une biomasse et une répartition à peu près identique dans la structure des récifs.
3. Les espèces sélectionnées en tant que CIE passent généralement la plupart de leur temps en association étroite avec les récifs d’éponges.
4. En raison de la nature benthique de l’écosystème et des CIE, la composante de profondeur (chevauchement de la Profondeursc) a généralement été cotée comme présentant un potentiel de chevauchement élevé avec les facteurs de stress.

Les données et les analyses par SIG utilisées pour la cotation des termes relatifs au chevauchement (spatial et temporel) pour chaque interaction entre une CIE et un facteur de stress sont fournies à l’annexe I.
Sur la base des recommandations des évaluations antérieures menées à l’aide du CERE (Thornborough et al., 2017, Rubidge et al., 2018), le terme initial relatif à l’intensité de O et al. (2015) a été divisé en deux composantes (la quantité et la fréquence) pour la présente évaluation des risques. L’intensité(quantité)sc représente la quantité/densité relative du facteur de stress (indépendante de la CIE). Par exemple, la quantité de sédiments remis en suspension par la pêche au chalut de fond était beaucoup plus élevée que la quantité de sédiments remis en suspension par la pêche aux casiers. L’intensité(fréquence)sc est cotée en fonction de la fréquence à laquelle le facteur de stress se produisait au cours de l’année et à l’aide des instructions figurant au Tableau 3, la fréquence la plus élevée étant d’une fois par année. Toutes les cotes relatives à l’Expositionsc sont présentées à l’annexe J.

3.3.2.4. Cotation de l’incertitude

Les incertitudes associées à l’Expositionsc et à la Conséquencesc sont relativement semblables (lorsqu’on examine les 10° et 90° percentiles) pour les interactions entre les CIE et les facteurs de stress actuels. Les interactions pour lesquelles il existe peu de données quantitatives à l’appui présentent des cotes d’incertitude plus élevées. Les facteurs de stress potentiels, comme les introductions d’EAE, présentent généralement des cotes d’incertitude plus élevées que les facteurs de stress actuels, comme l’échantillonnage. (Voir la section 2.2.3 pour la définition des types de facteurs de stress.)

3.3.3. Calcul du risque relatif (Risque_sc), du Risque_C et de la Puissance_s

Dans un premier temps, il était raisonnablement certain que les facteurs de stress recevant une cote de 0 pour les deux facteurs de Résilience_c (ChangementAigu_c et ChangementChronique_c) avec une incertitude modérée à faible (cote d’incertitude connexe de 3 ou moins) avaient un impact négligeable sur la CIE en question; ils ont donc été éliminés par la suite. Une fois éliminés, ces facteurs de stress n’étaient plus pris en compte dans les calculs de l’évaluation des risques. Cette approche représente une légère modification par rapport à celle adoptée dans les évaluations des risques antérieures menées à l’aide du CERE (Thornborough et al., 2017, Rubidge et al., 2018), dans lesquelles tous les facteurs de stress ayant obtenu une cote de 0 pour les deux facteurs de Résilience_c étaient exclus et ce, quelle que soit l’incertitude qui leur était attribuée. (Il convient de noter que les résultats fondés sur cette approche plus restrictive sont présentés à l’annexe L aux fins de comparaison avec les processus antérieurs du CERE).

3.3.3.1. Calcul des estimations du Risque_sc

Les cotes et les incertitudes connexes pour les termes de la Conséquence_sc et de l’Exposition_sc ont été combinées et utilisées pour estimer le Risque_sc pour chaque CIE, à l’aide du script R qui figure à l’annexe J. Les résultats sont représentés par groupes de CIE (Figure 6, Figure 7 et Figure 8). Deux graphiques sont fournis pour chaque CIE : le graphique A présente les cotes médianes du Risque_sc ainsi que l’incertitude connexe pour chaque facteur de stress interagissant avec la CIE en question, tandis que le graphique B présente les cotes de l’Exposition_sc (axe des abscisses) associées à la Conséquence_sc (axe des ordonnées) pour chaque facteur de stress ainsi que l’incertitude connexe (diagrammes de projection de l’exposition et des conséquences). Il convient de souligner que les axes de l’Exposition_sc et de la Conséquence_sc ont des valeurs maximales différentes, car la plage maximale de cotes que peut se voir attribuer chaque variable diffère. Les diagrammes de projection de l’exposition et des conséquences permettent d’avoir un aperçu de ce qui sous-tend les cotes du Risque_sc figurant dans le graphique A. Par exemple, un point de données situé en bas à droite sur le graphique B est le signe d’une Exposition_sc élevée et d’une faible Conséquence_sc pour l’interaction en question; le lecteur peut ainsi comprendre que la cote de Risque_sc élevée dans
le graphique A dépend de l’*Exposition*_{sc}. Pour chaque CIE, les quatre facteurs de stress ayant obtenu la cote de *Risque*_{sc} la plus élevée sont étiquetés sur le graphique B. Les cotes réelles ainsi que les cotes relatives à l’*Exposition*_{sc} et à la *Conséquence*_{sc} sont fournies au Tableau 17 (les résultats complets pour toutes les interactions entre les CIE et les facteurs de stress sont fournis à l’annexe K). La liste des numéros des facteurs de stress utilisés dans les figures est présentée au Tableau 16.

Tableau 16. Numéros des facteurs de stress utilisés dans la Figure 6-7.

<table>
<thead>
<tr>
<th>Activité</th>
<th>Numéro du facteur de stress (fig. 6-8)</th>
<th>Numéro du facteur de stress (fig. 9-11)</th>
<th>Facteur de stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trafic maritime</td>
<td>1</td>
<td>-</td>
<td>Rejet – Piégeage</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>2</td>
<td>-</td>
<td>Rejet – Introductions [EAE]</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>3</td>
<td>1</td>
<td>Rejet – Hydrocarbures/contaminants</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>4</td>
<td>2</td>
<td>Rejet – Perturbation du substrat [écrasement]</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>5</td>
<td>3</td>
<td>Rejet – Perturbation du substrat [objets étrangers]</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>6</td>
<td>-</td>
<td>Échouement – Introductions [EAE]</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>7</td>
<td>-</td>
<td>Échouement – Perturbation du substrat [objets étrangers]</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>8</td>
<td>4</td>
<td>Circulation – Perturbation [bruit]</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>9</td>
<td>-</td>
<td>Déversement d’hydrocarbures – Pétrole</td>
</tr>
<tr>
<td>Recherche</td>
<td>10</td>
<td>-</td>
<td>Activités sismiques – Perturbation [sismique]</td>
</tr>
<tr>
<td>Recherche</td>
<td>11</td>
<td>5</td>
<td>Utilisation de submersibles – Perturbation [lumière]</td>
</tr>
<tr>
<td>Recherche</td>
<td>12</td>
<td>-</td>
<td>Utilisation de submersibles – Introductions [EAE]</td>
</tr>
<tr>
<td>Recherche</td>
<td>13</td>
<td>6</td>
<td>Utilisation de submersibles – Hydrocarbures/contaminants</td>
</tr>
<tr>
<td>Recherche</td>
<td>14</td>
<td>7</td>
<td>Utilisation de submersibles – Perturbation du substrat [écrasement]</td>
</tr>
<tr>
<td>Recherche</td>
<td>15</td>
<td>8</td>
<td>Utilisation de submersibles – Perturbation du substrat [remise en suspension des sédiments]</td>
</tr>
<tr>
<td>Pêche</td>
<td>16</td>
<td>-</td>
<td>Pêche au chalut de fond – Introductions [EAE]</td>
</tr>
<tr>
<td>Pêche</td>
<td>17</td>
<td>9</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
</tr>
<tr>
<td>Pêche</td>
<td>18</td>
<td>10</td>
<td>Pêche à la palangre – Perturbation du substrat [remise en suspension des sédiments]</td>
</tr>
<tr>
<td>Pêche</td>
<td>19</td>
<td>11</td>
<td>Pêche aux casiers – Perturbation du substrat [remise en suspension des sédiments]</td>
</tr>
<tr>
<td>Pêche</td>
<td>20</td>
<td>-</td>
<td>Pêche aux casiers – Introductions [EAE]</td>
</tr>
<tr>
<td>Pêche</td>
<td>21</td>
<td>-</td>
<td>Pêche au chalut pélagique – Piégeage</td>
</tr>
<tr>
<td>Pêche</td>
<td>22</td>
<td>-</td>
<td>Pêche au chalut pélagique – Prélèvement de matières biologiques</td>
</tr>
<tr>
<td>Pêche</td>
<td>23</td>
<td>-</td>
<td>Pêche au chalut pélagique – Collisions</td>
</tr>
<tr>
<td>Pêche</td>
<td>24</td>
<td>-</td>
<td>Pêche au chalut pélagique – Perturbation du substrat [écrasement]</td>
</tr>
<tr>
<td>Pêche</td>
<td>25</td>
<td>12</td>
<td>Pêche au chalut pélagique – Perturbation du substrat [remise en suspension des sédiments]</td>
</tr>
</tbody>
</table>
Figure 6. A. Diagrammes des cotes de risque médianes pour les CIE relatives aux espèces H. calyx, A. vastus et F. occa avec les facteurs de stress numérotés (voir le Tableau 16 pour obtenir des précisions concernant le nom de chaque facteur de stress); B. Diagrammes de projection de l’exposition et des conséquences (les quatre facteurs de stress affichant les cotes les plus élevées sont étiquetés). La numérotation correspond à la liste des facteurs de stress figurant au Tableau 16, et l’incertitude associée est représentée par des barres d’erreur des 10e et 90e percentiles.
Figure 7. A. Diagrammes des cotes de risque médiennes pour les CIE relatives aux espèces R. dawsoni, M. quadrispina et S. paucispinis avec les facteurs de stress numérotés (voir le Tableau 16 pour obtenir des précisions concernant le nom de chaque facteur de stress); B. Diagrammes de projection de l'exposition et des conséquences (les quatre facteurs de stress affichant les cotes les plus élevées sont étiquetés). La numérotation correspond à la liste des facteurs de stress figurant au Tableau 16, et l'incertitude associée est représentée par des barres d'erreur des 10° et 90° percentiles.
Figure 8. A. Diagrammes des cotes de risque médianes pour les CIE relatives aux habitats des jardins d’éponges siliceuses et des squelettes d’éponges siliceuses avec les facteurs de stress numérotés (voir le Tableau 16 pour obtenir des précisions concernant le nom de chaque facteur de stress); B. Diagrammes de projection de l’exposition et des conséquences (les quatre facteurs de stress affichant les cotes les plus élevées sont étiquetés). La numérotation correspond à la liste des facteurs de stress figurant au Tableau 16, et l’incertitude associée est représentée par des barres d’erreur des 10e et 90e percentiles.
Tableau 17. Pour chaque CIE, les quatre facteurs de stress affichant la cote de **Risque**_{sc} la plus élevée (triés dans l’ordre décroissant) ainsi que les cotes d’**Exposition**_{sc} et de **Conséquence**_{sc} moyennes (intervalles d’incertitude des 10^e et 90^e percentiles).

Heterochone calyx (éponge siliceuse hermatypique)

<table>
<thead>
<tr>
<th>Activité</th>
<th>Facteur de stress</th>
<th>Risque</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Médiane 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Déversement d'hydrocarbures – Pétrole</td>
<td>81,8 53,4 117,7</td>
<td>8,8 6,7 11,0</td>
<td>9,5 6,7 12,4</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>32,6 15,5 54,8</td>
<td>9,0 7,9 10,1</td>
<td>3,8 1,7 6,0</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Perturbation du substrat [écrasement]</td>
<td>28,9 13,8 49,1</td>
<td>5,4 4,2 6,5</td>
<td>5,7 2,7 8,9</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>27,4 12,9 47,1</td>
<td>7,7 6,3 9,1</td>
<td>3,8 1,7 6,0</td>
</tr>
</tbody>
</table>

Aphrocallistes vastus (éponge siliceuse hermatypique)

<table>
<thead>
<tr>
<th>Activité</th>
<th>Facteur de stress</th>
<th>Risque</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Médiane 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Déversement d'hydrocarbures – Pétrole</td>
<td>107,4 76,1 145,3</td>
<td>8,8 6,7 11,0</td>
<td>12,4 9,8 14,9</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Perturbation du substrat [écrasement]</td>
<td>28,9 13,8 48,9</td>
<td>5,4 4,2 6,5</td>
<td>5,6 2,7 8,8</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>28,3 15,5 43,7</td>
<td>9,0 8,0 10,1</td>
<td>3,2 1,7 4,8</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>27,4 12,8 46,7</td>
<td>7,7 6,3 9,1</td>
<td>3,8 1,7 6,0</td>
</tr>
</tbody>
</table>

Farrea occa (éponge siliceuse hermatypique)
<table>
<thead>
<tr>
<th>Activité</th>
<th>Facteur de stress</th>
<th>Risque</th>
<th></th>
<th>Exposition</th>
<th></th>
<th>Conséquence</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Médiane</td>
<td>10 %</td>
<td>90 %</td>
<td>Moyenne</td>
<td>10 %</td>
<td>90 %</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Déversement d’hydrocarbures – Pétrole</td>
<td>101,3</td>
<td>73,4</td>
<td>136,0</td>
<td>8,8</td>
<td>6,7</td>
<td>11,1</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>31,4</td>
<td>14,7</td>
<td>51,7</td>
<td>9,0</td>
<td>8,0</td>
<td>10,0</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Perturbation du substrat [écrasement]</td>
<td>27,6</td>
<td>13,1</td>
<td>46,5</td>
<td>5,4</td>
<td>4,2</td>
<td>6,5</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>26,1</td>
<td>12,0</td>
<td>44,4</td>
<td>7,7</td>
<td>6,3</td>
<td>9,1</td>
</tr>
</tbody>
</table>

Rhabdocalyptus dawsoni (éponge siliceuse ahermatypique)

<table>
<thead>
<tr>
<th>Activité</th>
<th>Facteur de stress</th>
<th>Risque</th>
<th></th>
<th>Exposition</th>
<th></th>
<th>Conséquence</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Médiane</td>
<td>10 %</td>
<td>90 %</td>
<td>Moyenne</td>
<td>10 %</td>
<td>90 %</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Déversement d’hydrocarbures – Pétrole</td>
<td>104,5</td>
<td>73,2</td>
<td>142,0</td>
<td>8,8</td>
<td>6,7</td>
<td>11,1</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Perturbation du substrat [écrasement]</td>
<td>27,7</td>
<td>13,0</td>
<td>48,0</td>
<td>5,4</td>
<td>4,2</td>
<td>6,5</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>27,7</td>
<td>15,1</td>
<td>43,0</td>
<td>9,0</td>
<td>7,9</td>
<td>10,1</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>26,6</td>
<td>12,3</td>
<td>45,7</td>
<td>7,7</td>
<td>6,3</td>
<td>9,1</td>
</tr>
</tbody>
</table>
Munida quadrispina (galathée)

<table>
<thead>
<tr>
<th>Activité</th>
<th>Facteur de stress</th>
<th>Risque</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Médiane</td>
<td>10 %</td>
<td>90 %</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Déversement d'hydrocarbures – Pétrole</td>
<td>65,4</td>
<td>39,5</td>
<td>98,8</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>31,5</td>
<td>14,2</td>
<td>55,5</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>26,8</td>
<td>11,5</td>
<td>47,8</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Échouement – Introductions [EAE]</td>
<td>22,9</td>
<td>9,3</td>
<td>43,9</td>
</tr>
</tbody>
</table>

Sebastes paucispinis (sébaste bocace)

<table>
<thead>
<tr>
<th>Activité</th>
<th>Facteur de stress</th>
<th>Risque</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Médiane</td>
<td>10 %</td>
<td>90 %</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Déversement d'hydrocarbures – Pétrole</td>
<td>97,8</td>
<td>71,6</td>
<td>129,8</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Prélèvement de matières biologiques</td>
<td>51,5</td>
<td>39,4</td>
<td>64,8</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>34,2</td>
<td>15,2</td>
<td>58,8</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Circulation – Perturbation [bruit]</td>
<td>30,4</td>
<td>12,3</td>
<td>54,4</td>
</tr>
</tbody>
</table>
Communauté des squelettes d’éponges siliceuses (habitat)

<table>
<thead>
<tr>
<th>Activité</th>
<th>Facteur de stress</th>
<th>Risque</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Médiane</td>
<td>10 %</td>
<td>90 %</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Déversement d’hydrocarbures – Pétrole</td>
<td>81,8</td>
<td>53,4</td>
<td>118,0</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>37,2</td>
<td>16,3</td>
<td>64,8</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>31,3</td>
<td>13,4</td>
<td>55,5</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Perturbation du substrat [écrasement]</td>
<td>28,6</td>
<td>13,5</td>
<td>49,0</td>
</tr>
</tbody>
</table>

Jardins d’éponges (habitat)

<table>
<thead>
<tr>
<th>Activité</th>
<th>Facteur de stress</th>
<th>Risque</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Médiane</td>
<td>10 %</td>
<td>90 %</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Déversement d’hydrocarbures – Pétrole</td>
<td>100,2</td>
<td>69,6</td>
<td>137,2</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>34,4</td>
<td>15,1</td>
<td>59,0</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>31,7</td>
<td>13,7</td>
<td>55,2</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Perturbation du substrat [écrasement]</td>
<td>28,9</td>
<td>13,6</td>
<td>48,6</td>
</tr>
</tbody>
</table>
Pour toutes les CIE, le facteur de stress potentiel « Pétrole provenant de déversements d’hydrocarbures » domine les cotes de \textit{Risque}_{sc} (les cotes de \textit{Risque}_{sc} pour le pétrole provenant de déversements d’hydrocarbures sont comprises entre 65,4 et 107,4, alors que la cote de \textit{Risque}_{sc} suivante, toutes CIE confondues, n’est que 51,5). Ces cotes universellement élevées concernant le facteur de stress « Pétrole provenant de déversements d’hydrocarbures » découlent de cotes d’\textit{Exposition}_{sc} constamment élevées (de 8,8 à 8,9 sur un maximum de 18 pour toutes les CIE) et de cotes de \textit{Conséquence}_{sc} élevées (de 7,7 à 12,4 sur 16 pour toutes les CIE). En outre, les valeurs de l’incertitude sont également élevées pour ce facteur de stress (voir le numéro 9 sur les diagrammes de projection de l’exposition et des conséquences).

Étant donné leur similitude au chapitre de la biologie et de la fonction, les quatre CIE relatives aux espèces d’éponges et les deux CIE relatives aux habitats d’éponges (désignées collectivement « CIE liées aux éponges ») affichent des plages de cotes de \textit{Risque}_{sc} très semblables. Après le pétrole provenant de déversements d’hydrocarbures, les facteurs de stress qui ont obtenu les cotes les plus élevées pour ces CIE sont les facteurs de stress actuels suivants : « Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments] » (numéro 17), « Pêche au chalut pelagique – Perturbation du substrat [écrasement] » (numéro 24) et « Rejet – Hydrocarbures/contaminants » (numéro 3). Il est à noter que ces facteurs sont difficiles à distinguer en dépit de leurs différences minimes, sauf dans le cas du facteur de stress principal pour les CIE liées aux éponges, car presque toutes les médianes sont statistiquement équivalentes (les différences observées dans les médianes des deuxième et quatreïème facteurs de stress les plus importants pour chacune des CIE liées aux éponges varient de 1,1 à 8,6 points, une différence beaucoup moins importante que la variabilité des plages relatives aux 10\(\text{e}\) et 90\(\text{e}\) percentiles – en moyenne 36,2 points pour l’ensemble des CIE liées aux éponges).

Pour les deux CIE qui ne sont pas liées à des éponges (\textit{M. quadrispina} et \textit{S. paucispinis}), on a estimé qu’un éventail plus vaste de facteurs de stress posaient des risques importants (dans les deux cas toutefois, le pétrole provenant de déversements d’hydrocarbures constitue également le facteur de stress le plus important). Pour la galathée, les trois autres facteurs de stress qui ont reçu une cote élevée sont la remise en suspension des sédiments liée à la pêche au chalut de fond (numéro 17), les effets des hydrocarbures et des autres contaminants rejetés par les navires (numéro 3) et l’introduction d’EAE résultant de l’échouement de navires (numéro 6). Pour le sébaste bocace, les trois autres principaux facteurs de stress sont l’enlèvement de matières biologiques associé à la pêche au chalut pelagique (numéro 22), la remise en suspension des sédiments liée à la pêche au chalut de fond (numéro 17) et la perturbation par le bruit associé à la circulation des navires (numéro 8). Dans la plupart des cas, ces cotes de \textit{Risque}_{sc} sont attribuables à une exposition modérée et à une conséquence faible, ce qui indique une cote de \textit{Risque}_{sc} généralement plus faible que pour le facteur de stress « Pétrole provenant de déversements d’hydrocarbures ». Comme pour les CIE liées aux éponges, bon nombre des facteurs de stress touchant les CIE non liées aux éponges ne peuvent pas être distingüés statistiquement (c.-à-d. que les différences entre les médianes des facteurs de stress sont beaucoup moins importantes que la variabilité associée à chacun des facteurs de stress). Les effets de l’enlèvement de matières biologiques associé à la pêche au chalut pelagique sur le sébaste bocace (\textit{S. paucispinis}) représente toutefois une exception : ce facteur de stress a obtenu une cote d’\textit{Exposition}_{sc} relativement faible, mais une cote de \textit{Conséquence}_{sc} élevée. Bien que la cote de \textit{Risque}_{sc} qui en résulte soit encore considérablement inférieure à celle concernant le facteur de stress « Pétrole provenant de déversements d’hydrocarbures » (estimation du \textit{Risque}_{sc} de 51,5 contre 97,8 pour le pétrole provenant de déversements d’hydrocarbures), il n’en constitue pas moins une exception notable (Figure 7).
Pour examiner les effets de l’inclusion des facteurs de stress potentiels dans les résultats en matière de risques, les données ont été analysées de nouveau après le retrait des facteurs de stress potentiels. De toute évidence, cela a donné lieu à un changement dans les six principaux facteurs de stress, ce qui a permis d’avoir un aperçu des six principaux facteurs de stress actuels. Les résultats les plus utiles de cette analyse ont peut-être été les diagrammes des cotes de risque médianes, où la réduction de la valeur maximale de l’axe des ordonnées (de 150 à 60) a permis de clarifier et de visualiser plus distinctement les points de données des facteurs de stress actuels. Ces chiffres sont présentés ci-dessous (Figure 9, Figure 10 et Figure 11), tandis que les autres résultats (tableaux de données et figures) de cette analyse sont présentés à l’annexe L (il y a eu peu de différences dans les chiffres et les tendances observés). Ces résultats portant sur les facteurs de stress actuels uniquement peuvent s’avérer utiles pour les gestionnaires, car on s’attend à ce qu’ils soient plus facilement gérés que les facteurs de stress potentiels (voir la section 4.3.6 pour plus de détails).
Figure 9. A. Diagrammes des cotes de risque médianes pour les facteurs de stress actuels uniquement (H. calyx, A. vastus, F. occa) avec les facteurs de stress numérotés (voir le Tableau 16 pour obtenir des précisions concernant le nom de chaque facteur de stress); B. Diagrammes de projection de l’exposition et des conséquences (les quatre facteurs de stress affichant les cotes les plus élevées sont étiquetés). La numérotation correspond à la liste des facteurs de stress figurant au Tableau 16, et l’incertitude associée est représentée par des barres d’erreur des 10e et 90e percentiles.
Figure 10. A. Diagrammes des cotes de risque médianes pour les facteurs de stress actuels uniquement (R. dawsonii, M. quadrispina, S. paucispinis) avec les facteurs de stress numérotés (voir le Tableau 16 pour obtenir des précisions concernant le nom de chaque facteur de stress); B. Diagrammes de projection de l’exposition et des conséquences (les quatre facteurs de stress affichant les cotes les plus élevées sont étiquetés). La numérotation correspond à la liste des facteurs de stress figurant au Tableau 16, et l’incertitude associée est représentée par des barres d’erreur des 10e et 90e percentiles.
Figure 11. A. Diagrammes des cotes de risque médianes pour les facteurs de stress actuels uniquement (jardins d’éponges siliceuses et squelettes d’éponges siliceuses) avec les facteurs de stress numérotés (voir le Tableau 16 pour obtenir des précisions concernant le nom de chaque facteur de stress); B. Diagrammes de projection de l’exposition et des conséquences (les quatre facteurs de stress affichant les cotes les plus élevées sont étiquetés). La numérotation correspond à la liste des facteurs de stress figurant au Tableau 16, et l’incertitude associée est représentée par des barres d’erreur des 10e et 90e percentiles.
3.3.3.2. Risque cumulatif \((RisqueC_c) \) par CIE

Les résultats des calculs du \(RisqueC_c \) sont présentés au Tableau 18 et à la Figure 12. Étant donné le chevauchement des intervalles de confiance, il est statistiquement impossible de distinguer les cinq premières CIE. La CIE relative à l’habitat des jardins d’éponges affiche le risque cumulatif le plus élevé, mais de façon marginale par rapport aux quatre CIE relatives aux espèces d’éponges. (Les cotes médianes pour les cinq estimations du \(RisqueC_c \) les plus élevées varient de 563,0 pour les jardins d’éponges à 524,6 pour \(F. occa \)). L’estimation la plus élevée suivante est celle correspondant à la CIE relative à l’habitat des squelettes d’éponges siliceuses, suivie par les CIE relatives au sébaste bocace (\(S. paucispinis \)) et à la galathée (\(M. quadrispina \)).

Les CIE relatives aux quatre espèces d’éponges sont chacune touchées par 22 interactions avec des facteurs de stress (sept de ces interactions ont obtenu une cote de 0 pour la résilience avec une incertitude élevée). Les deux autres CIE relatives aux espèces sont respectivement touchées par 12 (\(S. paucispinis \)) et 19 (\(M. quadrispina \)) facteurs de stress, au total. Parmi ces facteurs de stress, trois représentent des interactions à résilience nulle pour \(S. paucispinis \) et dix représentent des interactions à résilience nulle pour \(M. quadrispina \). La CIE relative à l’habitat des jardins d’éponges est touchée par 22 facteurs de stress (dont sept interactions à résilience nulle), comme les CIE relatives aux espèces d’éponges, tandis que la CIE relative à l’habitat des squelettes d’éponges siliceuses n’est touchée que par 17 interactions avec des facteurs de stress (dont trois interactions à résilience nulle). Cela démontre que les valeurs du \(RisqueC_c \) s’additionnent pour les interactions à résilience non nulle (c.-à-d. que plus il y a d’interactions à résilience non nulles, plus l’estimation du \(RisqueC_c \) est susceptible d’être élevée).

Tableau 18. Cotes du risque cumulatif \((RisqueC_c) \) pour toutes les CIE, accompagnées des 10\(^e\) et 90\(^e\) percentiles et du nombre de facteurs de stress contribuant à la cote (nombre total n’incluant que les facteurs de stress dont la cote de résilience n’est pas nulle).

<table>
<thead>
<tr>
<th>CIE</th>
<th>Type de CIE</th>
<th>(RisqueC_c)</th>
<th>Nombre de facteurs de stress</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Moyenne</td>
<td>10(^e) percentile</td>
</tr>
<tr>
<td>Jardins d’éponges</td>
<td>Habitat</td>
<td>563,0</td>
<td>487,1</td>
</tr>
<tr>
<td>Aphrocallistes vastus</td>
<td>Espèce</td>
<td>547,3</td>
<td>474,7</td>
</tr>
<tr>
<td>Rhabdocalyptus dawsoni</td>
<td>Espèce</td>
<td>531,8</td>
<td>459,6</td>
</tr>
<tr>
<td>Heterochone calyx</td>
<td>Espèce</td>
<td>529,1</td>
<td>457,5</td>
</tr>
<tr>
<td>Farrea occa</td>
<td>Espèce</td>
<td>524,6</td>
<td>456,7</td>
</tr>
<tr>
<td>Squelette d’éponges siliceuses</td>
<td>Habitat</td>
<td>458,2</td>
<td>388,1</td>
</tr>
<tr>
<td>Sébaste bocace</td>
<td>Espèce</td>
<td>379,9</td>
<td>323,2</td>
</tr>
<tr>
<td>Munida quadrispina</td>
<td>Espèce</td>
<td>357,4</td>
<td>299,9</td>
</tr>
</tbody>
</table>
Figure 12. Risque cumulatif (Risque_C) pour chaque CIE, classé par ordre décroissant, avec des barres d’erreur des 10e et 90e percentiles. Les nombres qui figurent au-dessus des colonnes indiquent le nombre de facteurs de stress qui s’appliquent à chaque CIE : tous les facteurs de stress et les interactions avec des facteurs de stress distincts de zéro seulement.

3.3.3.3. Risque cumulatif par facteur de stress (Puissance_s)

Le risque cumulatif par facteur de stress (Puissance_s) représente la somme des cotes de Risque_sc pour toutes les CIE. Il est illustré à la Figure 13 et au Tableau 19.

Le pétrole provenant de déversement d’ hydrocarbures (associé au trafic maritime) surpasse de loin tous les autres facteurs de stress sur le plan de la Puissance_s (756,2 contre 268,5 pour le facteur de stress suivant) et il a un impact sur l’ensemble des CIE. Les facteurs de stress liés à la pêche (six facteurs de stress) et aux autres activités liées au trafic maritime (trois facteurs de stress) font partie des dix facteurs de stress affichant la Puissance_s la plus élevée (avec des cotes moyennes allant de 145 à 268,5), et ils ont chacun un impact sur six à huit CIE. Les perturbations associées aux activités sismiques représentent le facteur de stress lié à une activité de recherche le plus élevé (avec une cote moyenne de 123,7). Les autres facteurs de stress sont associés à une vaste gamme de sous-activités liées à la pêche, à la recherche et au trafic maritime. Ils affichent des cotes de Puissance_s variant de 10,4 à 121,3, et ils ont chacun un impact sur une à huit CIE.
Tableau 19. Valeurs du risque cumulatif par facteur de stress ($Puissance_s$) triés par ordre décroissant avec les 10e et 90e percentiles et le nombre de CIE contribuant à la cote.

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>$Puissance_s$</th>
<th>10 %</th>
<th>90 %</th>
<th>Nombre de CIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trafic maritime</td>
<td>Déversement d’hydrocarbures – Pétrole</td>
<td>756,2</td>
<td>667,6</td>
<td>847,8</td>
<td>8</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>268,5</td>
<td>213,4</td>
<td>324,9</td>
<td>8</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pelagique – Prélèvement de matières biologiques</td>
<td>238,9</td>
<td>194,8</td>
<td>284,9</td>
<td>8</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>235,0</td>
<td>184,5</td>
<td>287,5</td>
<td>8</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Échouement – Introductions [EAE]</td>
<td>220,0</td>
<td>168,8</td>
<td>273,5</td>
<td>8</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pelagique – Perturbation du substrat [écoulement]</td>
<td>199,4</td>
<td>155,4</td>
<td>245,0</td>
<td>7</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pelagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>185,9</td>
<td>146,4</td>
<td>227,1</td>
<td>8</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>160,9</td>
<td>125,6</td>
<td>197,3</td>
<td>8</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Introductions [EAE]</td>
<td>152,0</td>
<td>118,9</td>
<td>187,3</td>
<td>6</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Piégeage</td>
<td>145,0</td>
<td>105,8</td>
<td>186,3</td>
<td>6</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche à la palangre – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>143,5</td>
<td>112,0</td>
<td>176,2</td>
<td>8</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Introductions [EAE]</td>
<td>135,2</td>
<td>97,4</td>
<td>175,7</td>
<td>6</td>
</tr>
<tr>
<td>Recherche</td>
<td>Activités sismiques – Perturbation [sismique]</td>
<td>123,7</td>
<td>89,9</td>
<td>159,7</td>
<td>7</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Introductions [EAE]</td>
<td>121,3</td>
<td>90,1</td>
<td>154,9</td>
<td>7</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Hydrocarbures/contaminants</td>
<td>112,1</td>
<td>79,5</td>
<td>146,6</td>
<td>7</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Introductions [EAE]</td>
<td>108,6</td>
<td>80,8</td>
<td>138,7</td>
<td>7</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>99,6</td>
<td>72,3</td>
<td>128,3</td>
<td>6</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Perturbation du substrat [écoulement]</td>
<td>93,9</td>
<td>67,6</td>
<td>121,8</td>
<td>7</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Échouement – Perturbation du substrat [objets étrangers]</td>
<td>90,1</td>
<td>62,3</td>
<td>120,6</td>
<td>6</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Perturbation du substrat [écoulement]</td>
<td>83,6</td>
<td>58,1</td>
<td>110,7</td>
<td>6</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pelagique – Piégeage</td>
<td>81,2</td>
<td>60,7</td>
<td>102,7</td>
<td>8</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Perturbation du substrat [objets étrangers]</td>
<td>65,4</td>
<td>43,3</td>
<td>88,9</td>
<td>5</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Circulation – Perturbation [bruit]</td>
<td>32,2</td>
<td>12,3</td>
<td>54,4</td>
<td>1</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pelagique – Collisions</td>
<td>29,1</td>
<td>13,9</td>
<td>45,1</td>
<td>1</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Perturbation [lumière]</td>
<td>10,4</td>
<td>3,4</td>
<td>18,9</td>
<td>1</td>
</tr>
</tbody>
</table>
Figure 13. Risque cumulatif par facteur de stress (Puisance) reporté par ordre décroissant avec les 10e et 90e percentiles et montrant le nombre de CIE (sur huit) contribuant à la cote (au-dessus de la barre correspondante).
3.3.4. Comparaison des résultats selon différents modèles de répartition de l’incertitude

Les résultats ont également été calculés selon le modèle de distribution normale de Murray et al. (2016) et sont fournis à des fins de comparaison à l’annexe L. Comme prévu, les intervalles d’incertitude de 10 à 90 % sont généralement plus étroits lorsqu’une distribution normale est utilisée (les estimations qui sortent de l’intervalle de cotation se voient attribuer la cote la plus proche dans les limites) alors que les médianes demeurent relativement stables. Bien que les valeurs ne soient pas sensiblement différentes, l’utilisation d’une distribution normale tronquée est théoriquement plus appropriée et elle est recommandée pour les études ultérieures. Par ailleurs, les études futures pourraient envisager l’utilisation d’un modèle d’erreur multinomial qui correspondrait le mieux à la nature catégorique des données sur les cotes. Des problèmes liés à la détermination de définitions de probabilité appropriées pour chaque niveau d’incertitude ont empêché sa mise en œuvre dans le cadre de la présente application du CERE.

4. DISCUSSION

Cette application du CERE élaborée à l’origine par O et al. (2015) puis peaufinée par Thornborough et al. (2017) et Rubidge et al. (2018), a évalué le risque relatif des activités humaines pour la ZPM DH-BRC. Pour ce faire, on a d’abord déterminé les CIE les plus aptes à représenter la ZPM à l’heure actuelle, puis on a déterminé les activités et les facteurs de stress connexes dans la région qui pourraient interagir avec ces CIE. Par la suite, toutes les interactions entre les CIE et les facteurs de stress possibles ont été cotées en ce qui concerne l’exposition, la résilience et le rétablissement, et ces cotes ont été utilisées pour les calculs de l’évaluation des risques. Les résultats fournissent un classement en ordre de priorité des CIE et des facteurs de stress à une échelle relative au sein de la ZPM. Ces résultats de l’évaluation des risques, tout comme la divulgation totale de la méthode employée, sont essentiels pour guider la sélection des indicateurs qui permettront d’éclairer les futurs plans de suivi et de gestion de la ZPM. De plus, les estimations de l’incertitude qui ont été intégrées dans l’évaluation des risques peuvent aider les gestionnaires à cerner les lacunes dans les connaissances ainsi que les priorités de recherche pour les futures activités de surveillance.

Les sections suivantes portent sur les conclusions de l’évaluation des risques, puis sur l’efficacité du cadre dans la présente application.

4.1. RÉSULTATS DE L’ÉVALUATION SEMI-QUANTITATIVE DES RISQUES DE NIVEAU 2

4.1.1. Processus de sélection des CIE

Dans cette application du CERE, les résultats de la sélection des CIE relatives aux espèces démontrent que les six critères initiaux du CERE ne sont pas toujours suffisants pour recenser aisément les espèces les plus importantes pour des écosystèmes précis, et que l’élaboration et l’utilisation de critères ou de lignes directrices supplémentaires propres à l’écosystème peuvent fournir des renseignements complémentaires importants pour peaufiner la sélection des CIE. Ces éléments supplémentaires permettent également aux chercheurs de tenir compte des différents types de données disponibles pour orienter le processus de sélection. Cela étant dit, dans de nombreux cas, les critères initiaux ont bien fonctionné, comme dans le cas des cotes élevées observées pour les éponges hermatypiques. Pour d’autres espèces, les seuls critères du CERE se sont avérés insuffisants, puisque dans plusieurs cas, les espèces qui peuvent être...
importantes pour la fonction de l’écosystème (comme les galathées) ne sont pas considérées comme rares/uniques, sensibles ou en déclin (des éléments qui représentent trois des six critères du CERE), mais plutôt comme très communes et elles peuvent jouer des rôles importants dans le réseau trophique de l’écosystème (Lovrich et Thiel, 2011). Fondamentalement, les critères et les lignes directrices supplémentaires peuvent orienter la sélection initiale des CIE relatives aux espèces, mais ils ne constituent en aucun cas une base suffisante, et on recommande de recourir à des considérations supplémentaires ainsi qu’à un examen par des experts pour peaufiner la liste.

Les séquences vidéo obtenues lors des relevés par VTG dans la ZPM DH-BRC indiquent la présence d’un grand nombre de petits sébastes juvéniles sur les récifs, comme c’est le cas sur d’autres récifs d’éponges siliceuses en C.-B. (détroit de Georgie [Cook, 2005; Cook et al., 2008] et récifs limitrophes du Nord de la province [Stone et al., 2014]). Bien qu’ayant obtenu une cote élevée pour une ou plusieurs des caractéristiques initiaux du CERE, l’inclusion des sébastes n’a pas été envisagée initialement en tant que CIE relatives aux espèces, car l’assemblage des sébastes (juvéniles et adultes) pourrait être mieux pris en compte en tant que CIE relative aux attributs des communautés. Cependant, en raison des lacunes générales qui existent aujourd’hui dans nos connaissances sur la composition de la communauté de sébastes à l’intérieur et autour des récifs d’éponges, nous n’avons pas été en mesure de les analyser en tant que CIE relative aux attributs des communautés. Au lieu de cela, nous avons choisi le sébaste bocace (Sebastes paucispinis) comme CIE relative aux espèces représentative puisque c’est l’une des quatre espèces de sébastes qui répondent au plus grand nombre de critères du CERE et il est considéré comme une espèce bien étudiée. On espère qu’avec le temps, l’identification systématique des sébastes observés sur les récifs fournira suffisamment de données sur la composition des espèces pour permettre une évaluation complète des sébastes associés aux récifs dans l’évaluation des risques, peut-être à la fois en tant que CIE relatives aux espèces et en tant que CIE relatives aux attributs des communautés pour cet assemblage d’espèces.

Bien que les sources de nourriture des récifs d’éponges siliceuses (plancton et bactéries) soient importantes pour l’écosystème des récifs d’éponges et que ces sources puissent respecter certains voire tous les critères du CERE, elles n’ont pas été sélectionnées en tant que CIE relatives aux espèces, car elles ne sont pas faciles à gérer à l’échelle de la ZPM. De plus, leur diversité, leur densité et leur répartition sont indépendantes des activités anthropiques qui se déroulent dans les limites de la ZPM.

Les polychètes et les foraminifères sont d’autres groupes qui ont obtenu des cotes élevées pour un certain nombre de critères, mais qui ne sont pas directement représentés par une CIE. Ils ne sont abondants que dans l’habitat des squelettes d’éponges siliceuses, soit dans les parties des squelettes remplies de sédiments ou dans les squelettes morts. L’une des raisons pour lesquelles ces groupes n’ont pas été inclus en tant que CIE indépendantes est la difficulté de les observer ou d’en assurer le suivi sur de vastes zones à l’aide de relevés vidéo, car l’échantillonnage et l’identification des espèces nécessiteraient un échantillonnage invasif ou destructif, comme le prélèvement de carottes de sédiments ou d’échantillons de squelettes. Par ailleurs, on considère que ces groupes sont représentés au sein de la CIE de l’habitat des squelettes d’éponges siliceuses.

4.1.2. Facteurs de stress potentiels

Lorsqu’on interprète les résultats de l’évaluation des risques, il est important de garder à l’esprit que, bien que la plupart des facteurs de stress associés aux activités anthropiques soient généralement des facteurs de stress actuels, plusieurs autres sont considérés comme des
facteurs de stress potentiels en raison de leur occurrence rare et imprévisible et de leur impact potentiel élevé : tous les facteurs de stress liés à l’échouement, au pétrole provenant de déversements d’hydrocarbures, à l’énergie sismique provenant des activités sismiques et aux introductions d’EAE liées à toute sous-activité pertinente (voir la section 2.2.3 pour une description plus complète). Étant donné que le scénario de la pire éventualité est utilisé pour évaluer les facteurs de stress potentiels, il est logique que ceux-ci aient généralement donné lieu à des cotes plus élevées (en particulier pour l’évaluation de l’Expositionsc et, par conséquent, pour l’évaluation du Risquesc) que les facteurs de stress actuels.

L’utilisation des facteurs de stress potentiels dans la présente évaluation des risques diffère de celle des applications antérieures du CERE (Thornborough et al., 2017 et Rubidge et al., 2018) de trois façons importantes :

1. **Levés sismiques** : Dans l’application du CERE à la ZPM du mont sous-marin SGaan Kinglas-Bowie, il s’agissait d’un facteur de stress potentiel, mais dans l’application à la ZPM du champ hydrothermal Endeavour, il s’agissait d’un facteur de stress actuel. Cette différence s’explique principalement par le fait que les relevés effectués dans la ZPM du champ hydrothermal Endeavour étaient documentés et autorisés, alors que ceux dans la ZPM du mont sous-marin SGaan Kinglas-Bowie ne l’étaient pas (une situation similaire à celle qui prévalait pour les récifs d’éponges siliceuses du détroit d’Hécate et du bassin de la Reine-Charlotte avant qu’ils ne deviennent une ZPM). À l’heure actuelle, il y a des lacunes dans les connaissances au sujet de la future réglementation de cette activité au sein de la ZPM soumise à une gestion adaptative. Il est possible qu’une fois que cette réglementation sera mise en place, le facteur de stress lié à l’énergie sismique soit éliminé ou remplacé par un facteur de stress actuel, puisque la cartographie sismique deviendra une activité autorisée ou documentée.

2. **Débris** : Dans des applications antérieures du CERE, les débris ont été traités comme un facteur de stress potentiel. Cependant, en nous fondant sur les recommandations de ces mêmes applications, nous avons divisé le facteur de stress « Débris » en un certain nombre d’autres facteurs de stress (dans le contexte des rejets des navires), ce qui a entraîné l’élimination des débris en tant que facteur de stress potentiel indépendant.

3. **Pêche au chalut pélagique et pêche au chalut de fond** : Bien qu’elles ne soient actuellement pas autorisées dans la ZPM, les sous-activités que sont la pêche au chalut pélagique et la pêche au chalut de fond pourraient l’être dans certains secteurs de la ZPM à la suite de révisions futures du Règlement sur les ZPM (conformément aux dispositions relatives à la gestion adaptative) [c.-à-d. lorsque certaines mesures de protection auront été mise en place pour protéger la ZPC]. Par conséquent, la plupart des facteurs de stress liés à ces sous-activités sont actuellement considérés comme des facteurs de stress potentiels et devront être réévalués lorsque le Règlement sur les ZPM sera modifié. La principale exception est la remise en suspension des sédiments, qui est considérée comme un facteur de stress actuel.

Au bout du compte, il ne restait qu’un seul facteur de stress potentiel dans l’évaluation des risques pour toutes les CIE : le pétrole provenant de déversements d’hydrocarbures. On a estimé que ce facteur pourrait avoir des effets aigus et chroniques pour toutes les CIE. C’est ce facteur de stress qui présente la cote de Risquesc la plus élevée parmi toutes les CIE individuelles (Tableau 18) et la cote de Puissancec, la plus élevée dans le cadre de l’analyse du risque cumulatif (Tableau 19, Figure 13). Il fallait s’attendre étant donné qu’il s’agit d’un facteur de stress potentiel imprévisible qui peut avoir des répercussions importantes sur les cotes d’Expositionsc et de Conséquencec. Le facteur de stress lié à l’énergie sismique (provenant de la cartographie) a été inclus pour toutes les CIE, à l’exception de celle de l’habitat.
des squelettes d’éponges siliceuses, et le facteur de stress lié aux introductions d’EAE a été inclus pour les huit CIE par le biais de cinq sous-activités différentes (rejet, échouement, pêche au chalut de fond, pêche aux casiers et utilisations de submersibles). L’élimination de certains facteurs de stress potentiels a permis d’équilibrer, dans une certaine mesure, l’éventail des facteurs de stress ayant obtenu les cotes les plus élevées pour chaque CIE ainsi que les résultats pour le risque cumulatif (Puissance), car un seul facteur de stress potentiel figurait parmi les cinq premiers.

Les facteurs de stress potentiels pourraient devenir des facteurs de stress actuels à mesure que des renseignements supplémentaires sur l’ampleur de l’exposition à ces facteurs de stress deviennent disponibles. Cela pourrait par exemple être le cas grâce aux recherches sur la quantité et la fréquence des rejets des navires dans la région, aux données sur tous les essais sismiques effectués aujourd’hui et prévus, ou aux nouvelles recherches sur le transport des EAE. Le pétrole provenant des déversements d’hydrocarbures constitue toutefois une exception, car ces événements sont trop imprévisibles et présentent des répercussions trop variables en fonction du type et de la quantité d’hydrocarbures déversés. Il est par conséquent recommandé que ce facteur de stress demeure un facteur de stress potentiel dans les prochaines évaluations des risques.

4.2. EFFICACITÉ DU CADRE

La phase de détermination de la portée du CERE a été efficace pour guider le recensement des CIE et fournir ainsi une représentation générale de la fonction écologique de la ZPM DH-BRC. De plus, l’utilisation des modèles de séquences des effets a bien fonctionné pour recenser les facteurs de stress associés aux activités anthropiques et résumer comment ils pourraient avoir un impact sur l’écosystème. L’information recueillie au cours de ces phases s’est ensuite révélée utile pour explorer plus en détail les interactions au cours de la phase de cotation. L’utilisation d’une matrice des interactions pour évaluer rapidement le potentiel de chaque interaction entre une CIE et un facteur de stress a permis de passer au crible la liste complète, puis de concentrer l’évaluation des risques sur les interactions les plus pertinentes. Malgré le succès général de cette application de l’évaluation des risques, un certain nombre de limites ont été découvertes dans la méthode. Ces limites seront analysées à la section 4.3.

Le cadre d’évaluation des risques de niveau 2 vise à définir l’ordre de priorité des CIE et des facteurs de stress sur une échelle relative au sein d’une zone d’intérêt. Pour faciliter l’établissement de l’ordre de priorité des CIE, les valeurs du risque cumulatif (RisqueC) sont examinées pour chaque CIE. Dans la présente évaluation, ces valeurs se situent dans une plage similaire pour cinq des huit CIE (de 525 à 563, Tableau 18), ce qui a rendu difficile leur distinction en vue d’établir l’ordre de priorité des CIE. Toutefois, dans une certaine mesure, il faut s’y attendre pour cette zone relativement étendue d’habitat similaire, composée de proportions similaires de trois espèces d’éponges hermatypiques (avec les habitats et les communautés connexes) et dominées par des invertébrés marins benthiques. L’exposition similaire prévue et, dans certains cas, la réaction similaire peuvent être bénéfiques pour la gestion de la zone. Par exemple, un seul changement apporté à l’exposition grâce à la réglementation pourrait simultanément réduire l’exposition pour un grand nombre de ces CIE benthiques. Toutefois, des travaux de recherche pourraient accroître nos connaissances et nécessiter la modification des hypothèses qui sous-tendent ces réponses. L’évaluation des risques a permis de distinguer une CIE affichant un RisqueC modéré (habitat des squelettes d’éponges siliceuses - 458,2) et deux CIE avec des valeurs du RisqueC relativement plus faibles (S. paucispinis - 379,9 et galathée - 357,4).

Pour établir l’ordre de priorité des facteurs de stress, on examine les valeurs de la Puissance pour chaque facteur de stress. Contrairement aux résultats obtenus pour les CIE, des
différences sont perceptibles dans la Puissance\textsubscript{s} des différents facteurs de stress dans le cadre de l'évaluation des risques (Tableau 19, Figure 13), et cette évaluation a permis d'établir un ordre de priorité pour les facteurs de stress au sein de la ZPM DH-BRC. Le déséquilibre dans le nombre de CIE relatives aux invertébrés par rapport aux CIE relatives aux vertébrés (une seule CIE relative à une espèce de poissons) dans cette évaluation des risques pourrait avoir influencé les résultats concernant la puissance des facteurs de stress, car ceux qui n'ont touché que la CIE relative aux sébastes ont fini par obtenir des cotes de Puissance\textsubscript{s} relativement faibles en raison du faible nombre de CIE contribuant à cette cote. Ce déséquilibre est toutefois approprié dans cet écosystème dominé par les invertébrés, et les résultats sont suffisamment transparents pour permettre de distinguer ces différences.

4.2.1. Facteurs à l'origine des cotes de Risque\textsubscript{sc} élevées et prise en compte de l'incertitude

Les quatre facteurs de stress ayant obtenu les cotes de Risque\textsubscript{sc} les plus élevées pour six des huit CIE découlent des activités suivantes : contamination aiguë aux hydrocarbures résultant de déversements d'hydrocarbures, rejets des navires, et impacts des chaluts de fond et des chaluts pélagiques. Pour les deux autres CIE (galathée et sébaste bocace), les facteurs de stress présentant les risques les plus élevés découlent principalement des activités liées au trafic maritime (hydrocarbures, rejets, échouements et circulation), ainsi que des activités de pêche au chalut de fond et au chalut pélagique.

Une cote de Risque\textsubscript{sc} élevée peut être due principalement à un facteur, mais elle découle le plus souvent d'une combinaison de facteurs. Par exemple, une cote d'exposition élevée assortie d'une forte incertitude gonfle la cote du Risque\textsubscript{sc}, ce qui est le cas pour les facteurs de stress potentiels qui présentent souvent des cotes de Risque\textsubscript{sc} et de Puissance\textsubscript{s} élevées en raison de la combinaison de leurs conséquences intrinsèques élevées et d'une forte incertitude.

L'inclusion d'une cote d'incertitude pour chaque cote dans l'évaluation des risques a fourni une dimension supplémentaire aux résultats ainsi qu'un contexte additionnel pour étayer la cote de chaque terme, ce qui peut sembler quelque peu arbitraire ou subjectif à première vue. Toutefois, ces renseignements supplémentaires peuvent également fournir des résultats utiles pour éclairer les décisions des gestionnaires. Le Tableau 20 fournit une ventilation simplifiée de ce qui peut donner lieu à des cotes de Risque\textsubscript{sc} élevées à propos d'interactions entre des CIE et des facteurs de stress et offre aux gestionnaires des orientations quant aux options les plus efficaces disponibles pour réduire les cotes de Risque\textsubscript{sc} élevées.
Tableau 20. Orientations pour traiter les interactions entre des CIE et des facteurs de stress affichant des cotes de \(\text{Risque}_{sc} \) élevées relevées durant l’évaluation des risques en examinant les facteurs à l’origine de ces cotes.

<table>
<thead>
<tr>
<th>Cote de (\text{Risque}_{sc}) élevée associée à :</th>
<th>Incertitude faible</th>
<th>Incertitude élevée</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposition(_{sc})</td>
<td>• Une cote d’(\text{Exposition}_{sc}) élevée associée à une incertitude faible indique la confiance afférente à l’exposition élevée de la CIE à ce facteur de stress.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• La cote de (\text{Risque}_{sc}) découlant de ce type d’interactions peut être réduite grâce à des mesures de gestion.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• La réduction de l’(\text{Exposition}{sc}) grâce à la réduction du chevauchement des zones, du chevauchement des profondeurs, de la fréquence ou de l’intensité de l’activité qui produit le facteur de stress pourrait aboutir à réduire la cote de (\text{Risque}{sc}). Par exemple, la réduction de la fréquence d’une pêche ou de la zone dans laquelle l’activité des navires qui produisent le facteur de stress est permise.</td>
<td></td>
</tr>
<tr>
<td>Conséquence(_{sc})</td>
<td>• Une cote de (\text{Conséquence}_{sc}) élevée due principalement à des valeurs relativement élevées des éléments suivants :</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Une cote de (\text{Conséquence}_{sc}) élevée associée à une incertitude faible indique qu’il a été bien établi que le facteur de stress a un effet néfaste sur la CIE.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Dans ce cas, on recommande aux gestionnaires de tenter de traiter les paramètres de l’(\text{Exposition}{sc}) (chevauchement spatial ou temporel, fréquence ou intensité de l’activité ou du facteur de stress) pour réduire la cote de (\text{Risque}{sc}).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Une cote de (\text{Conséquence}{sc}) élevée associée à une incertitude élevée indique l’impact préjudiciable du facteur de stress sur la CIE, lequel impact affiche une inflation en raison d’un manque de connaissances ou de données sur l’(\text{Exposition}{sc}) (chevauchement spatial ou temporel, fréquence ou intensité du facteur de stress).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Les gestionnaires peuvent tenter de réduire le (\text{Risque}_{sc}) en déterminant les paramètres de l’exposition que l’on peut traiter au moyen de priorités de recherche ou de collecte de données sur le facteur de stress et l’activité.</td>
<td></td>
</tr>
</tbody>
</table>

Par exemple, on peut généralement interpréter la cotation du facteur de stress « Perturbation du substrat [écrasement] » associé à la pêche au chalut pélagique comme suit :

\(\text{Conséquence}_{sc} \) – Cotes faibles pour les facteurs ChangementAigu et ChangementChronique (tous deux égaux à 1) avec une incertitude élevée (5 et 4, respectivement);
Exposition_{sc} — Cotes et incertitude faibles pour les chevauchements spatio-temporels, mais cotes d’intensité (quantité et fréquence) élevées (4 et 3, respectivement) avec une incertitude modérée à élevée (3 et 5, respectivement).

Voici ce que cela indique :

- On a confiance dans les connaissances disponibles sur le chevauchement spatio-temporel de cette pêche au sein de la ZPM, mais on manque de confiance dans les connaissances sur l’interaction benthique et l’impact potentiel de cette pêche (en raison du manque de données sur les niveaux d’interactions des chaluts pélagiques avec le fond marin). Ces éléments sont pris en compte dans les valeurs d’incertitude élevées pour la cote de **Conséquence**_{sc} et les cotes attribuées aux deux termes de l’intensité de l’**Exposition**_{sc}.

- Dans l’ensemble, cela semble indiquer que les études menées sur les niveaux d’interactions des chaluts pélagiques avec le fond marin seraient celles qui auraient l’impact le plus considérable sur la cote du **Risque**_{sc} en réduisant l’incertitude et en peaufinant la cote attribuée. Des études menées sur la **Conséquence**_{sc} seraient moins efficaces, étant donné que les impacts éventuels seraient semblables à ceux d’un chalut de fond et que l’incertitude élevée accompagnant ces cotes est liée à la part de la population touchée, un élément lui-même lié au manque de données sur les interactions avec le fond marin.

De nombreux facteurs de stress relevant de l’activité de la pêche au chalut pélagique présentent des cotes de puissance élevées, probablement en raison des cotes de **Risque**_{sc} élevées découlant d’une incertitude élevée combinée à des impacts potentiels élevés. Bien que la pêche au chalut pélagique dans la zone ait récemment été interrompue après la désignation de la ZPM, elle s’est déroulée pendant un certain temps dans la ZVGA (directement au-dessus de la ZPC des récifs d’éponges) avant la désignation de la ZPM, et devrait être de nouveau autorisée dans le futur. Cette pêche pourrait avoir un impact sur toutes les CIE. Le manque actuel de données sur la portée des interactions de cette pêche avec le fond marin signifie que ces facteurs de stress sont cotés selon une approche très prudente et avec un niveau élevé d’incertitude. Les études menées sur des pêches américaines comparables dans le Pacifique indiquent que la fréquence du contact avec le fond est suffisamment élevée pour nécessiter un renforcement de la partie inférieure des filets pour les protéger contre les dommages. Les études de la NOAA sur la pêche du merlu au chalut pélagique sur la côte américaine du Pacifique ont révélé que 22,3 % des traits (et jusqu’à 70,2 % des sorties) contenaient un ou plusieurs taxons benthiques (une indication d’un contact avec le fond) [Wakefield, 2015]. Pour la pêche de la goberge au chalut pélagique sur la côte américaine du Pacifique, ce taux d’incidence est estimé à au moins 44 % (C. Rooper, NOAA, comm. pers.). Nous ne disposons actuellement d’aucune donnée pour produire des estimations comparables des contacts avec le fond pour les pêches canadiennes au chalut pélagique, à l’exception d’estimations générales d’environ 1 % provenant de scientifiques du domaine des pêches (C. Grandin et L. Yamanaka, Secteur des sciences du MPO, comm. pers.).

Les études ou les collectes de données visant à déterminer le taux de contact avec le fond engendré par cette pêche contribueraient grandement à corriger ces cotes de **Risque**_{sc} élevées et à réduire le niveau d’incertitude. Cela pourrait se faire par l’intermédiaire d’observateurs surveillant les contacts avec le fond à l’aide de caméras ou de sondeurs, ou par l’intermédiaire d’enquêtes plus approfondies sur les prises accessoires. De plus, cette pêche peut avoir d’autres impacts liés à la perte d’engins de pêche (qui couleraient probablement jusqu’à la ZPC), car les filets perdus sont habituellement récupérés par dragage.

Il convient de noter que le Tableau 20 est simplifié et qu’il ne tient compte que de ce qui peut être à l’origine d’une cote de **Risque**_{sc} élevée en mettant l’accent sur l’incertitude; il ne tient pas
compte de l'ensemble des combinaisons de cotes susceptibles de donner lieu à la plage complète de cotes de \textit{Risque}_{sc}.

Dans l'évaluation des risques, toute mesure visant à réduire une incertitude importante pourra faire évoluer les résultats d'une interaction entre une CIE et un facteur de stress, mais ne réduira pas forcément la cote de \textit{Risque}_{sc}. Par exemple, la réduction de l'incertitude par la recherche peut déboucher sur une cote de \textit{Risque}_{sc} identique, mais aussi sur une cote plus faible ou plus élevée. Pour la cote de \textit{Conséquence}_{sc}, de faibles valeurs d'incertitude donnent une plus grande confiance dans la cote attribuée et une plus grande certitude quant aux effets du facteur de stress sur la CIE en question. Pour réduire encore plus le risque, l'\textit{Exposition}_{sc} pourrait ensuite être abordée, ce qui nécessiterait d'accorder une priorité plus élevée à la réduction des termes de l'\textit{Exposition}_{sc} (chevauchement spatio-temporel ou intensité) ou aux recherches menées en la matière.

De même, la réduction de l'incertitude pour les termes de l'\textit{Exposition}_{sc} pourrait au bout du compte donner lieu à une augmentation ou à une réduction de la cote de \textit{Risque}_{sc} ou encore n'avoir aucune incidence sur celle-ci. Si les deux termes affichent un faible niveau d'incertitude, la seule possibilité d'action restante consisterait à réduire l'\textit{Exposition}_{sc} par des mesures de gestion, car peu de choses peuvent être faites pour modifier la cote de \textit{Conséquence}_{sc}.

4.2.2. Pertinence des résultats pour les recherches futures

Plusieurs relevés de recherche ont été menés sur les récifs d'éponges siliceuses de la ZPM DH-BRC depuis le début de cette évaluation des risques (Tableau 36, annexe I). Les objectifs précis de ces relevés étaient les suivants : cartographier l'abondance des éponges et des espèces sauvages connexes; quantifier le nombre d'unités de filtration (oscules), les taux de filtration des éponges et la consommation d'oxygène chez les espèces d'éponges hermatypiques; déterminer les flux (la différence entre la quantité de bactéries et d'éléments nutritifs ingérés et expulsés) chez les espèces d'éponges hermatypiques; quantifier les sédiments en suspension sur les récifs; étudier l'effet des sédiments en suspension sur la filtration; lancer des études sur la dynamique du réseau trophique et les aspects énergétiques de l'alimentation des éponges. Les données recueillies visent à déterminer le rôle des récifs d'éponges siliceuses comme habitat pour les poissons et les crustacés, l'effet de la filtration sur les attributs de la colonne d'eau, la vulnérabilité potentielle des éponges à l'obstruction par les sédiments et l'effet qu'une filtration réduite liée à la présence de sédiments pourrait avoir sur les attributs de la colonne d'eau. Les résultats de ces relevés devraient inclure des cartes de l'abondance des espèces d'éponges, des dénombrements relatifs à la diversité et à l'abondance des espèces associées aux récifs d'éponges, des concentrations de sédiments en suspension sur les éponges pendant les cycles de marée, la dépense énergétique liée à la filtration et l'effet des sédiments sur cette dépense énergétique chez les éponges. Les données obtenues à partir de ces relevés seront utiles pour l'attribution des cotes lors des prochaines versions de cette évaluation des risques, en particulier les cotes relatives aux impacts de la remise en suspension des sédiments, ce qui permettra de clarifier les incertitudes élevées associées aux termes de la cote de \textit{Conséquence}_{sc} pour ce facteur de stress. Les estimations de l'\textit{Exposition}_{sc} bénéficieront quant à elles des cartes produites concernant l'abondance des éponges.

4.2.3. Autres résultats importants

Outre les derniers résultats de l'évaluation des risques, l'application du CERE à la ZPM DH-BRC a produit une série d'autres résultats importants qui pourraient être utilisés de différentes façons, par exemple :
• La liste des espèces fondée sur des sources multiples fournit une base de connaissances pour l'écosystème et une source de référence pour les travaux futurs qui peut être mise à jour à mesure que de nouvelles études sont menées.

• Le recensement des activités et des facteurs de stress connexes dans la région et la collecte de données sur leur chevauchement avec la ZPM DH-BRC fourniront également une base de connaissances à laquelle les chercheurs et les gestionnaires pourront se reporter lorsqu'ils envisageront de modifier la réglementation des activités, tout en mettant en évidence les secteurs dans lesquels plus de renseignements sont requis.

• La base de données de référence, tous les articles consultés lors des études menées sur les récifs d’éponges et les activités connexes constituent essentiellement une bibliothèque de référence pour les travaux futurs, la plupart des documents étant enregistrés sous forme de fichiers électroniques et archivés dans un logiciel de citation.

4.3. DÉFIS, LIMITES ET TRAVAUX FUTURS

Dans de nombreux cas, les limites de l’application du cadre d’évaluation des risques de niveau 2 découlaient de lacunes dans les connaissances de base sur l’écosystème et, dans certains cas, d’un manque de données sur les facteurs de stress qui ont une incidence sur l’écosystème. Les phases initiales de cette étude, à savoir l’établissement de la portée et la cotation, ont été achevées en 2013 et, bien que de nombreuses recherches sur le terrain aient été menées depuis lors, elles n’ont pas été prises en compte dans cette évaluation initiale. Il est fortement recommandé qu’une deuxième version complète de l’évaluation soit menée dès que possible.

En particulier, les analyses au niveau communautaire proposées par O et al. (2015) n’ont pas pu être appliquées aux CIE relatives aux attributs des communautés recensées au cours de la phase d’établissement de la portée (à savoir, l’assemblage de sébastes et l’assemblage benthique associé aux récifs d’éponges). Cette version de l’évaluation des risques n’est pas suffisamment sensible pour détecter des changements au niveau de l’écosystème d’après la méthode du risque relatif pour la structure et la fonction de l’écosystème proposée par O et al. (2015), et trop peu d’études pouvant être citées ont été menées sur l’écosystème des récifs d’éponges siliceuses du détroit de Hécate et du bassin de la Reine-Charlotte pour mener à bien ce type d’analyse à l’époque (voir la section 4.1.1). En tant que première version de l’évaluation des risques, cette étude fournit une base solide pour intégrer les études actuelles et futures. Les recherches menées sur le terrain avant et après la désignation récente de la ZPM, en plus des lignes directrices plus explicites fournies par le Règlement sur les ZPM, devraient permettre d’accroître considérablement la base de connaissances sur cet écosystème et la confiance dans celle-ci. La disponibilité de ces données de référence, combinée au perfectionnement continu des méthodes de travail, devrait permettre une analyse au niveau de la communauté dans les prochaines versions. Pour cette première évaluation, on estime que les CIE relatives aux attributs des communautés potentiels recensées étaient suffisamment bien représentées dans les CIE relatives aux espèces et aux habitats qui ont fait l’objet d’une évaluation exhaustive.

Les défis rencontrés lors de l’application des critères de sélection des CIE décrits par O et al. (2015) ont été surmontés efficacement en clarifiant les critères originaux et en élaborant un ensemble de considérations supplémentaires propres à l’écosystème et aux données. De nombreuses espèces ont obtenu une cote élevée pour les critères initiaux du CERE, et les considérations supplémentaires ont été importantes pour guider la sélection des CIE. Par exemple, une distinction importante devait être faite entre les espèces qui avaient été observées par des VTG sur les récifs d’éponges et celles qui n’avaient été observées qu’à partir
des prises de pêche à proximité de ces récifs. La rétroaction des experts s’est également avérée très importante, ce qui souligne le caractère essentiel de cet élément, non seulement dans le processus de sélection des CIE, mais aussi à toutes les étapes de l’évaluation des risques. La galathée est un exemple d’une espèce identifiée par des experts ayant obtenu des cotes relativement faibles selon les critères initiaux du CERE, mais des cotes élevées selon les considérations supplémentaires; elle a donc été sélectionnée par les experts.

Les activités incluses dans le CERE se limitent généralement uniquement à celles qui sont autorisées (à l’exception des pêches au chalut de fond et au chalut pélagique, qui pourraient être autorisées dans le futur), ce qui peut exclure certains risques potentiels importants pour l’écosystème, en particulier dans la zone éloignée et rarement surveillée des récifs d’éponges. Lorsqu’une a deux années seront écoulées depuis la désignation de la ZPM, il sera important de réévaluer les activités et les facteurs de stress connexes qui se produisent dans la zone (selon les plans d’activités approuvés et les activités illégales soupçonnées) pour évaluer l’efficacité continue de la ZPM.

Le sous-terme de l’exposition « Chevauchement de la profondeur » représente une autre limite. Pour les écosystèmes benthiques, ce chevauchement obtient une cote élevée pour toutes les CIE associées au benthos. Des applications antérieures du CERE ont montré que cela pouvait entraîner une pondération double de l’Exposition (Thornborough et al., 2017). Toutefois, étant donné que toutes les CIE de la présente évaluation sont benthiques (ou associées au milieu benthique), cela ne devait pas avoir de répercussions sur les cotes générales du Risque des CIE présentées dans la présente version. Néanmoins, si les CIE pélagiques sont incluses dans les prochaines versions, il pourrait s’avérer nécessaire de tenir compte de cet élément au moment de comparer les CIE benthiques et les CIE pélagiques (Thornborough et al., 2017).

4.3.1. La méthode semi-quantitative

En raison du mélange de données quantitatives et qualitatives, l’évaluation des risques a exigé que toutes les cotes soient regroupées en catégories pour des questions de cohérence, même lorsqu’il existait des données quantitatives complètes pour une activité précise, comme c’était le cas pour la pêche. Pour distinguer les différentes sources de données, une faible incertitude a été généralement associée aux cotes lorsque les données quantitatives disponibles étaient suffisantes, et une incertitude plus élevée a été attribuée aux cotes associées aux données qualitatives. Par conséquent, les cotes du Risque s’appuyant sur des données qualitatives sont plus fondées sur l’incertitude que les cotes basées sur des données quantitatives, et elles peuvent être considérées comme des domaines d’intérêt pour les études ou collectes de données futures.

le pétrole a une forte persistance temporelle dans l’écosystème et sa décomposition prend beaucoup de temps (c.-à-d. un chevauchement temporel élevé), tandis que les matières organiques comme les eaux usées ont une faible persistance temporelle étant donné qu’elles sont absorbées ou dégradées relativement rapidement (c.-à-d. un chevauchement temporel faible).

Pour tenir compte de l’autre type de composante temporelle, le sous-terme « intensité (fréquence) » a été utilisé pour représenter la fréquence à laquelle l’activité ou le facteur de stress se produisent dans l’écosystème. L’un des problèmes rencontrés avec cette approche est le manque de sensibilité des catégories de cotation pour les événements très fréquents (c.-à-d. qui se produisent plusieurs fois par année). L’occurrence la plus fréquente possible était « se produit fréquemment (p. ex. chaque année) », et la catégorie suivante était « plus d’une fois par période de cinq ans, mais pas tous les ans au cours de cette période ». Dans certains cas, on disposait souvent de données précises (notamment pour les facteurs de stress liés à la pêche) concernant le nombre exact de jours de pêche par année, mais ces données ne pouvaient pas vraiment être prises en compte de manière adéquate, sauf en utilisant la catégorie correspondant à la fréquence la plus faible (« se produit fréquemment [p. ex. chaque année] ») assortie d’une faible cote d’incertitude.

4.3.3. Interprétation de l’intégration de l’incertitude

Lorsque le risque et l’incertitude sont examinés séparément, la composante d’incertitude peut être négligée, avec le risque de voir la cote de \(\text{Risque}_{sc} \) être interprétée séparément, sans tenir compte de l’incertitude. Dans cette étude, ce problème a été résolu en intégrant l’incertitude liée à chaque cote à la cote \(\text{Risque}_{sc} \) à l’aide de la méthode élaborée par Murray et al. (2016), avec une différence mineure concernant la distribution utilisée pour sélectionner les échantillons aléatoires (c.-à-d. une distribution normale tronquée a été utilisée au lieu d’une distribution normale). Cela a permis d’éliminer tous les problèmes liés à une analyse séparée du risque et de l’incertitude. L’incertitude est intégrée dans chaque variable cotée à l’aide d’un échantillonnage aléatoire et de matrices de cotes variables pour toutes les interactions. Cela offre l’avantage supplémentaire de simplifier la cohérence et la relativité de la cotation entre les CIE et les interactions qui sont semblables. Toutefois, il est possible que cette méthode entraîne une plus grande similitude des cotes médianes du \(\text{Risque}_{sc} \) en raison de l’intégration de l’incertitude à chaque étape. Toutefois, la comparaison des calculs avec et sans incertitude dans une autre étude n’a entraîné aucun changement dans le classement des CIE en fonction du \(\text{Risque}_{sc} \) (Thornborough et al., 2017).

4.3.4. Risque cumulatif par CIE (\(\text{RisqueC} \))

Bien que les effets cumulatifs puissent être de quatre types généraux (c.-à-d. additifs, synergiques, compensatoires et masquant), les méthodes d’estimation des effets cumulatifs dans la présente évaluation des risques supposent que le \(\text{Risque}_{sc} \) est uniquement additif et qu’il ne tient pas compte de l’interaction entre les facteurs de stress et des impacts qui en résultent sur les CIE, par exemple la combinaison des perturbations du substrat [remise en suspension] et [écrasement] liées aux activités de pêche et des substances rejetées par les navires ou les activités d’échantillonnage. Des études plus poussées seraient nécessaires, comme des recherches empiriques et des modélisations de ces types d’effets cumulatifs, pour que ces éléments soient intégrés à une évaluation des risques de niveau 3.
4.3.5. Cotation des facteurs de Rétablissement des CIE relatives aux attributs des communautés

Il n’a pas été possible de coter les facteurs de Rétablissement pour les CIE relatives aux attributs des communautés recensées dans cette application du CERE dans la ZPM DH-BRC. Cette impossibilité concorde avec les résultats d’applications du CERE dans d’autres ZPM (Rubidge et al., 2018; Thornborough et al., 2017). La cotation des CIE relatives aux attributs des communautés dans les écosystèmes pour lesquels on manque de données quantitatives est problématique (comme le décrit la section 3.3.2). Une approche possible pour résoudre ce problème consiste à utiliser la méthode pour l’analyse des communautés décrite par Hobday et al. (2011). Dans cette approche, un réseau trophique de base est élaboré et les espèces se voient assignées à un groupe fonctionnel ou à un niveau trophique en utilisant les renseignements trouvés dans les publications ou en sollicitant l’opinion d’experts. Les interactions trophiques sont ensuite estimées pour donner une vue d’ensemble du fonctionnement de l’écosystème.

L’inconvénient de cette approche, c’est qu’elle exige une grande quantité de données et une méthode établie, deux éléments dont on ne dispose pas à l’heure actuelle. Même si cela n’entrait pas dans la portée de ce projet, la collecte de données préliminaires et l’étude de cette question ont commencé, et de nouveaux renseignements sont attendus au cours des prochaines années (S. Archer, BRP, MPO, comm. pers.).

Bien que des CIE relatives aux attributs des communautés n’aient pas été incluses dans l’évaluation semi-quantitative des risques, le mélange de CIE relatives aux espèces et aux habitats sélectionnées couvre implicitement un large éventail de communautés au sein de l’écosystème des récifs d’éponges. Pour l’instant, bon nombre des communautés recensées sont prises en compte dans les CIE relatives aux habitats sélectionnées, ce qui signifie qu’elles font implicitement partie de l’évaluation en tant que résidentes des habitats évalués. Bien que cette méthode ne soit pas idéale, elle est jugée suffisante pour cette première version de l’évaluation des risques.

4.3.6. Cotation des facteurs de stress indirects et de longue portée, et stades biologiques des CIE

Comme nous l’avons déjà décrit, l’application du niveau 2 du CERE ne tient pas compte des impacts indirects des facteurs de stress ni de l’impact des facteurs de stress sur les espèces au stade adulte. Dans le cadre d’applications antérieures du CERE, on a recommandé que les effets indirects et les effets sur les spécimens non adultes soient intégrés à l’évaluation de niveau 3 lorsque celle-ci aura lieu (Rubidge et al., 2018; Thornborough et al., 2017).

Les facteurs de stress de longue portée ne font pas non plus partie de l’évaluation des risques, car ils ne sont pas gérables à l’échelle de la ZPM du fait qu’ils se produisent à l’extérieur de la zone évaluée. Parmi les exemples de facteurs de stress de longue portée pouvant être pertinents pour la ZPM DH-BRC, citons les microplastiques (qui sont plus susceptibles de
provenir de l’extérieur de la ZPM), la contamination et les débris provenant de sources extérieures à la ZPM, l’acidification des océans et les changements climatiques. Plus précisément, les éponges siliceuses sont l’un des groupes les plus sensibles à l’évolution des températures dans les océans, et on soupçonne qu’elles feront face à une mortalité importante liée au stress thermique et à l’hypoxie au cours de la prochaine décennie (J. Chu, BRP, MPO, comm. pers.). Il s’agit là de facteurs qui pourraient être pris en compte dans les versions ultérieures de l’évaluation des risques, au fur et à mesure que des niveaux de référence auront été établis grâce à la surveillance.

4.3.7. Travaux à venir

Grâce aux commentaires des experts en la matière et à l’analyse documentaire associée à l’évaluation des risques, nous avons cerné un certain nombre d’activités de recherche qui pourraient prochainement préciser et étayer les cotes attribuées dans le cadre de l’évaluation des risques.

- Il faudrait déterminer l’état de référence pour chaque récif d’éponges afin de déterminer la part de récifs vivants et sains par rapport à la part de récifs endommagés ou morts. Des méthodes faisant appel à des submersibles récemment mises au point et appliquées dans les récifs d’éponges siliceuses du détroit de Georgie et de la baie Howe pourraient être utilisées comme lignes directrices (p. ex. dénombrement des oscules et estimation de la couverture des éponges; Dunham et al., 2018). L’obtention d’un état de référence permettra de faire des comparaisons avec les relevés passés et futurs; cette caractérisation des récifs est considérée comme hautement prioritaire (K. Conway, Ressources naturelles Canada, comm. pers.). En outre, les relevés devraient examiner et surveiller des zones ayant déjà été observées, y compris celles où des dommages mécaniques causés par la pêche avaient été constatés (p. ex. les zones présentant des traces de chalutage), afin d’évaluer les tendances et les taux de rétablissement. Des données de relevés remontant jusqu’à 1999 sont disponibles. En particulier, des études et une évaluation portant sur le complexe du récif sud seraient importantes, car ce récif a fait l’objet d’un chalutage intensif (K. Conway, Ressources naturelles Canada, comm. pers.).

- Parallèlement à la détermination de l’état de référence, il conviendrait de poursuivre la caractérisation des espèces sauvages associées aux récifs d’éponges lors de relevés sous-marins afin d’établir des liens entre les observations des espèces sauvages et les caractéristiques propres aux récifs dans cette zone. Ce travail pourrait éclairer et soutenir les composantes relatives à la sélection de CIE et d’indicateurs de la présente évaluation tout en cernant les différences entre les espèces sauvages associées aux récifs sains et celles associées aux zones de récifs plus dégradées. La caractérisation des espèces sauvages associées à chaque récif permettra également de comparer les zones de récifs, comme cela a été fait dans le détroit de Georgie, où la composition du biote associé à la communauté des récifs d’éponges différait considérablement entre les trois récifs examinés (Chu et Leys, 2010).

- Il conviendrait de mieux comprendre l’abondance et la répartition variables des trois espèces d’éponges siliceuses hermatypiques et notamment comment la composition des espèces varie en fonction des perturbations physiques antérieures. On pense que H. calyx est l’espèce d’éponges hermatypiques la plus robuste, et que F. oca est la moins robuste en raison de ses tissus vivants fragiles et dotés d’une paroi fine (Krautter et al., 2001). Il se peut donc que l’équilibre entre la répartition et l’abondance des trois espèces hermatypiques puisse donner une indication du degré d’exposition de la zone à des facteurs de stress physiques. Les récifs d’autres régions sont rarement composés de ces trois espèces, et l’espèce F. oca est absente des récifs d’éponges du détroit de Georgie et de la baie Howe;
ces derniers sont composés des espèces *H. calyx* et *A. vastus*, et, dans certains cas, de l’espèce *A. vastus* uniquement. De même, les récifs limitrophes du Nord sont composés des espèces *H. calyx* et *A. vastus*, même si l’on a découvert un site où *F. occa* est présente (Stone et al., 2014). La profondeur peut également jouer un rôle dans la répartition des trois espèces d’éponges, comme c’est le cas dans les récifs du canal Portland, où *A. vastus* était la principale espèce hermatypique à moins de 104 m de profondeur, tandis que *H. calyx* dominait les eaux plus profondes (Stone et al., 2014). Par ailleurs, la répartition des éponges lyssacines de la famille des *Rossellidae*, comme les éponges de Dawson, pourrait aussi donner une indication des zones touchées, car elles sont moins souples et plus susceptibles de se briser (Chu, 2010).

- On a besoin d’études sur la répartition, la composition et le rôle des jardins d’éponges dans l’environnement des récifs d’éponges de la ZPM. Une experte (A. Dunham, MPO) a suggéré que les récifs denses et en bonne santé pourraient être moins susceptibles de contenir des jardins d’éponges. Il sera important d’accroître nos connaissances sur les jardins d’éponges dans la ZPM pour les prochaines versions de cette évaluation, ce qui nous permettra d’améliorer la définition des jardins d’éponges dans l’environnement des récifs d’éponges.

- Il conviendrait de rechercher les indices d’un changement des conditions environnementales. Par exemple, les squelettes exposés de certains récifs d’éponges à la frontière entre la C.-B. et l’Alaska sont incrustés d’oxydes et fortement colonisés par des zoanthides et des éponges encroûtantes (p. ex. *Desmacella*). Dans ce cas, un changement environnemental localisé, comme une modification de la sédimentation, peut être à l’origine d’une transition entre l’accumulation de récifs d’éponges et la croissance de squelettes encroûtés et de zoanthides (Stone et al., 2014). Le revêtement des squelettes d’éponges siliceuses par des oxydes (fer, magnésium, phosphate, manganèse) a également été observé dans le détroit de Georgie et la baie Howe. Dans un autre site de récifs limitrophe, les squelettes des récifs d’éponges sont densément recouverts de bryozaaires dans une zone de faible sédimentation (Stone et al., 2014). La surveillance de ces zones permettrait de déterminer s’il y a eu un changement dans les conditions environnementales et comment les récifs d’éponges peuvent être touchés par cette évolution.

- Il conviendrait de revoir et de mettre à jour les CIE relatives aux espèces sélectionnées. On recommande fortement de reconsidérer la CIE relative à la galathée dans le cadre de la prochaine version de cette évaluation. Bien que cette CIE ne respecte pas suffisamment de critères de sélection, elle a été incluse sur la base d’une recommandation d’un expert en la matière. Cette CIE pourrait être enlevée et remplacée, car, même si les galathées sont communes sur les récifs, elles le sont également dans de nombreux autres habitats, y compris sur les substrats nus et, peut-être plus important encore, dans les zones à faible teneur en oxygène (Chu, 2016). En outre, de récents travaux ont également révélé que les galathées sont simplement associées à la structure des récifs d’éponges siliceuses, et pas nécessairement aux éponges vivantes (MPO, 2017). En d’autres termes, il est probable qu’autant de galathées soient observées sur un récif complètement mort que sur un récif vivant. On recommande donc de réévaluer cette CIE dans les prochaines versions du CERE pour la ZPM DH-BRC et de choisir une solution de rechange. Les options comprennent d’autres espèces de décápodes vivant dans l’environnement des récifs d’éponges, comme le crabe royal, le crabe à longues pattes et l’araignée de mer, des espèces qui sont présentes probablement parce que leur exosquelette protecteur est favorisé dans l’environnement riche en spicules des récifs d’éponges (Chu et Ley, 2010). Une prochaine version de l’évaluation pourrait inclure une autre espèce de crabe, voire réunir un groupe plus important de crustacés dans une CIE distincte (p. ex. décápodes) pour représenter les nombreuses espèces de crabe présentes sur les récifs. Les autres
possibilités logiques à envisager en tant que CIE relatives aux espèces dans le cadre des prochaines versions sont les étoiles de mer (p. ex. *Mediaster spp.*, *Ceramaster spp.* et *Henricia spp.*) ou les nudibranches. On sait que les nudibranches consomment des éponges siliceuses dans les récifs du détroit de Georgie (Chu et Leys, 2012) et que les étoiles de mer mangent des éponges dans d’autres écosystèmes et peuvent structurer des communautés entières par leur alimentation (Dayton, 1972; Paine, 1969; S. Archer, BRP, MPO, comm. pers.).

- Il conviendrait de mieux comprendre les activités de pêche dans la région grâce à un examen détaillé des registres de pêche et d’autres documents afin d’obtenir des renseignements plus détaillés sur les efforts de pêche passés et actuels dans les zones de récifs d’éponges (y compris la pêche destinée à la recherche et la pêche autochtone). En particulier, il sera important de distinguer les cas de double pêche (cas dans lesquels la pêche ASR peut être menée avec des engins commerciaux), car ce type de pêche n’est actuellement pas interdit dans la ZGA. Cette information pourrait permettre une estimation de référence de l’impact de la pêche dans chaque zone de récifs. Même si certaines de ces données ont été obtenues pour cette étude et d’autres (p. ex. Boutillier *et al.*, 2013), une analyse spatiale plus approfondie serait utile.

- Il conviendrait de mener des études sur le transport potentiel d’EAE vers les récifs d’éponges par l’intermédiaire des engins de pêche, notamment en analysant les lieux où la pêche a déjà été pratiquée et en déterminant s’ils abritent des EAE qui pourraient être transportées.

- Il faudrait quantifier le niveau de contact avec le fond dans le cadre de la pêche au chalut pélagique.

- Il faudrait mesurer la quantité de sédiments remis en suspension par différentes activités (pas seulement la pêche) et le transport de ces sédiments en tenant compte des caractéristiques des sédiments dans la région.

- Il conviendrait de mesurer les bruits de fond au niveau des récifs d’éponges ainsi que le bruit généré par les différentes activités anthropiques (en particulier par la circulation des navires). Les travaux menés actuellement par le MPO portent sur certains de ces éléments. En outre, l’examen des réactions des éponges et de leur biote à l’égard du bruit est un autre domaine où les connaissances sont insuffisantes.

- Il conviendrait de mener une analyse expérimentale des réactions et du rétablissement des trois espèces hermatypiques lorsqu’elles sont confrontées aux facteurs de stress affichant une cote de *Risque* élevé (p. ex. hydrocarbure/contaminants).

- Il faudrait déterminer si les activités sismiques doivent être autorisées dans le cadre de la gestion de la ZPM et, dans l’affirmative, la fréquence et l’étendue autorisées.
4.3.7.1. Activités/facteurs de stress susceptibles d’augmenter dans le futur
Cette étude ne vise qu’à donner un aperçu des activités actuelles et ne fait aucune projection; nous abordons ici certaines activités et certains facteurs de stress qui pourraient augmenter dans le futur.

- **Transport de gaz naturel liquéfié (GNL)** – Bien qu’aucun projet d’expansion de la capacité de transport du GNL le long de la côte Nord n’ait encore été approuvé, de tels projets pourraient être menés dans le futur. Par conséquent, une prochaine version du CERE pourrait tenir compte des déversements de GNL en tant que facteur de stress et compter des mises à jour liées aux augmentations prévues du nombre de navires transportant des ressources naturelles.

- **Bitume dilué** – Le transport de bitume dilué constitue un risque futur important et potentiellement dommageable pour l’écosystème. Ce risque peut être élevé pour les récifs d’éponges du fait que le bitume dilué peut couler et être transporté vers les récifs par les courants qui les traversent. Il pourrait s’avérer nécessaire de faire une distinction entre les différents types d’hydrocarbures dans les prochaines versions de l’évaluation des risques, le bitume dilué pouvant être analysé séparément ou dans une catégorie regroupant les hydrocarbures denses. Le déversement d’hydrocarbures est déjà le facteur de stress potentiel désigné comme posant le risque le plus élevé dans l’évaluation des risques, et le transport de ce type d’hydrocarbures a été pris en compte dans la cotation.

- **Évolution des activités de pêche** – En cas de changement important dans une activité comme la pêche, la cote d’intensité/d’exposition augmenterait et le risque connexe serait recalculé.

4.3.8. Élaboration d’indicateurs et plan de surveillance

5. CONCLUSIONS ET RECOMMANDATIONS
Cette application du niveau 2 du CERE dans la ZPM DH-BRC s’est révélée efficace pour la sélection et le classement par ordre de priorité des CIE, avec quelques modifications pour adapter la méthode à cet écosystème et aux données disponibles pour celui-ci. Les autres résultats de cette étude comprennent les suivants :

- Les résultats de l’évaluation des risques font ressortir les CIE au risque cumulatif (RisqueC) le plus élevé, y compris la CIE relative à l’habitat des jardins d’éponges, les trois espèces d’éponges hermatypiques et l’éponge de Dawson (*Dawsoni*) qui affichent toutes des valeurs semblables de **RisqueC**. Les facteurs de stress affichant la Puissance, la plus élevée sont : le pétrole (sources aiguës liées aux déversements d’hydrocarbures) et le pétrole/les contaminants provenant de rejets chroniques ainsi que la perturbation du substrat par remise en suspension des sédiments et par écrasement résultant des activités de pêche au chalut de fond et au chalut pélagique.
Des lignes directrices sont fournies pour cerner la manière la plus efficace, pour les gestionnaires, de traiter les interactions qui présentent des cotes de Risquesc élevées (telles que relevées durant l’évaluation des risques) en se fondant sur les éléments qui sous-tendent ces cotes (c.-à-d. cotes d’Expositionsc élevées, cotes de Conséquencesc élevées ou les deux).

L’évaluation des risques a permis de relever tout un éventail de priorités en matière de recherche qui seront très utiles lors des versions futures de l’évaluation des risques. Par exemple, pour faciliter l’inclusion de CIE relatives aux attributs des communautés et de l’écosystème dans l’évaluation des risques, il faudra recueillir des données de référence et effectuer une analyse du réseau trophique. L’établissement de la structure trophique et des groupes fonctionnels au sein de la communauté des récifs d’éponges siliceuses constitue une première étape de l’analyse des communautés, qui sera suivie par des recherches sur l’abondance et la diversité. En outre, nous avons toujours besoin de recherches ciblant des espèces d’éponges siliceuses hermatyptiques pour pouvoir mieux différencier les risques relatifs que font peser sur elles les activités humaines.

Un certain nombre d’améliorations d’ordre méthodologique ont été apportées dans le cadre de cette application du CERE. En particulier, l’utilisation d’une distribution normale tronquée pour la modélisation de l’incertitude, un traitement différent pour les interactions dont les sous-termes de la Résiliencesc ont une cote de 0, mais qui présentent une incertitude élevée, et des outils de gestion des données qui améliorent la relativité et l’uniformité des cotes des interactions entre les CIE et les facteurs de stress. On recommande d’adopter tous ces éléments dans les prochaines applications et versions du CERE. En outre, il est fortement recommandé de continuer de demander l’avis d’experts à chaque étape de l’évaluation des risques (en rationalisant ce processus autant que possible).

La présente analyse a été réalisée en utilisant une interprétation actuelle du Règlement sur les ZPM qui a récemment été mis en place. Il sera important d’évaluer comment le règlement est interprété (c.-à-d. d’après l’information découlant de plans d’activités approuvés et de données mises à jour sur le trafic maritime) dans le cadre des versions futures de l’évaluation des risques, une fois que le Règlement sur les ZPM aura été appliqué pendant plusieurs années.

Au vu de la nature adaptative du Règlement sur les ZPM et des récentes activités de relevés sur le terrain qui ont été entreprises pour combler les lacunes dans les connaissances, il est recommandé qu’une autre version de l’évaluation des risques soit réalisée dès que possible. Des recommandations ont été formulées pour guider les améliorations dans les prochaines versions de cette évaluation.

On recommande de poursuivre les travaux de finalisation, d’examen et de documentation des modèles de séquences des effets actuels. Les analyses futures dépendront de la capacité à trouver, à mettre à jour et à intégrer facilement ces modèles pour de futures applications du CERE.

L’évaluation menée à l’aide du CERE donne lieu à la compilation et à la synthèse de volumes élevés de données et de renseignements. On recommande fortement de déployer des efforts afin de préserver ces résultats intermédiaires par l’application d’outils comme le portail de données ouvertes du gouvernement du Canada pour faire en sorte que les résultats puissent être reproduits et utilisés dans des versions futures du processus.
6. RÉFÉRENCES

https://doi.org/10.1093/icb/43.1.19

7. ANNEXES

ANNEXE A. LA ZONE DE PROTECTION MARINE DES RÉCIFS D’ÉPONGES SILICEUSES DU DÉTROIT D’HÉCATE ET DU BASSIN DE LA REINE-CHARLOTTE

A.1. Emplacement et limites

Établi en vertu de la Loi sur les océans, le Règlement sur les zones de protection marine des récifs d’éponges siliceuses du détroit d’Hécate et du bassin de la Reine-Charlotte définit les limites des zones de protection marine (ZPM) des récifs nord, centraux et sud, y compris les limites des zones de gestion dans chaque zone protégée.

Figure 14. La ZPM des récifs d’éponges siliceuses du détroit d’Hécate et du bassin de la Reine-Charlotte, comprenant les ZPM des récifs nord, centraux et sud.
Figure 15. Points de cheminement délimitant les zones de gestion de la ZPM du récif nord.
Figure 16. Points de cheminement délimitant les zones de gestion de la ZPM des récifs centraux.
Figure 17. Points de cheminement délimitant les zones de gestion de la ZPM du récif sud.
A.2. Activités interdites

Les zones de protection centrale (ZPC) comprennent les récifs d'éponges et sont conçues pour assurer le niveau de protection le plus élevé pour les récifs. Les zones verticales de gestion adaptative (ZVGA) comprennent la colonne d'eau qui se prolonge au-delà des ZPC jusqu'à la surface de l'océan. Les zones de gestion adaptative (ZGA) comprennent le fond marin, le sous-sol et les eaux des ZPM qui ne font pas partie des ZPC ou des ZVGA.

Le règlement interdit :

d'exercer toute activité qui perturbe, endommage, détruit ou retire de sa zone de protection marine tout organisme marin vivant ou toute partie de son habitat, ou qui est susceptible de le faire;

d'exercer toute activité de recherche ou de suivi scientifique ou toute activité éducative qui ne fait pas partie d'un plan d'activité approuvé par le Ministère.

Il y a des exceptions à ces interdictions qui déterminent les activités qui peuvent être autorisées dans certaines zones de la ZPM. Les activités suivantes sont autorisées dans la ZPM :

Certaines activités de pêche dans les ZGA et les ZVGA. (Les activités de pêche seront gérées conformément aux plans de gestion intégrée des pêches, aux ordonnances de modification annuelles, aux règlements et aux conditions de permis, de façon à atteindre l'objectif de conservation de la ZPM. Des mesures de gestion additionnelles des pêches au chalut de fond et au chalut pélagique sont actuellement requises dans toute la ZPM afin de protéger les récifs d'éponges);

Des activités de navigation dans l'ensemble de la ZPM; toutefois, l'ancrage n'est pas autorisé dans les ZPC;

L'installation, l'entretien ou la réparation de câbles dans les ZGA;

Toute activité menée aux fins de sûreté publique, de santé publique, de défense nationale, de sécurité nationale et d'application de la loi ou menée en réponse à une situation d'urgence;

La recherche scientifique, la surveillance et les activités éducatives qui ont été approuvées par le ministre;

Tous les ancrages, les pêches, les installations, les entretiens et les réparations de câbles sont interdits dans les ZPC.

La version complète du Règlement sur les ZPM est consultable ici : [Règlement sur les zones de protection marine des récifs d'éponges siliceuses du détroit d'Hécate et du bassin de la Reine-Charlotte](#).
A.3. Superficie et profondeur des zones de protection

Tableau 21. Superficie et Profondeur de la ZPC, de la ZGA et de la ZVGA pour chacun des quatre complexes de récifs inclus dans la ZPM (adapté de Boutillier et al., 2012).

<table>
<thead>
<tr>
<th>Zone de protection</th>
<th>Récif nord</th>
<th>Récif central (Zone A)</th>
<th>Récif central (Zone B)</th>
<th>Récif sud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficie de la ZPC (km²)</td>
<td>524</td>
<td>313</td>
<td>498</td>
<td>168</td>
</tr>
<tr>
<td>Superficie de la ZGA (km²)</td>
<td>235</td>
<td>573</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Plage de profondeurs de la ZVGA au-dessus de la ZPC (en mètres de profondeur) c.-à-d. la distance entre la surface de l'océan et le début de la ZPC</td>
<td>0 à 100</td>
<td>0 à 120</td>
<td>0 à 146</td>
<td></td>
</tr>
<tr>
<td>Plage de profondeurs (m)</td>
<td>100 à -20</td>
<td>120 à -20</td>
<td>146 à -20</td>
<td></td>
</tr>
</tbody>
</table>
ANNEXE B. DÉFINITIONS DES CRITÈRES DE SÉLECTION DES COMPOSANTES IMPORTANTES DE L’ÉCOSYSTÈME (CIE) RELATIVES AUX ESPÈCES, AUX HABITATS ET AUX ATTRIBUTS DES COMMUNAUTÉS

B.1. Considérations pour la sélection des CIE relatives aux espèces

B.1.1. Lignes directrices initiales pour la sélection des CIE relatives aux espèces

Tableau 22. Critères de sélection des CIE relatives aux espèces décrits dans O et al. (2015), avec des renseignements supplémentaires propres aux récifs d’éponges siliceuses.

<table>
<thead>
<tr>
<th>Critères des CIE relatives aux espèces</th>
<th>Description tirée de O et al. (2015)</th>
<th>Considérations supplémentaires et exemples propres aux récifs d’éponges siliceuses</th>
</tr>
</thead>
</table>
| Espèce importatrice/exportatrice d’éléments nutritifs | L’espèce joue un rôle crucial dans le maintien de la structure et de la fonction d’un écosystème par le transfert d’énergie ou d’éléments nutritifs qui, autrement, limiteraient la capacité dudit écosystème. | Comprend les organismes suffisamment abondants/grands pour :
 i) extraire et consommer en grande quantité les matières en suspension dans la colonne d’eau;
 ii) recycler, perturber ou assurer la bioturbation de grandes quantités de sédiments (comme les organismes fouisseurs).
 Peut inclure des espèces mobiles qui se déplacent sur les récifs et en dehors de ces derniers, mais qui passent suffisamment de temps sur les récifs pour contribuer à l’importation et à l’exportation d’éléments nutritifs. |
<table>
<thead>
<tr>
<th>Critères des CIE relatives aux espèces</th>
<th>Description tirée de O et al. (2015)</th>
<th>Considérations supplémentaires et exemples propres aux récifs d’éponges siliceuses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rôle clé/spécialisé dans le réseau trophique</td>
<td>L’espèce a une relation très spécialisée avec une autre espèce ou guilde; le rôle important qu’elle joue dans le réseau trophique fait qu’un impact sur cette espèce entraînerait un changement vertical ou horizontal dans ce réseau trophique; l’espèce soutient un phénomène spatialement ou temporellement explicite qui est important pour d’autres espèces. Les prédateurs et les espèces fourragères très influents en sont des exemples.</td>
<td>Rôle spécialisé : espèce ayant une relation très spécialisée avec les éponges hermatypiques, comme celles qui utilisent les spicules des éponges hexactinellides pour construire leurs tubes ou leurs tuniques. Les sébastes sont abondants dans l’écosystème des récifs d’éponges et sont considérés comme un prédateur très influent dans cet environnement.</td>
</tr>
<tr>
<td>Espèce créant un habitat</td>
<td>L’espèce crée un habitat pour l’endofaune et des substrats aérés. L’espèce crée un habitat sur le fond marin.</td>
<td>Les espèces qui créent une structure en raison de leur présence physique ou de leurs activités. Les espèces qui créent un habitat structurel au-dessus du fond marin comprennent les espèces d’éponges qui constituent les récifs d’éponges. Les espèces qui créent un nouvel habitat important utilisé par d’autres espèces dans les sédiments en creusant ou en perturbant fortement les sédiments. La création d’habitats à petite échelle, comme les coquilles de bivalves et les tubes de vers, est exclue.</td>
</tr>
<tr>
<td>Critères des CIE relatives aux espèces</td>
<td>Description tirée de O et al. (2015)</td>
<td>Considérations supplémentaires et exemples propres aux récifs d’éponges siliceuses</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Espèce rare, endémique ou unique</td>
<td>Espèce dont l’abondance est relativement faible ou dont les populations sont d’importance mondiale ou nationale dans les limites de la zone d’intérêt.</td>
<td>Espèces rares : espèces considérées comme rares en raison de leur faible abondance dans l’écosystème des récifs d’éponges, comme les bivalves et les gastéropodes. Espèces uniques : espèces que l’on peut trouver ailleurs, mais dont la présence dans l'habitat des récifs d’éponges est inhabituelle ou inattendue; les individus de ces espèces peuvent présenter un cycle biologique inhabituel ou être les seuls représentants de leur genre. Les espèces d’éponges hermatypiques sont considérées comme des espèces uniques. Espèces endémiques : espèces qui ne sont présentes que dans cette région; certaines des espèces de foraminifères ne sont présentes que dans l'environnement des récifs d’éponges siliceuses.</td>
</tr>
<tr>
<td>Espèce sensible</td>
<td>Espèce qui présente une faible tolérance à l’égard des facteurs de stress et qui a besoin de plus de temps pour se rétablir.</td>
<td>Elles comprennent les espèces fragiles et sessiles, mais aussi certaines espèces mobiles dont le cycle biologique comprend une croissance et un rétablissement lents (comme les sébastes).</td>
</tr>
<tr>
<td>Critères des CIE relatives aux espèces</td>
<td>Description tirée de O et al. (2015)</td>
<td>Considérations supplémentaires et exemples propres aux récifs d’éponges siliceuses</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Espèce en déclin</td>
<td>Espèce inscrite sur les listes de la Loi sur les espèces en péril (LEP), du Comité sur la situation des espèces en péril au Canada (COSEPAC), de l'Union internationale pour la conservation de la nature (UICN) ou du Conservation Data Center de la Colombie-Britannique (CDC), ou espèce ciblée ou non pour laquelle les impacts dépassent le niveau de durabilité.</td>
<td>Par ailleurs, il peut également s'agir des espèces dont on estime qu'elles doivent être protégées ou qui sont en déclin selon d'autres sources (p. ex. articles examinés par des pairs, évaluations des stocks), ou qui ont été identifiées dans le cadre des processus de gestion des océans du ministère des Pêches et des Océans.</td>
</tr>
</tbody>
</table>
B1.1.2. Considérations supplémentaires pour guider la sélection des CIE relatives aux espèces pour la ZPM des récifs d’éponges siliceuses du détroit d’Hécate et du bassin de la Reine-Charlotte (ZPM DH-BRC)

<table>
<thead>
<tr>
<th>Critères relatifs aux espèces</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espèce vivant sur les récifs</td>
<td>Espèce qui devrait vivre dans l’écosystème des récifs d’éponges siliceuses pendant une majeure partie de l’année, par opposition aux espèces qui ne font que traverser cette zone (comme le calmar et les requins).</td>
</tr>
<tr>
<td>Espèce dépendante</td>
<td>Espèce étroitement associée aux récifs et qui devrait en dépendre, ce qui comprend les espèces qui dépendent des récifs pour disposer d’un habitat ou d’un substrat, ou encore pour passer un stade essentiel de leur cycle biologique ou pour s’alimenter.</td>
</tr>
<tr>
<td>Espèce abondante</td>
<td>Les espèces abondantes peuvent avoir une influence importante sur les processus écosystémiques (Neam et al., 1999) et, dans l’écosystème éloigné que représentent les récifs profonds d’éponges siliceuses, l’abondance pourrait être un facteur important dans la sélection des espèces à surveiller au moyen de submersibles. L’abondance peut être déterminée à l’aide d’observations tirées de relevés, de publications scientifiques et de données. Remarque : Une espèce peut être considérée comme rare dans la région, mais être abondante localement.</td>
</tr>
<tr>
<td>Espèce observée directement dans la zone des récifs</td>
<td>Espèce directement observée ou prélevée dans la zone des récifs (et aux alentours), par opposition aux données d’observation d’espèces provenant de données historiques tirées des relevés au chalut menés dans une zone plus large autour des récifs (Jamieson et Chew, 2002), ou dont on soupçonne la présence d’après les données sur les zones avoisinantes (Hemmera, 2010†).</td>
</tr>
<tr>
<td>Critères relatifs aux espèces</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Espèce adaptée au suivi à long terme</td>
<td>Espèce dont on peut raisonnablement s’attendre à ce qu’elle soit simple à surveiller pour obtenir des données fiables sur les tendances à long terme afin de suivre la santé et la fonction des récifs. Ce genre d’espèces est facile à surveiller à l’aide de méthodes peu destructrices, comme les VTG. Il devrait s’agir d’espèces visibles dont la répartition est relativement uniforme (non sporadique) afin de réduire la variabilité liée à l’échantillonnage de vastes zones de récifs. Les espèces qui ne peuvent être observées qu’à l’aide d’échantillons ponctuels peuvent être exclues. Les espèces dont la répartition est sporadique peuvent être exclues. Les espèces sessiles de grande taille et les espèces mobiles visibles sont des exemples d’espèces faciles à surveiller.</td>
</tr>
<tr>
<td>Espèce faisant l’objet de nombreuses études</td>
<td>Cet élément est déterminé en vérifiant si l’espèce a fait l’objet d’études (en consultant les publications et les rapports examinés par des pairs) ou si des données s’y rapportant sont disponibles. Cette considération peut permettre de faire la distinction entre plusieurs représentants d’un groupe fonctionnel semblable (p. ex. plusieurs crabes) au moment de sélectionner des CIE relatives aux espèces appropriées.</td>
</tr>
</tbody>
</table>

Les résultats de l’évaluation de la portée des CIE relatives aux espèces pour la ZPM DH-BRC peuvent être consultés sur le portail de données ouvertes du gouvernement du Canada.
B.1.2 Considérations pour la sélection des CIE relatives aux habitats

<table>
<thead>
<tr>
<th>Considérations liées à l’habitat</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat biogénique</td>
<td>Habitat formé par des espèces biogènes.</td>
</tr>
<tr>
<td>Habitat rare ou unique</td>
<td>Habitat dont la répartition dans la zone d’intérêt est très restreinte, ou habitat d’importance mondiale ou nationale dans les limites de la zone d’intérêt.</td>
</tr>
<tr>
<td>Habitat sensible</td>
<td>Habitat ayant une faible tolérance, voire aucune tolérance, à l’égard des perturbations et nécessitant plus de temps pour se rétablir. Il peut s’agir d’un habitat fragile, comme le corail formant des structures biogéniques. La perte ou la dégradation de l’intégrité de l’habitat peut avoir des répercussions directes sur les espèces, les communautés ainsi que la structure et la fonction de l’écosystème.</td>
</tr>
<tr>
<td>Habitat essentiel pour des espèces sensibles</td>
<td>Habitat abritant des espèces affichant une faible tolérance à l’égard des facteurs de stress et qui a besoin de plus de temps pour se rétablir.</td>
</tr>
<tr>
<td>Habitat menacé ou en déclin</td>
<td>Habitat menacé de disparition dans son aire de répartition naturelle; identifié à partir d’analyses documentaires, d’exams par des experts ou des listes de conservation pertinentes.</td>
</tr>
<tr>
<td>Habitat essentiel pour des espèces en déclin</td>
<td>Habitat essentiel pour des espèces qui sont inscrites sur les listes de la LEP, du COSEPAC, de l’UICN ou du CDC ou des espèces ciblées et non ciblées pour lesquels les impacts dépassent le niveau de durabilité.</td>
</tr>
<tr>
<td>Habitat essentiel au maintien d’espèces rares, uniques ou endémiques</td>
<td>Habitat abritant une ou des espèces dont l’abondance est relativement faible ou dont les populations sont d’importance mondiale ou nationale dans les limites de la zone d’intérêt.</td>
</tr>
<tr>
<td>Habitat qui appuie les stades biologiques critiques</td>
<td>Par exemple, l’habitat important pour abriter et assurer l’alimentation, la fraie et la croissance des poissons associés aux monts sous-marins.</td>
</tr>
<tr>
<td>Habitat assurant des fonctions ou des services écosystémiques essentiels</td>
<td>Habitat permettant des processus ou des fonctions physiques, chimiques et biologiques essentiels qui contribuent à l’autosuffisance d’un écosystème. Les services écosystémiques sont les résultats bénéfiques, pour l’environnement naturel ou pour les humains, qui découlent des fonctions écosystémiques.</td>
</tr>
</tbody>
</table>
B.1.3 Considérations pour la sélection des CIE relatives aux attributs des communautés et de l’écosystème

Tableau 25. Considérations pour la sélection des CIE relatives aux attributs des communautés et de l’écosystème, O et al. (2015).

<table>
<thead>
<tr>
<th>Considérations liées aux attributs des communautés et de l’écosystème</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communauté unique</td>
<td>Communauté (assemblage d’espèces) unique dans la région ou la zone d’intérêt.</td>
</tr>
<tr>
<td>Communauté d’importance écologique</td>
<td>Communauté qui a une importance écologique en raison des fonctions qu’elle remplit dans l’écosystème ou des caractéristiques qu’elle offre à d’autres composants de l’écosystème (définition du document national sur les zones d’importance écologique et biologique).</td>
</tr>
<tr>
<td>Groupe fonctionnel jouant un rôle essentiel dans le fonctionnement de l’écosystème</td>
<td>La biodiversité et la productivité du groupe fonctionnel sont essentielles au fonctionnement et à la résilience de l’écosystème.</td>
</tr>
<tr>
<td>Groupe fonctionnel sensible</td>
<td>Groupe fonctionnel qui est sensible aux perturbations et qui, s’il était touché, aurait des effets importants sur la composition de la communauté et le fonctionnement de l’écosystème, notamment un groupe fonctionnel affichant une faible redondance fonctionnelle et une faible diversité des réactions. Par exemple, un réseau trophique contenant plusieurs espèces d’herbivores serait considéré comme ayant une redondance fonctionnelle élevée par rapport à la fonction écosystémique du broutage; si les espèces d’herbivores présentent des réactions diverses lorsqu’elles sont confrontées à une hypoxie, la diversité des réactions est également élevée.</td>
</tr>
</tbody>
</table>
ANNEXE C. SOURCES UTILISÉES POUR IDENTIFIER LES ESPÈCES OBSERVÉES DANS LA ZONE DE PROTECTION MARINE DES RÉCIFS D’ÉPONGES SILICEUSES DU DÉTROIT D’HÉCATE ET DU BASSIN DE LA REINE-CHARLOTTE (ZPM DH-BRC)

Tableau 26. Sources utilisées pour rassembler les espèces observées sur les récifs d’éponges siliceuses du détroit d’Hécate et du bassin de la Reine-Charlotte ou à proximité de ceux-ci. Les codes figurant dans la première colonne servent à identifier la source pour les espèces figurant dans le tableau d’établissement de la portée des CIE relatives aux espèces (Données ouvertes; dernière mise à jour en 2014). Il est important de souligner que de nombreuses espèces de poissons figurant dans cette liste proviennent de sources indirectes, comme les données sur les prises commerciales dans la région.

<table>
<thead>
<tr>
<th>Code</th>
<th>Document</th>
<th>Type de données</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Guilbault et al., 2006</td>
<td>Relevés de recherche</td>
<td>Espèces identifiées à partir d’échantillons prélevés sur des récifs à l’aide de trois types d’échantillonneurs de fond : pompe d’aspiration, appareil Shipek et benne IKU. Toutes les espèces sont des foraminifères.</td>
</tr>
<tr>
<td>B</td>
<td>Krautter, 1999, rapport d’expédition (non publié)</td>
<td>Relevés de recherche</td>
<td>Certaines espèces de foraminifères qui n’avaient pas été recensées dans Guilbault et al., 2006 (A).</td>
</tr>
<tr>
<td>C</td>
<td>Krautter et al., 2001</td>
<td>Relevés de recherche</td>
<td>Document de synthèse passant en revue les espèces trouvées sur les récifs dans le cadre de diverses études.</td>
</tr>
<tr>
<td>E</td>
<td>Jamieson et Chew, 2002</td>
<td>Données sur les prises de pêches</td>
<td>Liste des espèces ciblées et des prises accessoires dans le cadre de la pêche du poisson de fond au chalut à proximité des récifs d’éponges A, B, C et D.</td>
</tr>
<tr>
<td>F</td>
<td>Lehnert et al., 2005</td>
<td>Relevés de recherche</td>
<td>Détails sur une espèce – Desmacella austini sp. nov.</td>
</tr>
<tr>
<td>H</td>
<td>Cook, 2005 et liste d’espèces non publiée (comm. pers.)</td>
<td>Relevés de recherche</td>
<td>Thèse portant sur des prélèvements de sédiments à l’intérieur du récif. Par conséquent, ils sont principalement composés d’espèces endofauniques (principalement des annélides). Inclut une liste supplémentaire d’espèces mise à jour</td>
</tr>
<tr>
<td>Code</td>
<td>Document</td>
<td>Type de données</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>J</td>
<td>Sloan et al., 2001</td>
<td>Relevés de recherche</td>
<td>Rapport à Parcs Canada sur les ressources en invertébrés à Gwaii Haanas.</td>
</tr>
</tbody>
</table>

Les résultats de cette évaluation de la portée des CIE relatives aux espèces pour la ZPM DH-BRC peuvent être consultés sur le [portail de données ouvertes](#) du gouvernement du Canada.
ANNEXE D. QUESTIONNAIRE DESTINÉ AUX EXPERTS ET COMMENTAIRES DES EXAMINATEURS

Tableau 27. Résumé des commentaires et des conseils formulés par les examinateurs aux différentes étapes de l’évaluation des risques.

<table>
<thead>
<tr>
<th>Examineur</th>
<th>Affiliation au moment de l’examen</th>
<th>Sujet de l’examen</th>
<th>Date de l’examen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sally Leys et Amanda Kahn</td>
<td>Université de l’Alberta</td>
<td>Sélection des composantes importantes de l’écosystème (CIE)</td>
<td>Janvier 2014</td>
</tr>
<tr>
<td>Kim Conway</td>
<td>Ressources naturelles Canada (RNCan)</td>
<td>Matrice des interactions</td>
<td>Septembre 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sélection des CIE</td>
<td>Septembre 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cotes provenant d’un exemple de CIE (Heterchone calyx)</td>
<td>Septembre 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Première ébauche du document de recherche</td>
<td>Juin 2015</td>
</tr>
<tr>
<td>Anya Dunham</td>
<td>MPO</td>
<td>Cotes provenant d’un exemple de CIE (Munida quadrispina)</td>
<td>Novembre 2014</td>
</tr>
<tr>
<td>Matthias Herborg</td>
<td>Province de la C.-B.</td>
<td>Cotes relatives aux espèces aquatiques envahissantes (EAE)</td>
<td>Septembre 2014</td>
</tr>
</tbody>
</table>

D.1. EXAMEN DU PROCESSUS DE SÉLECTION DES CIE ET DES CIE RECENSYÉES

Un premier examen a été mené par S. Leys et A. Kahn (Université de l’Alberta). Après l’intégration des changements suggérés, il a ensuite été envoyé à K. Conway (RNCan) aux fins d’examen.

On a demandé aux examinateurs d’évaluer la pertinence du processus de sélection des CIE ainsi que des CIE sélectionnées (espèces, habitats et attributs des communautés et de l’écosystème). Un certain nombre de questions précises ont également été posées :

- La liste finale de CIE (tableau 4 du document) contient-elle les composantes biologiques et écologiques des récifs d’éponges siliceuses du détroit d’Hécate?
- Avez-vous des préoccupations au sujet des critères et des descriptions qui ont été utilisés pour sélectionner ces CIE, ou estimez-vous qu’il manque des critères importants?
- Voyez-vous des lacunes majeures dans notre liste de CIE, au vu des critères de sélection?
- Au cours de notre processus de sélection et de notre examen de la littérature spécialisée, nous avons trouvé plusieurs groupes d’organismes dont les rôles étaient flous dans
l’écosystème des récifs d’éponges. Nous vous serions reconnaissants de nous faire part de vos commentaires ou de vos connaissances à propos des rôles, des fonctions et de l’importance des groupes suivants dans l’écosystème des récifs d’éponges :

a. Foraminifères dans les récifs morts;
b. Assemblage de polychètes dans les zones où les récifs morts sont remplis de sédiments;
c. Échinodermes;
d. Crustacés décapodes (crabes, galathées) et crevettes;
e. Sébastes juvéniles;
f. Sébastes adultes.

Les facteurs à prendre en considération comprennent leur rôle potentiellement important dans l’importation/exportation d’éléments nutritifs, la conservation de l’écosystème, le cycle des éléments nutritifs, la conservation de la biodiversité des récifs d’éponges, etc.

Un document d’accompagnement donnait aux examinateurs des renseignements de base sur la méthode utilisée (la même que celle décrite dans le présent document) et décrivait en détail comment le processus de sélection des CIE se déroulait, y compris les considérations supplémentaires élaborées pour cette application propre aux récifs d’éponges. Voici les tableaux que les examinateurs ont été invités à examiner.

Tableau des CIE sélectionnées envoyé à l’examineur n° 1

Une liste des CIE proposées avec une description des raisons pour lesquelles elles ont été choisies en fonction des critères.

<table>
<thead>
<tr>
<th>Type de CIE</th>
<th>CIE</th>
<th>Justification (critères respectés)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espèces</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heterochone calyx</td>
<td>Critères du CERE : espèce importatrice/exportatrice d’éléments nutritifs; rôle clé/spécialisé dans le réseau trophique; espèce créant un habitat structurel; espèce rare, unique ou endémique; espèce sensible; espèce en déclin. Critères supplémentaires : espèce non passagère; espèce dont la surveillance est possible; espèce observée avec un VTG; espèce présente sur un complexe de récifs vivants/morts (plutôt qu’à proximité); espèce dépendante de récifs (morts ou vivants) pour une étape essentielle de sa vie ou d’autres besoins essentiels.</td>
</tr>
<tr>
<td></td>
<td>(Éponge siliceuse hermatypique)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aphrocallistes vastus</td>
<td>Critères du CERE : espèce importatrice/exportatrice d’éléments nutritifs; rôle clé/spécialisé dans le réseau trophique; espèce créant un habitat structurel; espèce rare, unique ou endémique; espèce sensible; espèce en déclin. Critères supplémentaires : espèce non passagère; espèce dont la surveillance est possible; espèce observée avec un VTG; espèce présente sur un complexe de récifs vivants/morts (plutôt qu’à proximité); espèce dépendante de récifs (morts ou vivants) pour une étape essentielle de sa vie ou d’autres besoins essentiels.</td>
</tr>
<tr>
<td></td>
<td>(Éponge siliceuse hermatypique)</td>
<td></td>
</tr>
<tr>
<td>Type de CIE</td>
<td>CIE</td>
<td>Justification (critères respectés)</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>----------------------------------</td>
</tr>
</tbody>
</table>
| **Farrea occa**
(Éponge siliceuse hermatypique) | **Critères du CERE** : espèce importatrice/exportatrice d’éléments nutritifs; rôle clé/spécialisé dans le réseau trophique; espèce créant un habitat structurel; espèce rare, unique ou endémique; espèce sensible; espèce en déclin.
Critères supplémentaires : espèce non passagère; espèce dont la surveillance est possible; espèce abondante; espèce observée avec un VTG; espèce présente sur un complexe de récifs vivants/morts (plutôt qu’à proximité); espèce dépendante de récifs (morts ou vivants) pour une étape essentielle de sa vie ou d’autres besoins essentiels. | |
| **Rhabdocalyptus dawsoni**
Éponges de Dawson | **Critères du CERE** : espèce importatrice/exportatrice d’éléments nutritifs; rôle clé/spécialisé dans le réseau trophique; espèce créant un habitat structurel; espèce sensible; espèce en déclin.
Critères supplémentaires : espèce non passagère; espèce dont la surveillance est possible; espèce abondante; espèce observée avec un VTG; espèce présente sur un complexe de récifs vivants/morts (plutôt qu’à proximité); espèce dépendante de récifs (morts ou vivants) pour une étape essentielle de sa vie ou d’autres besoins essentiels. | |
| **Habitat** | **Matrice d’éponges siliceuses mortes**
(y compris les matériaux qui s’y trouvent, comme les sédiments et les foraminifères) | **Critères du CERE** : habitat sensible (facilement détruit); habitat essentiel pour des espèces sensibles; habitat essentiel pour des espèces menacées ou en déclin; habitat essentiel au maintien d’espèces rares, uniques ou endémiques; habitat qui appuie les stades biologiques critiques; habitat assurant des fonctions ou des services écosystémiques essentiels. | |
| **Habitat d’éponges hermatypiques**
(comprenant principalement les éponges siliceuses, mais aussi les éponges de Dawson) | **Critères du CERE** : habitat biogénique; habitat sensible; habitat essentiel pour des espèces sensibles; habitat essentiel pour des espèces menacées ou en déclin; habitat essentiel au maintien d’espèces rares, uniques ou endémiques; habitat qui appuie les stades biologiques critiques; habitat assurant des fonctions ou des services écosystémiques essentiels. | |
| **Éponge de Dawson**
(en tant qu’habitat biogénique et structurel) | **Critères du CERE** : habitat biogénique; habitat sensible; habitat essentiel pour des espèces sensibles; habitat essentiel pour des espèces menacées ou en déclin; habitat essentiel au maintien d’espèces rares, uniques ou endémiques; habitat qui appuie les stades biologiques critiques; habitat assurant des fonctions ou des services écosystémiques essentiels. | |
| **Communauté** | **Démosponges** | Groupe fonctionnel sensible; groupe fonctionnel jouant un rôle essentiel dans le fonctionnement de l’écosystème. | |
| **Communauté de sébastes juvéniles** | **Communauté benthique des éponges mortes**
(de sédiments, de foraminifères et de polychètes) | Groupe fonctionnel jouant un rôle essentiel dans le fonctionnement de l’écosystème; groupe fonctionnel sensible. | |
| | **Communauté unique; communauté d’importance écologique; groupe fonctionnel jouant un rôle essentiel dans le fonctionnement de l’écosystème.** | |
Tableau 28 : Extrait de l’annexe envoyée aux examinateurs. Espèces ayant obtenu des cotes élevées d’après les critères de sélection, en tant que CIE potentielles, mais qui ne le sont pas encore. Les groupes (et les espèces) ayant obtenu les cotes les plus élevées ont été recensés d’après les publications spécialisées portant sur les récifs d’éponges du détroit d’Hécate. Comme les éponges Porifera étaient déjà prises en compte en tant que CIE relatives aux espèces (Heterochone calyx, Aphrocallistes vastus, Farrea occa et Rhabdocalyptus dawsoni), aux habitats (matrice d’éponges siliceuses mortes, éponges hermatypiques et éponges de Dawson) et aux attributs des communautés (déméropores), elles ont été exclues de la présente analyse. En raison de la difficulté à identifier les sébastes juvéniles par espèce, les espèces individuelles de sébastes ont également été exclues. Les groupes/espèces ont été classés par ordre décroissant en fonction de la cote totale, et tous les groupes/espèces ayant obtenu une cote inférieure à 2 pour les critères du CERE ont été retirés.

<table>
<thead>
<tr>
<th>Groupe taxonomique</th>
<th>Famille</th>
<th>Groupe</th>
<th>Critères du CERE</th>
<th>Considérations supplémentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Espèce importante/exportatrice</td>
<td>Espèce créant un habitat ou structurel</td>
</tr>
<tr>
<td>Actinoptérygiens (classe)</td>
<td>Scorpénidés</td>
<td>Sébastes < 20 cm</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Polychètes (classe), Terebellides (sous-ordre)</td>
<td>Terebellides (ordre)</td>
<td>Terebellides</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Actinoptérygiens (classe)</td>
<td>Scorpénidés</td>
<td>Sébastes > 20 cm</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Foraminifères</td>
<td>Arénacés</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Foraminifères</td>
<td>Calcaires</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Polychètes (classe), Sabellidés (sous-ordre)</td>
<td>Sabellidés (ordre)</td>
<td>Sabellidés</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Gastropodes</td>
<td>Cymatiidae</td>
<td>Fusitriton oregonensis (triton)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bivalves</td>
<td></td>
<td>Y compris : Astarte alaskensis, Axinopsida serricata, Hiattella arctica, Thysira flexuosa</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Anthozoaires (classe), Octocorallaires (sous-classe)</td>
<td>Coraux mous (génériques)</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anthozoaires (classe), Octocorallaires (sous-classe)</td>
<td>Gorgones (génériques)</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anthozoaires (classe), Madrépores (ordre)</td>
<td>Madrépores (génériques)</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Premier examen portant sur la sélection des CIE : Sally Leys et Amanda Kahn, Université de l’Alberta

Extraits d’un courriel daté du 26 janvier 2014 [traduction libre]

« Nous estimions toutes les deux que les critères de sélection des CIE étaient bons, et que les définitions des CIE telles qu'elles figurent dans votre tableau étaient également bonnes.

Le type de terrain est un élément relativement important pour les récifs d'éponges, et cet élément ne semble pas avoir été pris en compte dans aucun de ces "types de CIE". Un récif d'éponges ne se forme pas sur un sol plat. Une topographie surélevée doit être présente : dans les récifs du Nord, cette surélévation est obtenue grâce à l'affouillement des icebergs glaciaires et aux crêtes rocheuses sur lesquelles les éponges se sont d'abord installées. Ailleurs, il peut s'agir d'un till glaciaire semblable formant des rebords, des crêtes, etc. La caractéristique essentielle de la topographie surélevée est qu'elle accroît l'écoulement (généralement dans une seule direction), ce qui offre un apport continu de nourriture aux éponges. Le fait que le chalutage aplatit le fond marin est bien connu. Il sera essentiel de préserver la topographie du fond marin pour soutenir les récifs d'éponges, et il conviendrait donc pour l'avenir des récifs de tenir compte de la topographie du terrain dans les CIE.

Amanda et moi avons eu la même réaction à l'égard de la CIE relative aux attributs des communautés de "démosponges". Là où il existe des jardins d'éponges, des éponges siliceuses et des démosponges cohabitent, et il s'agit d'habitats très importants pour les crustacés et les poissons. D'une manière ou d'une autre, il faudra tenir compte de la diversité des "jardins d'éponges", peut-être en les distinguant des récifs, mais il conviendra de conserver leur caractère important au moment d'établir ces CIE. Il semble qu'autrement il y ait un risque de dire que cette zone n'a pas été incluse et qu'il est difficile de retracer les étapes pour l'inclure.

La communauté des "éponges mortes" est un autre point ayant suscité notre intérêt. J'estime que les "éponges mortes" sont comme les "roches vivantes" que les aquariophiles importent pour leurs aquariums. Ces éléments comportent tous les animaux et les éléments nutritifs nécessaires à la survie d'une communauté. Il serait peut-être préférable d'appeler cette communauté "squelettes d'éponges" plutôt qu"éponges mortes".

Selon moi, une communauté qui manque cruellement à l'appel est celle composée des galathées (Munida quadrispina) et des petits crabes décorateurs (tous deux sont très abondants et forment un lien vivant et probablement extrêmement important entre les éponges et les poissons). Peut-être suis-je passée à côté de ces éléments dans vos descriptions? Cependant, si ce n'est pas le cas, je les inclurais sans aucun doute en tant que communauté exigeant une attention particulière.

Les gorgones représentent une autre communauté importante qui ne figure pas dans vos tableaux (elles peuvent être présentes en grands nombres sur les bords des récifs).

Finalement, Amanda et moi estimons avoir peu d'autres choses à dire concernant les fonctions ou les rôles des autres animaux énumérés dans votre annexe. Plus d'études sont nécessaires! Des renseignements sont peut-être déjà disponibles concernant les foraminifères, mais je ne connais pas très bien les publications en la matière, donc cela vaudrait la peine d’y jeter un œil. »
Modifications apportées après cet examen (y compris une discussion approfondie) :

1. Proposition d’interroger un deuxième examinateur (K. Conway) à propos de l’inclusion de la topographie du fond marin en tant que CIE relative aux attributs des communautés et de l’écosystème.

2. Les éponges de Dawson (*R. dawsoni*) sont passées d’une CIE relative aux habitats à une CIE relative aux espèces afin de mieux en tenir compte au cours du processus de cotation.

3. Restructuration des CIE relatives habitats et des CIE relatives aux attributs des communautés et de l’écosystème comme suit :

4. CIE relatives aux habitats : (1) Squelettes d’éponges siliceuses; (2) Éponges hermatypiques vivantes; (3) Jardins d’éponges.

5. CIE relatives aux attributs des communautés et de l’écosystème : (1) Communauté des squelettes d’éponges siliceuses; (2) Communauté des récifs d’éponges siliceuses vivantes; (3) Communauté des jardins d’éponges [mélange de démosponges et d’éponges siliceuses]; (4) Topographie du till glaciaire essentiel au maintien de l’écoulement vers les récifs (CIE relative aux attributs de l’écosystème).

6. Jardins d’éponges mieux définis comme « la présence d’un mélange d’éponges ahermatypiques à l’extérieur de la structure composée d’éponges siliceuses hermatypiques ».

7. Intégration des galathées en tant que CIE relative aux espèces (représentantes des petits crustacés) au vu de l’assurance des experts en la matière et malgré le fait qu’elles n’ont pas obtenu une cote suffisante (8 au lieu de la plage habituelle de 10 à 12 pour la sélection en tant que CIE). Le même cas s’est produit pour l’application du CERE au mont sous-marin Bowie, où les galathées ont été sélectionnées malgré leurs faibles cotes après les commentaires des examinateurs et pour les raisons suivantes : espèce pouvant faire l’objet d’une surveillance; rôle potentiel en tant qu’espèce indicatrice en raison de sa capacité à tolérer des environnements à faible teneur en oxygène; espèce représentative des espèces mobiles dans les CIE relatives aux espèces; forte abondance dans cet environnement.

Examen des CIE sélectionnées et mises à jour (après les changements susmentionnés) et examen de la matrice des interactions : Kim Conway, Ressources naturelles Canada, extraits de l’entrevue en personne datée du 16 septembre 2014.

La cotation est un moyen intéressant pour déterminer l’importance des CIE qui semble la plupart du temps efficace. Je suis d’accord avec vous lorsque vous choisissez de mettre l’accent sur les CIE relatives aux habitats plutôt que sur les CIE relatives aux espèces. Par exemple, je ne comprends pas très bien pourquoi les coraux rouges du genre *Paragorgia* sont cotés, alors qu’ils ne font pas partie des récifs. C’est un peu étrange, car ils obtiennent une cote plus élevée que les galathées, lesquelles représentent probablement la macrofaune la plus commune sur les récifs, et de loin. Je soutiens donc l’utilisation du tableau 4 comme le montrent vos résultats.

Je pense également qu’un regroupement [plus large] des crustacés présents serait peut-être soutenu par les données. Je suis presque sûr qu’il existe de nombreuses espèces de crabes, y compris le crabe royal de Puget Sound ainsi que de petits crabes « décorateurs », des araignées de mer et l’omniprésente galathée. **Dans ce cas, les décapedes devraient-ils être le niveau de taxon reconnu par la CIE?** Cela couvrirait deux autres taxons dans votre liste d’espèces possibles en tant que CIE. Ou alors, peut-être faudrait-il créer une catégorie « Autres décapedes » pour les distinguer des galathées? (Des discussions avec des écologistes suggèrent que les groupes d’invertébrés dotés d’exosquelettes sont favorisés dans
l’environnement riche en spicules des récifs d’éponges, en comparaison avec d’autres groupes comme les cnidaires à corps mou [anémones] qui y sont très rares, sauf sur les récifs d’éponges de Fraser Ridge où, pour des raisons inconnues, ils sont communs).

Les euphausiacés et les chétognathes, qui sont des nageurs benthiques très communs sur certains sites récifaux, ne sont pas mentionnés. Je ne suggère pas que vous les incluez à ma demande. Je me demande simplement pourquoi ces espèces ne figurent sur aucune liste.

Pour revenir à la discussion sur le till, je suis d’accord avec l’idée selon laquelle un till exposé et des surfaces glaciaires sont nécessaires au développement des récifs. Sans un substrat composé de gravier, les éponges hermatypiques ne peuvent pas se fixer. Il s’agit toutefois d’une fonction relative au substrat et non d’une fonction relative à l’élévation topographique. Ainsi, il faudrait peut-être inclure une CIE qui tiendrait compte de l’importance des surfaces glaciaires et de l’amélioration topographique de la fonction des récifs pour couvrir tous les aspects de cet élément essentiel de l’habitat.

Remarque : K. Conway a également examiné la matrice des interactions, qui sert à déterminer les facteurs de stress et CIE qui sont censés interagir. Voici sa réponse :

« La matrice des interactions est très complète, et je ne vois pas vraiment d’erreurs ou d’omissions, à une exception près. Je me demandais si vous n’excluiez pas la pose de câbles parce qu’elle sera spécifiquement interdite dans la zone d’intérêt des récifs d’éponges ou si je suis passé à côté d’un élément. » [traduction libre]

L’ultime liste de CIE figurant dans le document principal illustre les derniers changements apportés après ces examens et discussions (Tableau 9 et Tableau 10).

D.2. EXAMEN DES COTES DE L’ÉVALUATION DES RISQUES

Les cotes de risque ont été examinées par deux experts en la matière. En raison du grand nombre de cotes à examiner pour chaque CIE, chaque examinateur a entrepris un examen complet d’une seule CIE. Ces examens ont été effectués en personne au cours d’une réunion de trois heures, en présence des examinatrices, L. Hannah et Miriam O. Toutes les notes prises lors de ces réunions sont reprises sous le questionnaire qui avait été fourni avant la réunion.

QUESTIONNAIRE FOURNI :

Cadre d’évaluation des risques écologiques pour la gestion écosystémique appliqué à l’écosystème des récifs d’éponges siliceuses du détroit d’Hécate et du bassin de la Reine-Charlotte

Contexte

Le Cadre d’évaluation des risques écologiques (CERE) pour la gestion écosystémique élaboré par la région du Pacifique du MPO (O et al., 2015) évalue les menaces distinctes et cumulatives que font peser les activités humaines (et les facteurs de stress connexes) sur les composantes décrites comme importantes pour l’écosystème étudié (composantes importantes de l’écosystème ou CIE).

Jusqu’à présent, le CERE a été évalué en l’appliquant à deux zones de protection marine (ZPM) de la région du Pacifique, à savoir la ZPM du mont sous-marin Bowie et la ZPM du champ hydrothermal Endeavour. Le projet actuel porte sur la zone d’intérêt des récifs d’éponges siliceuses du détroit d’Hécate et du bassin de la Reine-Charlotte. Le cadre comprend plusieurs phases : la phase d’établissement de la portée est terminée et ses résultats sont énumérés aux tableaux 1 et 2. Le tableau 1 présente les activités qui se déroulent dans la
région et les facteurs de stress qui y sont associés, et le tableau 2 présente les CIE qui ont sélectionnées et examinées.

Les résultats de l'évaluation des risques fournissent aux gestionnaires des conseils scientifiques sur les conséquences des facteurs de stress anthropiques sur l'écosystème qui peuvent être utilisés pour élaborer des objectifs de conservation, des stratégies de gestion et des plans d'action, y compris en ce qui concerne la surveillance, la recherche et la gestion. Tout au long de l'application de l'évaluation des risques, l'examen et les commentaires des experts que vous représentez sont essentiels à son succès et à son exactitude, et nous apprécions grandement toute contribution que vous pouvez apporter. Les commentaires provenant d'autres évaluations des risques indiquent que l'approche la plus efficace pour les examinateurs consiste à fournir leur avis en personne, au cours d'une réunion de deux à trois heures, pour passer en revue les notes et répondre aux questions.

Les pièces jointes suivantes sont fournies aux fins d'examen :

1. Les tableaux de cotation à examiner pour une CIE relative aux espèces (cotes exportées à partir de feuilles de calcul Excel et contenant les cotes brutes attribuées à une CIE).

2. La Fiche de référence des examinateurs (à consulter pendant l'examen), qui contient entre autres des renseignements sur les catégories utilisées et des explications sur les titres des colonnes.

Au cours de cet examen, nous vous serions reconnaissants de nous faire part de tous vos commentaires, en particulier :

(a) Les cotes attribuées sont-elles appropriées?

Si vous n'êtes pas d'accord avec les cotes, veuillez modifier la cote en conséquence et justifier votre choix (p. ex. texte explicatif ou références clés).

Toute autre justification jugée pertinente peut être ajoutée.

(b) Avons-nous oublié des interactions entre les CIE et les activités?

Points importants à retenir lors de la cotation ou l'examen de l'exposition :

- Le chevauchement concerne le facteur de stress et la CIE, et non le facteur de stress et la zone d'intérêt (ZPM).
- Les cotes s'appuient sur une exposition annuelle moyenne (p. ex. moyenne des cinq dernières années et plus).
- Il convient de supposer le Règlement sur les ZPM est en vigueur (c.-à-d. qu'il n'y a pas de pêche entrant en contact avec le fond, etc.).

Pour les CIE relatives aux espèces, le chevauchement correspond au pourcentage de chevauchement avec la population de cette espèce.

Le chevauchement temporel représente la persistance de l'interaction entre le facteur de stress et la CIE au cours d'une année (p. ex. le pétrole peut présenter une persistance plus longue qu'un panache de sédiments).
L'intensité (quantité) est une mesure relative, par exemple, par rapport au scénario de la pire éventualité d’un facteur de stress dans l’évaluation des risques ou encore par rapport à une même activité (l’écrasement provoqué par des débris rejetés par des navires sera faible par rapport à celui provoqué par une pêche au chalut de fond).

Les espèces aquatiques envahissantes (EAE) et les déversements d’hydrocarbures se distinguent des autres facteurs de stress pour ce qui est de la cotation. Comme ils sont cotés en fonction de l’exposition potentielle dans des circonstances imprévisibles, ce sont deux facteurs de stress liés à des activités menées dans la région qui pourraient avoir de graves conséquences, mais à ce jour, rien ne prouve qu’ils se soient produits. Les autres facteurs de stress sont quant à eux susceptibles de se produire ou se sont déjà produits dans le passé.

Exemple de chevauchement de la profondeur : monts sous-marins – Dans un environnement de monts sous-marins, la profondeur du fond marin varie fortement. Dans cet environnement, les activités et les facteurs de stress qui ont des répercussions sur toute la profondeur de l’eau sont pris en compte. Par exemple, la pêche de la morue charbonnière aux casiers se limite à une certaine profondeur, de sorte que le chevauchement de la profondeur avec des CIE se trouvant en dessous de cette profondeur serait faible (p. ex. éponges à la base du récif), tandis que les coraux situés à des profondeurs plus faibles présenteraient un chevauchement plus important.

[D.2 COMMENTAIRES DES EXAMINATEURS
D.2.1. K. Conway, Ressources naturelles Canada, 16 septembre 2014
K. Conway a examiné la CIE 1 – Heterochone calyx. L’examen a été mené en personne et les commentaires repris ici ont été notés lors de cette réunion.
• Il a passé en revue chaque cote et niveau d’incertitude pour la CIE n° 1 – H. calyx.
• Il est d’accord pour dire que les cotes examinées pour cette espèce d’éponges hermatypiques pourraient être utilisées pour les autres espèces d’éponges, avec seulement quelques changements mineurs.
• Quelques changements sont nécessaires, mais il est la plupart du temps d’accord avec les cotes attribuées.
• Certaines discussions ont lieu concernant l’inclusion d’éléments qui sont très peu susceptibles de poser un problème, en particulier les naufrages, par rapport à d’autres (comme la présence de débris enchevêtrés). Il conclut que les calculs des résultats définitifs éclaireront ces éléments.
• De nombreux éléments pourraient aussi s’appliquer aux éponges de Dawson, mais ce serait un peu différent.
• Il souligne qu’il existe une certaine confusion concernant le chevauchement de la profondeur et l’intensité (quantité).
• Il est préoccupé par l’augmentation de la pêche et d’autres activités aux alentours des récifs d’éponges en réponse à l’interdiction faite aux pêcheurs de pêcher dans la zone des récifs.
[Par exemple,] on pourrait voir une augmentation de la pêche au chalut pélagique, car c’est le seul type d’engin de pêche autorisé dans la zone des récifs, et les exploitants de ces engins peuvent fréquemment toucher le fond. Nous ne disposons pas de suffisamment d’éléments à ce sujet.

- Il suggère de communiquer avec Bob Stone pour voir s’il a des renseignements à propos des interactions entre les chaluts pélagiques et le fond marin afin d’obtenir des précisions sur la cotation de cette activité.

- Il cite le rejet de débris ligneux ou de résidus miniers comme facteur de stress (rejet). Toutefois, au vu de l’emplacement et de l’absence de précédent, il comprend pourquoi cet élément n’est pas pris en compte. Il souligne qu’il existait une activité de triage des billes sur l’île Malcolm et qu’il pourrait y en avoir sur Haida Gwaii. De plus, le Règlement sur les ZPM n’autoriserait pas de tels rejets.

- La cotation est difficile en se basant sur l’hypothèse que le Règlement sur les ZPM est en vigueur alors que nous ne savons pas en quoi il consistera. Il suggère d’indiquer dans le document en quoi consiste le Règlement.

- Il manque quelque chose pour les déchets jetés à la mer par les navires, ce qui sera inclus dans certains des facteurs de stress liés aux rejets des navires, ce qui est apparemment un problème courant. Il explique que, lorsqu’il a vu les vidéos de VTG, il a vu un nombre non négligeable de sacs en plastique et de débris enchevêtrés dans les éponges.

- Certaines des justifications doivent être approfondies.

- Depuis le travail qu’il a mené il y a dix ans, il n’y a eu que deux voyages scientifiques effectués à l’aide de VTG sur les récifs du détroit d’Hécate et du bassin de la Reine-Charlotte.

- Cotation des effets liés à l’utilisation de VTG, aux échantillonnages, etc. : Il faut garder à l’esprit que, généralement, une zone d’étude est sélectionnée pour être surveillée, et qu’il s’agit d’une zone relativement restreinte à l’intérieur de la zone des récifs d’éponges. Une fois qu’une petite zone d’étude a été choisie, les effets de l’étude peuvent afficher une cote plus élevée en raison de la petite taille de la zone. Tout dépend de la manière dont cela est fait.
D.2.2. A. Dunham, Secteur des sciences du MPO, 21 novembre 2014

A. Dunham a passé en revue les cotes pour la CIE 5 – *Munida quadrispina*. Voici les notes prises lors de la réunion :

- Elle est globalement d’accord avec les cotes attribuées, malgré quelques changements mineurs.
- Il serait utile d’inclure un tableau indiquant les cotes relatives de l’intensité pour le même facteur de stress en fonction des différentes activités.
- Déversements d’hydrocarbures – fréquence des déversements. Il serait possible de déterminer en quoi cela pourrait consister en examinant la fréquence des déversements d’hydrocarbures dans des régions comparables (p. ex. l’Alaska?).
- Lumière liée à des équipements scientifiques autres que des VTG. Quels autres types d’équipements scientifiques, à part les VTG, utilisent de la lumière?
- L’intensité relative doit être établie lorsque l’on désigne les effets directs de la pêche au chalut de fond comme le scénario de la pire éventualité. On peut seulement la comparer aux paires « facteur de stress-activité » qui figurent dans l’évaluation des risques.
- Elle aborde la prise en compte de l’exposition au moment de coter la résilience ainsi que la nécessité de définir clairement comment cette cotation se fait sans élément de référence (c.-à-d. les sources ponctuelles par rapport aux sources diffuses). Un oui ou un non suffirait presque pour les changements aigus et chroniques. Il semble que l’exposition devra être prise en compte pour tous les facteurs de stress pour lesquels l’exposition a besoin d’éléments de référence. Ce ne serait pas le cas s’il fallait répondre par oui ou par non à la question de savoir si cette interaction peut produire un effet ou non. Comme nous examinions de petites portions de la population, nous avons besoin d’éléments de références pour l’exposition.

EXAMEN DE L’ÉBAUCHE DU DOCUMENT DE RECHERCHE

K. Conway, Ressources naturelles Canada, juin 2015

Je joins mes commentaires sur l’étude d’évaluation des risques. Je pense que l’évaluation est assez claire, même si je dois dire que je ne suis peut-être pas la meilleure personne pour faire une lecture critique de ce genre d’évaluation, car cela sort un peu de mon champ d’expertise. Je pense que l’évaluation saisit assez bien les principaux risques, et je suis d’accord avec votre approche et votre évaluation générale des risques ainsi et avec la façon dont ils sont cotés et classés. La description de l’approche est très complète, et les critères utilisés sont examinés de manière approfondie.

Je suis un peu préoccupé par le fait que les jardins d’éponges soient devenus l’une des deux CIE relatives aux habitats et, pour cette raison, dans certaines sections, qu’ils dominent la discussion sur l’habitat (l’autre CIE étant l’habitat des squelettes d’éponges siliceuses). Les récifs d’éponges sont normalement considérés comme très différents des jardins d’éponges; il est donc préoccupant de voir qu’une évaluation des récifs d’éponges se transforme, dans une certaine mesure, en une discussion de l’importance de l’habitat des jardins d’éponges. Pour certains écologistes, les jardins d’éponges sont clairement plus importants que les récifs d’éponges sur le plan de la fourniture d’habitat, malgré le fait que nous ne savons que peu de choses à propos des récifs d’éponges. Il est donc important de faire preuve de clarté sur ce que
nous savons ou ce que nous ne savons pas à propos des récifs d'éponges lorsqu'on les considère globalement, en tant que système d'habitat. Nous décomposons ce système en éléments qui le constituent et, au bout du compte, le récif d'éponges n'est pas analysé en tant qu'habitat, ce qui est très étrange et peut-être une conséquence involontaire de cette décomposition. Personne ne parlerait des récifs coralliens en tant qu'habitat sans parler des récifs coralliens en tant qu'habitat, mais c'est bien ce qui est fait ici. Nous parlons de l'habitat des squelettes d'éponges siliceuses en tant qu'autre type d'habitat, ce qui reviendrait à parler des débris des récifs coralliens ou des avant-récifs sans aborder l'habitat corallien lui-même. Je ne sais pas s'il existe une solution facile pour résoudre ce problème dans le document, si ce n'est en l'indiquant clairement à l'endroit où la valeur ou la fonction de l'habitat est attribuée et prise en compte entre les critères relatifs aux communautés et aux habitats.

De plus, personne n'a étudié les jardins d'éponges jouxtant les récifs d'éponges dans la zone d'intérêt; par conséquent, le fait que cet élément occupe une telle place dans l'analyse finale des risques pose problème. Nous en savons très peu sur les récifs en tant que système d'habitat et nous devons faire attention à cet aspect. J'imagine que les récifs côtiers situés à des profondeurs accessibles en plongée, ceux du détroit de Georgie et ceux du détroit d'Hécate et de la baie de la Reine-Charlotte sont tous très différents sur le plan de la composition des espèces, des espèces sauvages présentes, des apports en sédiments et d'autres paramètres sédimentaires et l'océanographie, des éléments qui déterminent au bout du compte le fonctionnement de ces systèmes.

Plus généralement, je soulèverais une autre question : dans quelle mesure supposons-nous que les récifs présentent un état fonctionnel aujourd'hui alors que nous savons que beaucoup d'entre eux ont été très gravement endommagés? À mon avis, l'exigence absolue pour les travaux futurs dans la [ZPM] consisterait en une évaluation des zones chalutées par rapport aux zones non chalutées, et des zones récifales vivantes par rapport aux zones récifales non vivantes. La plus grande question à laquelle il faut répondre est de savoir si les grandes zones qui ont fait l'objet d'un chalutage important ou qui sont mortes peuvent ou non se rétablir. Si elles ne peuvent pas se rétablir, il ne sera pas très utile d'avoir une grande ZPM pour les récifs d'éponges, et cela pourrait même s'avérer préjudiciable, car une fonction présumée sera attribuée alors qu'aucune fonction biologique importante n'a réellement lieu. C'est pourquoi il conviendrait de mentionner cela dans l'analyse relative à la résilience et aux autres aspects connexes dans le document. De même, il faudrait mettre l'accent sur cette exigence en tant que possibilité de recherche dans le futur.
ANNEXE E. ÉTABLISSEMENT DE LA PORTÉE DES ACTIVITÉS ET DES FACTEURS DE STRESS CONNEXES D’APRÈS LES ÉVALUATIONS ANTÉRIEURES MENÉES À L’AIDE DU CERE.

Tableau 29. Liste initiale des activités fournies par la Direction des océans du MPO (2011) et activités supplémentaires recensées en vue d’une inclusion à partir d’autres sources.

La liste initiale des activités et des facteurs de stress potentiels peut être consultée sur le portail de données ouvertes du gouvernement du Canada.

Tableau 30. Liste des modèles de séquences des effets avec la date de leur dernière modification et indication de l’examen officiel dont ils ont fait l’objet, le cas échéant.

<table>
<thead>
<tr>
<th>Modèle de séquence des effets</th>
<th>Date de la dernière modification</th>
<th>Examen officiel?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Échouement</td>
<td>29/11/12</td>
<td>Oui (MPO, 2015)</td>
</tr>
<tr>
<td>Rejet</td>
<td>29/11/12</td>
<td>Oui (MPO, 2015)</td>
</tr>
<tr>
<td>Circulation</td>
<td>29/11/12</td>
<td>Oui (MPO, 2015)</td>
</tr>
<tr>
<td>Déversement d’hydrocarbures</td>
<td>29/11/12</td>
<td>Oui (MPO, 2015)</td>
</tr>
<tr>
<td>Abandon d’équipement</td>
<td>11/01/13</td>
<td>Non</td>
</tr>
<tr>
<td>Installation d’équipement</td>
<td>20/12/12</td>
<td>Non</td>
</tr>
<tr>
<td>Plongée en scaphandre</td>
<td>18/01/13</td>
<td>Non</td>
</tr>
<tr>
<td>Échantillonnage</td>
<td>11/01/12</td>
<td>Non</td>
</tr>
<tr>
<td>Utilisation de submersibles</td>
<td>21/12/12</td>
<td>Non</td>
</tr>
<tr>
<td>Levés sismiques/canons à air</td>
<td>23/12/12</td>
<td>Non</td>
</tr>
<tr>
<td>Pêche aux casiers ou aux nasses</td>
<td>15/07/13</td>
<td>Non</td>
</tr>
<tr>
<td>Pêche (générique)</td>
<td>13/06/2014</td>
<td>Non</td>
</tr>
</tbody>
</table>
ANNEXE F. ACTIVITÉS, SOUS-ACTIVITÉS ET FACTEURS DE STRESS CONNEXES DONT L’UTILISATION A ÉTÉ ENVISAGÉE DANS LE CADRE DE L’ÉVALUATION DES RISQUES POUR LA ZPM DH-BRC

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité</th>
<th>Facteur de stress</th>
<th>Type de facteurs de stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancrage</td>
<td></td>
<td>Perturbations du substrat [remise en suspension]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation du substrat [écrasement]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbations du substrat [objets étrangers]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation [bruit]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation [lumière]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction [EAE]</td>
<td>-</td>
</tr>
<tr>
<td>Rejet (y compris la transformation du poisson à bord)</td>
<td>Hydrocarbures/contaminants</td>
<td>Actuel/SD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbations du substrat [remise en suspension]</td>
<td>Actuel/SD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation du substrat [écrasement]</td>
<td>Actuel/SP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbations du substrat [objets étrangers]</td>
<td>Actuel/SP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Piégeage</td>
<td>Actuel/SP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introductions [matières biologiques]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Imitation des proies</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction [EAE]</td>
<td>Potentiel</td>
</tr>
<tr>
<td>Échouement</td>
<td></td>
<td>Perturbations du substrat [remise en suspension]</td>
<td>Actuel/SD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation du substrat [écrasement]</td>
<td>Actuel/SP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbations du substrat [objets étrangers]</td>
<td>Actuel/SP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation [bruit]</td>
<td>Actuel/SP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation [lumière]</td>
<td>Actuel/SP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction [EAE]</td>
<td>Potentiel</td>
</tr>
<tr>
<td>Circulation</td>
<td></td>
<td>Perturbations du substrat [remise en suspension]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation [bruit]</td>
<td>Actuel/SD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation [lumière]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation [turbulence]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation [déplacement d’eau]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collisions</td>
<td>-</td>
</tr>
<tr>
<td>Activité</td>
<td>Sous-activité</td>
<td>Facteur de stress</td>
<td>Type de facteurs de stress</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Déversement d'hydrocarbures</td>
<td></td>
<td>Pétrole</td>
<td>Potentiel</td>
</tr>
<tr>
<td>Cartographie acoustique</td>
<td></td>
<td>Perturbation [acoustique]</td>
<td>Actuel/SD</td>
</tr>
<tr>
<td>Abandon d'équipement</td>
<td></td>
<td>Hydrocarbures/contaminants</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbations du substrat [remise en suspension]</td>
<td>Actuel/SD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation du substrat [écrasement]</td>
<td>Actuel/SP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbations du substrat [objets étrangers]</td>
<td>-</td>
</tr>
<tr>
<td>Installation/utilisation d'équipement</td>
<td></td>
<td>Hydrocarbures/contaminants</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbations du substrat [remise en suspension]</td>
<td>Actuel/SD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation du substrat [écrasement]</td>
<td>Actuel/SP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbations du substrat [objets étrangers]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation [bruit]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation [lumière]</td>
<td>-</td>
</tr>
<tr>
<td>Échantillonnage</td>
<td></td>
<td>Perturbations du substrat [remise en suspension]</td>
<td>Actuel/SD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation du substrat [écrasement]</td>
<td>Actuel/SP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collisions</td>
<td>Actuel/SP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prélèvement de matières biologiques</td>
<td>Actuel/SP</td>
</tr>
<tr>
<td>Levés sismiques</td>
<td></td>
<td>Perturbation [sismique]</td>
<td>Potentiel</td>
</tr>
<tr>
<td>Utilisation de submersibles</td>
<td></td>
<td>Hydrocarbures/contaminants</td>
<td>Actuel/SP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collisions</td>
<td>Actuel/SP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbations du substrat [remise en suspension]</td>
<td>Actuel/SD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation du substrat [écrasement]</td>
<td>Actuel/SP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation [bruit]</td>
<td>Actuel/SP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation [lumière]</td>
<td>Actuel/SP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction [EAE]</td>
<td>Potentiel</td>
</tr>
<tr>
<td>Pêche</td>
<td></td>
<td>Perturbations du substrat [remise en suspension]</td>
<td>Actuel/SD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation du substrat [écrasement]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prélèvement de matières biologiques</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Piégeage</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collisions</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction [EAE]</td>
<td>Potentiel</td>
</tr>
<tr>
<td>Pêche au chalut de fond</td>
<td></td>
<td>Perturbations du substrat [remise en suspension]</td>
<td>Actuel/SD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation du substrat [écrasement]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prélèvement de matières biologiques</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Piégeage</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collisions</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction [EAE]</td>
<td>Potentiel</td>
</tr>
<tr>
<td>Pêche au chalut pélagique</td>
<td></td>
<td>Perturbations du substrat [remise en suspension]</td>
<td>Actuel/SD</td>
</tr>
<tr>
<td>Activité</td>
<td>Sous-activité</td>
<td>Facteur de stress</td>
<td>Type de facteurs de stress</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>----------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation du substrat [écrasement]</td>
<td>Actuel/SP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prélèvement de matières biologiques</td>
<td>Actuel/SP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Piégeage</td>
<td>Actuel/SP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collisions</td>
<td>Actuel/SP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction [EAE]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Pêche à la palangre</td>
<td>Perturbations du substrat [remise en suspension]</td>
<td>Actuel/SD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation du substrat [écrasement]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prélèvement de matières biologiques</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Piégeage</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collisions</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction [EAE]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Pêche aux casiers</td>
<td>Perturbations du substrat [remise en suspension]</td>
<td>Actuel/SD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation du substrat [écrasement]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prélèvement de matières biologiques</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Piégeage</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collisions</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction [EAE]</td>
<td>Potentiel</td>
</tr>
<tr>
<td></td>
<td>Canne et moulinet</td>
<td>Perturbations du substrat [remise en suspension]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perturbation du substrat [écrasement]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prélèvement de matières biologiques</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Piégeage</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collisions</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction [EAE]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Transformation</td>
<td>Voir Navires → Rejets</td>
<td>-</td>
</tr>
</tbody>
</table>
Tableau 32. Descriptions de tous les facteurs de stress dont l'utilisation a été envisagée dans l'évaluation des risques.

<table>
<thead>
<tr>
<th>Facteur de stress</th>
<th>Activités liées au facteur de stress</th>
<th>Description ou exemples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perturbation [acoustique]</td>
<td>Recherche</td>
<td>C’est le seul facteur de stress associé à la cartographie acoustique. Les chercheurs utilisent des fréquences allant de 12 kHz pour les eaux profondes à 70-100 kHz pour la cartographie des eaux moins profondes. Les sonars multifaisceaux présentent des niveaux de source élevés, mais l’orientation des faisceaux est très précise. On dispose de peu de données sur les impacts de la perturbation acoustique sur les éponges et les autres espèces citées dans cette évaluation (c.-à-d. impacts des levés multifaisceaux).</td>
</tr>
<tr>
<td>Perturbation [lumière]</td>
<td>Trafic maritime</td>
<td>Lumière associée à l’ancrage, à l’échouement et à la circulation</td>
</tr>
<tr>
<td></td>
<td>Recherche</td>
<td>Lumière provenant des submersibles scientifiques</td>
</tr>
<tr>
<td>Perturbation [bruit]</td>
<td>Trafic maritime</td>
<td>Le bruit des navires est omniprésent dans tout le milieu marin, en particulier aux basses fréquences (< 300 Hz) ([Erbe et al., 2012; Merchant et al., 2012]. Le bruit océanique anthropique est un facteur de stress chronique pour les organismes marins, et il peut avoir des effets délétères sur divers organismes marins, comme les mammifères, les poissons et les céphalopodes. Chez les poissons, les effets comprennent la perturbation et la dissuasion, des conséquences sur la valeur adaptative, les interactions prédateur-proie et la communication, ainsi que des effets de masquage (examinés dans Slabbekoorn et al., 2010).</td>
</tr>
<tr>
<td></td>
<td>Recherche</td>
<td>Bruit provenant des activités scientifiques (submersibles, installation et abandon d’équipement).</td>
</tr>
<tr>
<td>Facteur de stress</td>
<td>Activités liées au facteur de stress</td>
<td>Description ou exemples</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Perturbation [déplacement d’eau]</td>
<td>Trafic maritime</td>
<td>Les perturbations résultant du déplacement de l’eau lié à la circulation des navires (sillage) peuvent avoir des impacts semblables à ceux décrits ci-dessus (Perturbation [turbulence]).</td>
</tr>
<tr>
<td>Piégeage</td>
<td>Trafic maritime</td>
<td>Le piégeage ou l’enchevêtrement d’organismes dans des matériaux ou des débris rejétés comme des plastiques, des contenants, etc. L’enchevêtrement peut induire un étouffement, par exemple avec des sacs en plastique.</td>
</tr>
<tr>
<td></td>
<td>Pêche</td>
<td>Le piégeage ou l’enchevêtrement d’organismes dans des engins de pêche actifs ou perdus (y compris les engins de pêche fantôme et les prises accessoires).</td>
</tr>
<tr>
<td>Introduction d’EAE</td>
<td>Trafic maritime</td>
<td>Impacts de l’introduction d’EAE par le renouvellement de l’eau de ballast ou l’encrassement de la coque.</td>
</tr>
<tr>
<td></td>
<td>Recherche</td>
<td>Impacts de l’introduction d’EAE transportées sur les submersibles/VTG.</td>
</tr>
<tr>
<td>Facteur de stress</td>
<td>Activités liées au facteur de stress</td>
<td>Description ou exemples</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Pêche</td>
<td>Impacts des EAE introduites par l'intermédiaire d'engins de pêche qui les transportent.</td>
<td></td>
</tr>
<tr>
<td>Introduction de matières biologiques</td>
<td>Trafic maritime</td>
<td>Déversement par des navires d'eaux usées riches en éléments nutritifs ou de déchets de transformation du poisson (pouvant accroître les niveaux d'éléments nutritifs) ou de toute autre matière biologique dans la région.</td>
</tr>
<tr>
<td>Hydrocarbures/contaminants</td>
<td>Trafic maritime</td>
<td>Rejet chronique d'hydrocarbures par des navires.</td>
</tr>
<tr>
<td></td>
<td>Déversement d'hydrocarbures</td>
<td>Déversement catastrophique (non chronique) d'hydrocarbures ou de contaminants en provenance d'un navire. Les impacts environnementaux d'un déversement d'hydrocarbures peuvent être graves et causer une mortalité directe importante en plus d'effets sublétaux pouvant persistant pendant des années après le déversement.</td>
</tr>
<tr>
<td></td>
<td>Recherche</td>
<td>Rejet de contaminants et de petites quantités d'hydrocarbures pendant l'installation d'équipement, après son abandon et au moment d'utiliser un submersible.</td>
</tr>
<tr>
<td>Imitation des proies</td>
<td>Trafic maritime</td>
<td>Débris en plastique ou autres pouvant être confondus avec des proies par des organismes marins et entraînant leur ingestion (divers types de débris en plastique).</td>
</tr>
<tr>
<td>Prélèvement de matières biologiques</td>
<td>Recherche</td>
<td>Prélèvement de biote lié à l'échantillonnage à des fins scientifiques.</td>
</tr>
<tr>
<td></td>
<td>Pêche</td>
<td>Prélèvement de biote lié aux activités de pêche.</td>
</tr>
<tr>
<td>Collisions</td>
<td>Trafic maritime</td>
<td>Collisions entre des organismes mobiles (p. ex. mammifères marins) et des navires (y compris leurs hélices) en circulation.</td>
</tr>
<tr>
<td></td>
<td>Pêche</td>
<td>Collisions entre des organismes mobiles et des engins de pêche.</td>
</tr>
<tr>
<td>Facteur de stress</td>
<td>Activités liées au facteur de stress</td>
<td>Description ou exemples</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Perturbation du substrat</td>
<td>Trafic maritime</td>
<td>Écrasement lié à des éléments rejetés par des navires (p. ex. chutes de pierres ou de conteneurs d’expédition) et aux échouements (épaves).</td>
</tr>
<tr>
<td></td>
<td>Pêche</td>
<td>Écrasement du substrat et d’organismes benthiques sessiles ou se déplaçant lentement lié à l’utilisation d’engins de pêche.</td>
</tr>
<tr>
<td>Perturbations du substrat</td>
<td>Trafic maritime</td>
<td>Obstacle touchant ou altérant l’habitat qui provient du rejet de matériaux (p. ex. la cargaison ou l’équipement d’un navire).</td>
</tr>
<tr>
<td>[objets étrangers]</td>
<td>Recherche</td>
<td>Obstacle touchant ou altérant l’habitat qui provient de l’installation d’équipement scientifique.</td>
</tr>
<tr>
<td></td>
<td>Pêche</td>
<td>Les activités de pêche perturbent et mettent en suspension les sédiments, lesquels peuvent entraîner l’étouffement d’organismes benthiques.</td>
</tr>
<tr>
<td>Perturbations du substrat</td>
<td>Trafic maritime</td>
<td>Remise en suspension des sédiments liés à l’utilisation d’hélices en eaux peu profondes ou aux effets de matériaux rejetés.</td>
</tr>
<tr>
<td></td>
<td>Pêche</td>
<td>Les activités de pêche perturbent et mettent en suspension les sédiments, lesquels peuvent entraîner l’étouffement d’organismes benthiques.</td>
</tr>
</tbody>
</table>
ANNEXE G. MATRICE DES INTERACTIONS ENTRE LES COMPOSANTES IMPORTANTES DE L’ÉCOSYSTÈME (CIE) ET LES FACTEURS DE STRESS

Les interactions ont été cotées comme suit : « 1 » = une interaction possible; « 0 » = aucune interaction possible ou aucune interaction négative probable; « NC » = non cotée (pour les CIE relatives aux attributs des communautés et de l’écosystème).

La matrice des interactions entre les CIE et les facteurs de stress pour la zone de protection marine des récifs d’éponges siliceuses du détroit d’Hécate et du bassin de la Reine-Charlotte (ZPM DH-BRC) peut être consultée sur le portail de données ouvertes du gouvernement du Canada.
ANNEXE H. TABLEAUX DES FACTEURS DE RÉTABLISSEMENT POUR LES CIE RELATIVES AUX ESPÈCES, AUX HABITATS ET AUX ATTRIBUTS DES COMMUNAUTÉS ET DE L’ÉCOSYSTÈME

H.1. CIE relatives aux espèces

Tableau 33. Facteurs pour l’évaluation des risques que posent les activités et les facteurs de stress pour les CIE relatives aux espèces (O et al., 2015).

<table>
<thead>
<tr>
<th>Description du facteur de rétablissement</th>
<th>Catégorie de risque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fécondité</td>
<td>Faible (1)</td>
</tr>
<tr>
<td>À l’échelle de toute la population, le nombre moyen de descendants nés d’une femelle chaque année.</td>
<td>> 100 000</td>
</tr>
<tr>
<td>Taux de mortalité naturelle</td>
<td>> 0,4</td>
</tr>
<tr>
<td>Taux de mortalité instantanée. Les populations avec des taux de mortalité naturelle instantanée supérieurs ont probablement des taux de rétablissement supérieurs.</td>
<td></td>
</tr>
<tr>
<td>Âge à la maturité</td>
<td>< 2 ans</td>
</tr>
<tr>
<td>Âge à la première reproduction</td>
<td></td>
</tr>
<tr>
<td>Stade biologique</td>
<td>Non touché ou seulement les stades matures</td>
</tr>
<tr>
<td>Le ou les stades biologiques perturbés par un facteur de stress. Si un facteur de stress affecte des individus avant qu’ils aient eu l’occasion de se reproduire, le rétablissement risque d’être inhibé.</td>
<td></td>
</tr>
<tr>
<td>Connectivité entre les populations</td>
<td>Régulière (pas un segment de population distinct ni une unité évolutionnaire significative)</td>
</tr>
<tr>
<td>Échanges avec d’autres populations en fonction du caractère épars de la répartition, du degré d’isolement et de la capacité de dispersion potentielle.</td>
<td></td>
</tr>
<tr>
<td>Espèces inscrites</td>
<td>Données insuffisantes</td>
</tr>
<tr>
<td>Décrit la situation des espèces protégées, préoccupantes, menacées ou en voie de disparition inscrites sur les listes du Comité sur la situation des espèces en péril au Canada (COSEPAC), de la Loi sur les espèces en péril et de l’Union internationale pour la conservation de la nature (UICN). Si l’espèce n’est pas inscrite et si son inscription n’est pas envisagée, ne pas inclure cet élément dans le calcul.</td>
<td></td>
</tr>
</tbody>
</table>
Facteurs de rétablissement supplémentaires pour les poissons (Hobday et al., 2007) :

<table>
<thead>
<tr>
<th>Description du facteur de rétablissement</th>
<th>Catégorie de risque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Faible (1)</td>
</tr>
<tr>
<td>Âge maximal</td>
<td>< 10 ans</td>
</tr>
<tr>
<td>Taille maximale</td>
<td>< 60 cm</td>
</tr>
<tr>
<td>Coefficient de croissance de von Bertalanffy (k)</td>
<td>> 0,25</td>
</tr>
</tbody>
</table>

H.2. CIE relatives aux habitats

Tableau 34. Facteurs de risque pour l’évaluation des risques potentiels que posent les activités et les facteurs de stress pour les CIE relatives aux habitats (O et al., 2015).

<table>
<thead>
<tr>
<th>Description du facteur de rétablissement</th>
<th>Catégorie de risque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Élevée (1)</td>
</tr>
<tr>
<td>Stade biologique touché (habitats biotiques)</td>
<td>Non touché ou seulement les stades matures</td>
</tr>
<tr>
<td>Fréquence des perturbations naturelles</td>
<td>Quotidienne à hebdomadaire</td>
</tr>
<tr>
<td>Taux de mortalité naturelle (habitats biotiques)</td>
<td>> 0,4</td>
</tr>
<tr>
<td>Taux de recrutement (habitats biotiques)</td>
<td>Annuel ou plus fréquent</td>
</tr>
<tr>
<td>Age à la maturité/délai de rétablissement</td>
<td>< 1 an</td>
</tr>
<tr>
<td>Aire de répartition/fragmentation</td>
<td>Zone d’occurrence > 20 000 km²; fragmentation faible</td>
</tr>
<tr>
<td>Connectivité</td>
<td>Régulière (pas un segment de population distinct ni une unité évolutionnaire significative);</td>
</tr>
</tbody>
</table>
Description du facteur de rétablissement

<table>
<thead>
<tr>
<th>Description du facteur de rétablissement</th>
<th>Catégorie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Élevée (1)</td>
</tr>
<tr>
<td>Dispersion élevée (> 100 km)</td>
<td></td>
</tr>
</tbody>
</table>

H.3. CIE relatives aux attributs des communautés et de l’écosystème

Tableau 35. Attributs des facteurs de rétablissement pour l’évaluation des risques potentiels que posent les activités et les facteurs de stress pour les CIE relatives aux attributs des communautés et de l’écosystème (O et al., 2015).

<table>
<thead>
<tr>
<th>Description</th>
<th>Facteurs de rétablissement</th>
<th>Catégorie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Élevée (1)</td>
</tr>
<tr>
<td>Richesse des espèces (s)</td>
<td>La mesure relative de la richesse des espèces est élevée.</td>
<td>La mesure relative de la richesse des espèces est moyenne.</td>
</tr>
<tr>
<td>Plus grande richesse, plus grande résistance et rétablissement plus rapide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distinction taxonomique (données sur la présence ou l’absence). Une plus grande distinction taxonomique suppose une plus grande résistance.</td>
<td>La mesure relative de la distinction taxonomique est élevée.</td>
<td>La mesure relative de la distinction taxonomique est moyenne.</td>
</tr>
<tr>
<td>Pourcentage de groupes fonctionnels avec un nombre total de membres par groupe supérieur à 5 ou à 10. Plus les groupes sont nombreux, moins la vulnérabilité est élevée.</td>
<td>> 50 %</td>
<td>30 à 50 %</td>
</tr>
<tr>
<td>Abondance par groupe fonctionnel (plus l’abondance par groupe fonctionnel est élevée, plus la résistance est élevée).</td>
<td>L’abondance relative est élevée.</td>
<td>L’abondance relative est moyenne.</td>
</tr>
</tbody>
</table>
ANNEXE I. ANALYSES PAR SIG POUR ESTIMER LE CHEVAUCHEMENT SPATIAL ET TEMPOREL (COMPOSANTES DE L’EXPOSITION)

I.1. TRAFIC MARITIME

I.1.1. Trafic des navires de charge

Figure 18. Les données sur le trafic des navires de charge montrent le nombre annuel moyen d’heures de navigation par jour reporté sur une grille de 5 x 5 km² (2008-2010). Les données ont fait l’objet d’une normalisation logarithmique pour contrebalancer les effets du trafic maritime côtier intense. Source des données : Hillard et Pelot, 2012. Figure fournie par P. O’Hara, Environnement Canada.
I.1.2. Autre trafic maritime

Figure 19. Carte de la densité moyenne (tout le trafic maritime) en 2013 (d’après les rapports du système d’identification automatique [SIA] des navires; l’unité de mesure est le nombre quotidien d’heures de navigation par jour). Les formes noires montrent les emplacements approximatifs des trois complexes de récifs d’éponges siliceuses de la zone de protection marine des récifs d’éponges siliceuses du détroit d’Hécate et du bassin de la Reine-Charlotte (ZPM DH-BRC). La figure de base est tirée de Simard et al. (2014).
I.2. RECHERCHE

Figure 20. Relevés en submersibles effectués près de l’empreinte de la ZPM; données fournies par L. Barton, Secteur des sciences du MPO, base de données du MPO sur les mollusques et crustacés (J. Nephin, Secteur des sciences du MPO, 2017).

Tableau 36. Description des croisières de recherche menées dans la ZPM DH-BRC.

<table>
<thead>
<tr>
<th>Année</th>
<th>ID</th>
<th>Navire</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>PAR 86A</td>
<td></td>
<td>Un levé géophysique a détecté des anomalies acoustiques dans le bassin de la Reine-Charlotte, plus tard identifiées comme des récifs d’éponges.</td>
</tr>
<tr>
<td>1987</td>
<td>END 87A</td>
<td>NAFC Endeavour</td>
<td>Levés géophysiques à haute résolution des biohermes à l’aide d’un sonar à balayage latéral de 100 kHz et d’un outil de profil sismique</td>
</tr>
<tr>
<td>1988</td>
<td>END 88B</td>
<td></td>
<td>茱 (d’ai d’un diamètre interne de 66 mm) [Conway et al., 1991].</td>
</tr>
<tr>
<td>1994</td>
<td>VEC94A</td>
<td>NGCC Vector</td>
<td>Levé géocartographique sur le banc Dogfish, dans le détroit d’Hécate pour évaluer l’élévation du niveau de la mer. Des échantillons</td>
</tr>
<tr>
<td>1999</td>
<td>PGC 99001</td>
<td>NGCC John P. Tully</td>
<td>Vidéo et images fixes provenant d’importantes opérations de plongée à l’aide du submersible deux places Delta, et images supplémentaires</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>avec des caméras dérivantes. Trois types d’échantillonneurs de fond ont été utilisés : pompes d’aspiration (aspirant une couche de 1 mm à la</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>surface des sédiments); échantillonneurs Shipek (échantillonneur à ressort prélevant des échantillons de sédiments superficiels du fond marin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sur une zone de 20 cm x 20 cm et à 10 cm de profondeur); et bennes IKU (larges mâchoires à ressort atteignant 50 cm de profondeur et</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>recueillant un volume important de sédiments [0,5 m³] permettant de conserver la stratigraphie) (Conway et al., 2005b; Guilbault et al., 2006).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Des centaines d’échantillons de squelettes d’éponges ont été prélevés avec la benne IKU (Krautter et al., 2001).</td>
</tr>
<tr>
<td>2000</td>
<td>MPO 2000-2001</td>
<td>NGCC John P. Tully</td>
<td>Levés océanographiques détaillés à proximité des complexes des récifs nord et sud qui ont permis de recueillir : des données sur l’oxygène,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>la chlorophylle et les éléments nutritifs (au moyen d’une rosette de bouteilles Niskin); des données sur la transmissivité, la conductivity,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>la température et la profondeur (CTP); des</td>
</tr>
<tr>
<td>Année</td>
<td>ID</td>
<td>Navire</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>2001</td>
<td>PGC 01001</td>
<td>NGCC Vector</td>
<td>Échantillons de zooplancton (filet Bongo) [Conway et al., 2005b]).</td>
</tr>
<tr>
<td>2003</td>
<td>PGC 03003</td>
<td>NGCC Vector</td>
<td>Données bathymétriques multifaisceaux sur deux des quatre complexes récifaux.</td>
</tr>
<tr>
<td>2012</td>
<td>MPO</td>
<td>NGCC Vector</td>
<td>Croisière de recherche dans la ZPM des récifs d’éponges siliceuses. Vidéos et images fixes obtenues à l’aide d’un VTG. Miriam O. (scientifique en chef) et S. Leys (Université de l’Alberta).</td>
</tr>
</tbody>
</table>
I.3. PÊCHE

Figure 21. Événements de pêche au chalut de fond (2006-2013) près de l’empreinte de la ZPM (S. Davies, Secteur des sciences du MPO, 2015)
Figure 22. Événements de pêche au chalut pélagique (2006-2013) près de l’empreinte de la ZPM (S. Davies, Secteur des sciences du MPO, 2015).
Figure 23. Événements de pêche avec ligne et hameçon (2006-2013) près de l’empreinte de la ZPM (S. Davies, Secteur des sciences du MPO, 2015).
Figure 24. Événements de pêche aux casiers (2006-2013) près de l’empreinte de la ZPM (S. Davies, Secteur des sciences du MPO, 2015).
I.3.2. Prises de sébastes

<table>
<thead>
<tr>
<th>Nom des espèces</th>
<th>Zone de gestion adaptative (ZGA) [total en kg]</th>
<th>Zone verticale de gestion adaptative (ZVGA) [total en kg]</th>
<th>Moyenne dans la ZGA (kg/an)</th>
<th>Moyenne dans la ZVGA (kg/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sébaste bocace</td>
<td>98,18</td>
<td>136,30</td>
<td>14,0</td>
<td>19,5</td>
</tr>
<tr>
<td>Sébaste à bandes vertes</td>
<td>4,45</td>
<td>0</td>
<td>0,6</td>
<td>0</td>
</tr>
<tr>
<td>Sébaste à longue mâchoire</td>
<td>11 898,91</td>
<td>2 371,53</td>
<td>1699,8</td>
<td>338,8</td>
</tr>
<tr>
<td>Sébaste à bandes rouges</td>
<td>60,5</td>
<td>3,63</td>
<td>8,6</td>
<td>0,5</td>
</tr>
<tr>
<td>Sébaste à raie rouge</td>
<td>181,44</td>
<td>3 017,76</td>
<td>25,9</td>
<td>431,1</td>
</tr>
<tr>
<td>Sébaste argenté</td>
<td>355,08</td>
<td>678,22</td>
<td>50,7</td>
<td>96,9</td>
</tr>
<tr>
<td>Veuve</td>
<td>521,63</td>
<td>25,39</td>
<td>74,5</td>
<td>3,6</td>
</tr>
<tr>
<td>Sébaste aux yeux jaunes</td>
<td>0</td>
<td>5,44</td>
<td>0</td>
<td>0,8</td>
</tr>
<tr>
<td>Sébaste à bouche jaune</td>
<td>6 734,43</td>
<td>11 275,51</td>
<td>962,1</td>
<td>1 610,8</td>
</tr>
<tr>
<td>Sébaste à queue jaune</td>
<td>2 034,84</td>
<td>1 059,56</td>
<td>290,7</td>
<td>151,4</td>
</tr>
<tr>
<td>Totaux (en kg) ou (en kg/an)</td>
<td>21 889,46</td>
<td>18 573,34</td>
<td>3 127,07</td>
<td>2 653,33</td>
</tr>
</tbody>
</table>

I.3.3. Calculs du chevauchement

Le chevauchement des engins de pêche du poisson de fond sur les récifs d’éponges est estimé :

1. En déterminant la superficie moyenne du fond marin balayée par l’engin pendant un déploiement ou un événement.
2. En multipliant cette superficie balayée par le nombre moyen d’événements de pêche.
3. On suppose que :
 a. L’engin suit une ligne droite du début à la fin de son déploiement (les données obtenues peuvent être sous-estimées si l’engin serpente).
Il n'y a aucun chevauchement entre les déploiements d'engins de pêche (les données obtenues peuvent être surestimées si un tel chevauchement existe).

Tableau 38. Zone d'intérêt du détroit d'Hécate : nombre total d'événements de pêche (2007-2013) et moyenne annuelle par zone de la ZPM (ZPC, ZGA, ZVGA), type d'engin utilisé et estimation du nombre maximal de jours de pêche par année en pourcentage, selon les données des observateurs.

<table>
<thead>
<tr>
<th>Zone de la ZPM</th>
<th>Chalut de fond</th>
<th>Chalut pélagique</th>
<th>Palangre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jours de pêche</td>
<td>% de l'année</td>
<td>Jours de pêche</td>
</tr>
<tr>
<td>ZGA</td>
<td>96</td>
<td>26,3</td>
<td>38</td>
</tr>
<tr>
<td>ZPC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ZVGA</td>
<td>0</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>Toutes les zones</td>
<td>96</td>
<td>26,3</td>
<td>92</td>
</tr>
</tbody>
</table>

*Moyenne plus probable de quatre séries par jour de pêche pour 51,3 % dans la ZGA et 5,5 % dans la ZPC.

<table>
<thead>
<tr>
<th>Moyenne annuelle Zone de la ZPM</th>
<th>Chalut de fond</th>
<th>Chalut pélagique</th>
<th>Palangre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jours de pêche</td>
<td>% de l'année</td>
<td>Jours de pêche</td>
</tr>
<tr>
<td>ZGA</td>
<td>13,7</td>
<td>3,8</td>
<td>5,4</td>
</tr>
<tr>
<td>ZPC</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ZVGA</td>
<td>0</td>
<td>0</td>
<td>7,7</td>
</tr>
<tr>
<td>Toutes les zones</td>
<td>13,7</td>
<td>3,8</td>
<td>15,3</td>
</tr>
</tbody>
</table>

% de l'année = nombre maximal de jours de pêche/365 jours x 100 (en supposant un événement de pêche par jour en tant que scénario de la pire éventualité).
ANNEXE J. SCRIPT R POUR CALCULER LE RISQUE ET INTÉGRER L’INCERTITUDE

Exemple de fichier d’entrée au format «.csv » à utiliser avec le script R connexe.

Tableau 39. En-tête du fichier d’entrée de données «.csv » à utiliser avec le script R pour mener l’évaluation des risques. Chaque ligne correspond à une seule interaction entre une composante importante de l’écosystème (CIE) et un facteur de stress. Le nombre de lignes dans le fichier d’entrée doit être égal au nombre d’interactions cotées « 1 » dans la matrice des interactions entre les CIE et les facteurs de stress.

<table>
<thead>
<tr>
<th>CIE</th>
<th>Activité</th>
<th>Sous-activité</th>
<th>Secteur</th>
<th>Zone</th>
<th>Profondeur</th>
<th>Temporel</th>
<th>Temp</th>
<th>Intensité</th>
<th>Intensité2</th>
<th>ChangementAlgu</th>
<th>ChangementChronique</th>
<th>CC</th>
<th>AgeMax</th>
<th>AgeMax</th>
<th>TailleMax</th>
<th>TailleMax</th>
<th>VonB</th>
<th>VonB</th>
<th>AgeMat</th>
<th>AgeMat</th>
<th>StadeBiologique</th>
<th>Connectivité</th>
<th>MortNat</th>
<th>MortNat</th>
<th>Inscrites</th>
<th>Inscrites</th>
<th>Fécondité</th>
</tr>
</thead>
</table>
ANNEXE K. RÉSULTATS POUR TOUTES LES INTERACTIONS ENTRE LES COMPOSANTES IMPORTANTES DE L’ÉCOSYSTÈME (GIE) ET LES FACTEURS DE STRESS

Ces résultats incluent tous les facteurs de stress (potentiels et actuels) et utilisent une distribution normale tronquée pour modéliser l'incertitude. Le Tableau 17 est un sous-ensemble des résultats rapportés ici.

H. calyx

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Médiane 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
<td>Moyenne MC.10 MC.90</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Déversement d’hydrocarbures – Pétrole</td>
<td>81,78 53,38 117,72</td>
<td>8,82 6,69 11,04</td>
<td>9,53 6,70 12,42</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>32,65 15,45 54,76</td>
<td>9,03 7,95 10,07</td>
<td>3,78 1,72 6,00</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Perturbation du substrat [écrasement]</td>
<td>28,94 13,79 49,15</td>
<td>5,36 4,15 6,52</td>
<td>5,68 2,70 8,87</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>27,44 12,88 47,11</td>
<td>7,68 6,29 9,07</td>
<td>3,79 1,74 6,01</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Prélèvement de matières biologiques</td>
<td>27,23 12,68 46,76</td>
<td>5,11 3,82 6,39</td>
<td>5,62 2,66 8,77</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>26,37 12,65 45,01</td>
<td>4,90 3,70 6,07</td>
<td>5,68 2,74 8,80</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Échouement – Introductions [EAE]</td>
<td>26,29 11,09 47,93</td>
<td>7,07 5,17 9,11</td>
<td>4,01 1,67 6,55</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Introductions [EAE]</td>
<td>24,22 12,76 40,49</td>
<td>4,48 3,16 5,97</td>
<td>5,73 3,17 8,27</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Piégeage</td>
<td>22,55 9,35 41,97</td>
<td>6,15 4,43 8,00</td>
<td>3,99 1,66 6,55</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Introductions [EAE]</td>
<td>20,73 8,32 39,59</td>
<td>5,71 3,90 7,74</td>
<td>3,98 1,60 6,55</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>20,07 8,70 35,25</td>
<td>4,82 4,06 5,62</td>
<td>4,40 1,87 7,19</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche à la palangre – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>17,57 7,52 31,28</td>
<td>4,25 3,42 5,21</td>
<td>4,40 1,86 7,18</td>
</tr>
<tr>
<td>Recherche</td>
<td>Activités sismiques – Perturbation [sismique]</td>
<td>16,85 6,30 33,20</td>
<td>6,77 5,32 8,27</td>
<td>2,74 0,97 4,82</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Introductions [EAE]</td>
<td>16,44 6,77 30,88</td>
<td>4,49 3,18 6,02</td>
<td>4,01 1,66 6,56</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>16,38 6,77 30,41</td>
<td>4,47 3,32 5,80</td>
<td>3,97 1,62 6,55</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Introductions [EAE]</td>
<td>15,28 6,47 28,90</td>
<td>4,19 3,00 5,53</td>
<td>4,01 1,68 6,57</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Hydrocarbures/contaminants</td>
<td>14,67 5,27 30,12</td>
<td>5,31 3,66 7,20</td>
<td>3,12 1,11 5,47</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Échouement – Perturbation du substrat [objets étrangers]</td>
<td>13,13 4,90 26,95</td>
<td>5,39 3,90 7,04</td>
<td>2,75 0,98 4,82</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Perturbation du substrat [écrasement]</td>
<td>12,89 4,77 26,22</td>
<td>4,65 3,42 5,95</td>
<td>3,11 1,11 5,47</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Perturbation du substrat [écrasement]</td>
<td>12,83 4,86 25,60</td>
<td>4,53 3,41 5,81</td>
<td>3,15 1,12 5,44</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Perturbation du substrat [objets étrangers]</td>
<td>10,99 4,01 22,88</td>
<td>5,30 4,06 6,66</td>
<td>2,34 0,81 4,19</td>
</tr>
<tr>
<td>Activité</td>
<td>Sous-activité – Facteur de stress</td>
<td>Risque relatif</td>
<td>Exposition</td>
<td>Conséquence</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Médiane</td>
<td>10 %</td>
<td>90 %</td>
<td>Médiane</td>
</tr>
<tr>
<td>Pêche</td>
<td>9,13</td>
<td>3,40</td>
<td>17,79</td>
<td>3,19</td>
</tr>
</tbody>
</table>

A. *vastus*

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Médiane</td>
<td>10 %</td>
<td>90 %</td>
<td>Médiane</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Déversement d'hydrocarbures – Pétrole</td>
<td>107,44</td>
<td>76,09</td>
<td>145,26</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Perturbation du substrat [écrasement]</td>
<td>28,86</td>
<td>13,84</td>
<td>48,89</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>28,28</td>
<td>15,48</td>
<td>43,68</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>27,40</td>
<td>12,81</td>
<td>46,66</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Prélèvement de matières biologiques</td>
<td>27,11</td>
<td>12,90</td>
<td>47,27</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Échouement – Introductions [EAE]</td>
<td>25,73</td>
<td>10,67</td>
<td>48,34</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>25,08</td>
<td>12,33</td>
<td>42,31</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Introductions [EAE]</td>
<td>24,28</td>
<td>12,64</td>
<td>40,41</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Piégeage</td>
<td>22,76</td>
<td>9,26</td>
<td>42,16</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Introductions [EAE]</td>
<td>21,01</td>
<td>8,44</td>
<td>40,17</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>19,80</td>
<td>8,46</td>
<td>35,37</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche à la palangre – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>17,60</td>
<td>7,61</td>
<td>31,58</td>
</tr>
<tr>
<td>Recherche</td>
<td>Activités sismiques – Perturbation [sismique]</td>
<td>16,74</td>
<td>6,13</td>
<td>33,17</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>16,44</td>
<td>6,87</td>
<td>30,70</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Introductions [EAE]</td>
<td>16,31</td>
<td>6,61</td>
<td>30,65</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Introductions [EAE]</td>
<td>15,32</td>
<td>6,26</td>
<td>28,50</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Hydrocarbures/contaminants</td>
<td>14,71</td>
<td>5,36</td>
<td>30,64</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Perturbation du substrat [écrasement]</td>
<td>13,14</td>
<td>4,85</td>
<td>26,48</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Échouement – Perturbation du substrat [objets étrangers]</td>
<td>12,83</td>
<td>4,70</td>
<td>26,76</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Perturbation du substrat [écrasement]</td>
<td>12,79</td>
<td>4,70</td>
<td>25,25</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Perturbation du substrat [objets étrangers]</td>
<td>10,94</td>
<td>3,93</td>
<td>22,88</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Piégeage</td>
<td>9,04</td>
<td>3,39</td>
<td>17,74</td>
</tr>
</tbody>
</table>
F. occa

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Médiane 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
<td>Moyenne MC.10 MC.90</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Déversement d’hydrocarbures – Pétrole</td>
<td>101.35 73.39 135.97</td>
<td>8.81 6.73 11.07</td>
<td>11.72 9.61 13.77</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Perturbation du substrat [écrasement]</td>
<td>27.64 13.09 46.54</td>
<td>5.39 4.18 6.51</td>
<td>5.37 2.55 8.28</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>26.11 12.04 44.37</td>
<td>7.67 6.28 9.05</td>
<td>3.57 1.62 5.66</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Prélèvement de matières biologiques</td>
<td>25.62 12.29 43.97</td>
<td>5.11 3.86 6.36</td>
<td>5.33 2.58 8.28</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Échouement – Introductions [EAE]</td>
<td>24.96 10.30 45.64</td>
<td>7.12 5.21 9.18</td>
<td>3.79 1.57 6.19</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>24.78 11.96 42.28</td>
<td>4.90 3.71 6.08</td>
<td>5.35 2.61 8.26</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Introductions [EAE]</td>
<td>23.00 12.26 38.13</td>
<td>4.51 3.18 6.05</td>
<td>5.39 3.10 7.69</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Piégeage</td>
<td>21.35 9.07 39.52</td>
<td>6.13 4.41 7.96</td>
<td>3.77 1.60 6.14</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Introductions [EAE]</td>
<td>19.54 8.10 37.60</td>
<td>5.72 3.86 7.80</td>
<td>3.78 1.57 6.17</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>19.10 8.21 33.00</td>
<td>4.83 4.06 5.60</td>
<td>4.17 1.77 6.75</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche à la palangre – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>16.61 7.15 29.25</td>
<td>4.25 3.41 5.20</td>
<td>4.15 1.77 6.75</td>
</tr>
<tr>
<td>Recherche</td>
<td>Activités sismiques – Perturbation [sismique]</td>
<td>15.89 5.98 31.10</td>
<td>6.77 5.29 8.23</td>
<td>2.59 0.92 4.50</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Introductions [EAE]</td>
<td>15.65 6.54 29.61</td>
<td>4.50 3.19 6.02</td>
<td>3.80 1.60 6.18</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>15.47 6.48 28.84</td>
<td>4.48 3.31 5.84</td>
<td>3.76 1.55 6.21</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Introductions [EAE]</td>
<td>14.54 6.06 27.09</td>
<td>4.19 3.03 5.54</td>
<td>3.78 1.55 6.19</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Hydrocarbures/contaminants</td>
<td>13.66 5.11 28.40</td>
<td>5.33 3.67 7.19</td>
<td>2.93 1.04 5.10</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Échouement – Perturbation du substrat [objets étrangers]</td>
<td>12.62 4.63 25.41</td>
<td>5.39 3.91 7.02</td>
<td>2.61 0.92 4.57</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Perturbation du substrat [écrasement]</td>
<td>12.43 4.56 24.41</td>
<td>4.64 3.40 5.94</td>
<td>2.96 1.07 5.12</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Perturbation du substrat [écrasement]</td>
<td>12.01 4.63 24.29</td>
<td>4.54 3.43 5.81</td>
<td>2.96 1.08 5.16</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Perturbation du substrat [objets étrangers]</td>
<td>10.44 3.87 21.45</td>
<td>5.29 4.04 6.64</td>
<td>2.23 0.77 3.98</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Piégeage</td>
<td>8.58 3.24 16.90</td>
<td>3.19 2.59 3.85</td>
<td>2.97 1.05 5.21</td>
</tr>
</tbody>
</table>
R. dawsoni

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Médiane 10 %</td>
<td>90 %</td>
<td>Moyenne 10 %</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Dénivellement d’hydrocarbures – Pétrole</td>
<td>104.52</td>
<td>73.20</td>
<td>141.97</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Perturbation du substrat [écrasement]</td>
<td>27.73</td>
<td>13.01</td>
<td>48.01</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>27.67</td>
<td>15.14</td>
<td>43.01</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>26.62</td>
<td>12.32</td>
<td>45.70</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Prélèvement de matières biologiques</td>
<td>26.20</td>
<td>12.22</td>
<td>45.54</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Introductions [EAE]</td>
<td>24.53</td>
<td>12.06</td>
<td>41.39</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>23.58</td>
<td>12.20</td>
<td>39.40</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Introductions [EAE]</td>
<td>20.09</td>
<td>7.90</td>
<td>39.22</td>
</tr>
<tr>
<td>Recherche</td>
<td>Activités sismiques – Perturbation [sismique]</td>
<td>16.25</td>
<td>6.03</td>
<td>32.55</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Introductions [EAE]</td>
<td>15.65</td>
<td>6.46</td>
<td>29.90</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Hydracarbones/contaminants [remise en suspension des sédiments]</td>
<td>14.83</td>
<td>6.02</td>
<td>28.11</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Échouement – Introductions [EAE]</td>
<td>14.00</td>
<td>5.07</td>
<td>29.32</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Perturbation du substrat [objets étrangers]</td>
<td>12.60</td>
<td>4.76</td>
<td>26.01</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Échouement – Perturbation du substrat [Écrasement]</td>
<td>12.37</td>
<td>4.66</td>
<td>25.37</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Perturbation du substrat [Écrasement]</td>
<td>12.18</td>
<td>4.56</td>
<td>24.79</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Perturbation du substrat [objets étrangers]</td>
<td>10.58</td>
<td>3.81</td>
<td>22.47</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Introductions</td>
<td>8.69</td>
<td>3.35</td>
<td>17.13</td>
</tr>
<tr>
<td>Activité</td>
<td>Sous-activité – Facteur de stress</td>
<td>Risque relatif</td>
<td>Exposition</td>
<td>Conséquence</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>----------------------------</td>
<td>----------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Médiane</td>
<td>10 %</td>
<td>90 %</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Déversement d’hydrocarbures – Pétrole</td>
<td>65.40</td>
<td>39.45</td>
<td>98.81</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>31.55</td>
<td>14.23</td>
<td>55.46</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>26.75</td>
<td>11.50</td>
<td>47.83</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Échouement – Introductions [EAE]</td>
<td>22.85</td>
<td>9.26</td>
<td>43.86</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Prélèvement de matières biologiques</td>
<td>16.60</td>
<td>7.24</td>
<td>30.53</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>15.25</td>
<td>6.48</td>
<td>27.22</td>
</tr>
<tr>
<td>Recherche</td>
<td>Activités sismiques – Perturbation [sismique]</td>
<td>14.03</td>
<td>5.20</td>
<td>28.30</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Introductions [EAE]</td>
<td>13.86</td>
<td>5.55</td>
<td>26.76</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Hydrocarbures/contaminants</td>
<td>12.28</td>
<td>4.56</td>
<td>25.88</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>11.55</td>
<td>4.23</td>
<td>23.18</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Échouement – Perturbation du substrat [objets étrangers]</td>
<td>10.84</td>
<td>3.97</td>
<td>22.44</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Perturbation du substrat [écrasement]</td>
<td>10.77</td>
<td>4.07</td>
<td>22.13</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>10.60</td>
<td>3.94</td>
<td>21.41</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Perturbation [lumière]</td>
<td>9.27</td>
<td>3.42</td>
<td>18.91</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Perturbation du substrat [écrasement]</td>
<td>8.77</td>
<td>3.27</td>
<td>17.87</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Introductions [EAE]</td>
<td>8.50</td>
<td>3.17</td>
<td>17.84</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Piégeage</td>
<td>7.63</td>
<td>2.85</td>
<td>15.06</td>
</tr>
<tr>
<td>Sébaste bocace</td>
<td>Risque relatif</td>
<td>Exposition</td>
<td>Conséquence</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Médiane 10 %</td>
<td>90 %</td>
<td>Moyenne</td>
<td>10 %</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Déversement d'hydrocarbures – Pétrole</td>
<td>97,77</td>
<td>71,61</td>
<td>129,78</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Prélèvement de matières biologiques</td>
<td>51,49</td>
<td>39,42</td>
<td>64,78</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>34,15</td>
<td>15,22</td>
<td>58,83</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Circulation – Perturbation [bruit]</td>
<td>30,39</td>
<td>12,31</td>
<td>54,36</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Collisions</td>
<td>28,19</td>
<td>13,87</td>
<td>45,13</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Échouement – Introductions [EAE]</td>
<td>25,39</td>
<td>10,00</td>
<td>46,90</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>25,32</td>
<td>11,86</td>
<td>42,56</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>18,24</td>
<td>8,17</td>
<td>31,21</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche à la palangre – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>16,06</td>
<td>7,10</td>
<td>28,40</td>
</tr>
<tr>
<td>Recherche</td>
<td>Activités sismiques – Perturbation [sismique]</td>
<td>15,39</td>
<td>5,93</td>
<td>29,69</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>12,20</td>
<td>4,58</td>
<td>23,79</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Piégeage</td>
<td>10,41</td>
<td>4,00</td>
<td>20,02</td>
</tr>
</tbody>
</table>
Squelettes d'éponges siliceuses

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Médiane</td>
<td>10 %</td>
<td>90 %</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Déversement d’hydrocarbures – Pétrole</td>
<td>81.78</td>
<td>53.40</td>
<td>117.99</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>37.17</td>
<td>16.28</td>
<td>64.82</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>31.30</td>
<td>13.45</td>
<td>55.53</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Perturbation du substrat [écrasement]</td>
<td>28.57</td>
<td>13.47</td>
<td>49.05</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Prélèvement de matières biologiques</td>
<td>26.58</td>
<td>12.43</td>
<td>45.92</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>24.98</td>
<td>11.95</td>
<td>43.14</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Introductions [EAE]</td>
<td>24.28</td>
<td>12.77</td>
<td>40.47</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Piégeage</td>
<td>22.51</td>
<td>9.28</td>
<td>42.42</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Introductions [EAE]</td>
<td>20.83</td>
<td>8.44</td>
<td>39.98</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>20.14</td>
<td>8.73</td>
<td>35.08</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche à la palangre – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>17.52</td>
<td>7.60</td>
<td>31.60</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Introductions [EAE]</td>
<td>16.41</td>
<td>6.69</td>
<td>31.12</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Introductions [EAE]</td>
<td>15.30</td>
<td>6.37</td>
<td>29.12</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Hydrocarbures/contaminants</td>
<td>14.43</td>
<td>5.31</td>
<td>30.20</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Perturbation du substrat [écrasement]</td>
<td>12.55</td>
<td>4.72</td>
<td>25.69</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Piégeage</td>
<td>9.07</td>
<td>3.41</td>
<td>17.86</td>
</tr>
</tbody>
</table>
Jardins d'éponges

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trafic maritime</td>
<td>Déversement d'hydrocarbures – Pétrole</td>
<td>Médiane 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
<td>Moyenne MC.10 MC.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100,22 69,62 137,20</td>
<td>8,83 6,69 11,05</td>
<td>11,55 9,01 13,96</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>34,38 15,10 59,00</td>
<td>9,02 7,97 10,05</td>
<td>3,99 1,70 6,48</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>31,67 13,71 55,17</td>
<td>7,65 6,28 9,04</td>
<td>4,36 1,86 7,09</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Perturbation du substrat [écrasement]</td>
<td>28,86 13,61 48,58</td>
<td>5,38 4,17 6,52</td>
<td>5,62 2,64 8,74</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Prélèvement de matières biologiques</td>
<td>26,67 12,47 46,01</td>
<td>5,01 3,65 6,33</td>
<td>5,64 2,74 8,74</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Échouement – Introductions [EAE]</td>
<td>26,54 11,06 47,84</td>
<td>7,08 5,18 9,14</td>
<td>4,03 1,71 6,53</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>25,36 12,26 42,95</td>
<td>4,71 3,60 5,77</td>
<td>5,66 2,74 8,77</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Introductions [EAE]</td>
<td>24,40 13,11 40,13</td>
<td>4,49 3,16 6,03</td>
<td>5,72 3,27 8,14</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Piégeage</td>
<td>22,47 9,42 41,83</td>
<td>6,13 4,44 7,98</td>
<td>3,97 1,67 6,48</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Introductions [EAE]</td>
<td>20,80 8,63 39,80</td>
<td>5,71 3,90 7,77</td>
<td>4,00 1,67 6,53</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>20,33 8,75 34,97</td>
<td>4,82 4,05 5,61</td>
<td>4,42 1,87 7,15</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Échouement – Perturbation du substrat [objets étrangers]</td>
<td>23,03 6,58 36,00</td>
<td>6,36 4,65 8,17</td>
<td>3,14 1,12 5,44</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche à la palangre – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>17,60 7,38 30,85</td>
<td>4,25 3,42 5,19</td>
<td>4,37 1,82 7,11</td>
</tr>
<tr>
<td>Recherche</td>
<td>Activités sismiques – Perturbation [sisme]</td>
<td>16,83 6,31 33,14</td>
<td>6,77 5,34 8,26</td>
<td>2,75 0,96 4,78</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>16,58 6,87 30,13</td>
<td>4,48 3,32 5,80</td>
<td>3,97 1,65 6,45</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Introductions [EAE]</td>
<td>16,53 6,80 30,62</td>
<td>4,50 3,17 6,06</td>
<td>3,98 1,67 6,51</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Introductions [EAE]</td>
<td>15,35 6,42 28,51</td>
<td>4,19 3,04 5,53</td>
<td>3,98 1,66 6,44</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Perturbation du substrat [objets étrangers]</td>
<td>15,05 5,63 29,70</td>
<td>5,29 4,04 6,62</td>
<td>3,14 1,13 5,46</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Hydrocarbures/contaminants</td>
<td>14,62 5,43 29,84</td>
<td>5,31 3,63 7,17</td>
<td>3,12 1,13 5,38</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Perturbation du substrat [écrasement]</td>
<td>13,06 4,93 26,17</td>
<td>4,64 3,42 5,95</td>
<td>3,14 1,13 5,42</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Perturbation du substrat [écrasement]</td>
<td>12,80 4,83 25,45</td>
<td>4,55 3,41 5,86</td>
<td>3,13 1,13 5,38</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Piégeage</td>
<td>11,31 4,26 21,72</td>
<td>3,19 2,60 3,85</td>
<td>3,87 1,40 6,70</td>
</tr>
</tbody>
</table>
ANNEXE L. RÉSULTATS OBTENUS À L’AIDE D’AUTRES HYPOTHÈSES ANALYTIQUES

L.1. Sous-ensemble de résultats pour les interactions entre les composantes importantes de l’écosystème (CIE) et les facteurs de stress actuels uniquement

Tableau 40. Les six principales interactions entre les CIE et les facteurs de stress actuels uniquement.

H. calyx

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Médiane 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>32,5 15,1 54,0</td>
<td>9,0 8,0 10,1</td>
<td>3,7 1,7 6,0</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>27,5 12,9 47,7</td>
<td>7,7 6,3 9,0</td>
<td>3,8 1,7 6,0</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>26,2 12,4 44,9</td>
<td>4,9 3,7 6,1</td>
<td>5,7 2,7 8,8</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>19,7 8,7 35,1</td>
<td>4,8 4,0 5,6</td>
<td>4,4 1,9 7,1</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche à la palangre – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>17,5 7,6 30,9</td>
<td>4,2 3,4 5,2</td>
<td>4,4 1,9 7,1</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>16,5 6,8 30,6</td>
<td>4,5 3,3 5,8</td>
<td>4,0 1,6 6,5</td>
</tr>
</tbody>
</table>

A. vastus

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Médiane 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>28,7 15,6 43,7</td>
<td>9,0 7,9 10,1</td>
<td>3,3 1,8 4,8</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>27,6 12,8 47,0</td>
<td>7,7 6,3 9,0</td>
<td>3,8 1,7 6,0</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>25,4 12,5 42,9</td>
<td>4,9 3,7 6,1</td>
<td>5,4 2,7 8,4</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>19,9 8,6 34,8</td>
<td>4,8 4,1 5,6</td>
<td>4,4 1,8 7,2</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche à la palangre – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>17,4 7,4 31,6</td>
<td>4,3 3,4 5,2</td>
<td>4,4 1,8 7,2</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>16,5 6,7 30,8</td>
<td>4,5 3,3 5,8</td>
<td>4,0 1,6 6,6</td>
</tr>
</tbody>
</table>
F. occa

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Médiane 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>31,1 14,6 51,9</td>
<td>9,0 8,0 10,1</td>
<td>3,6 1,6 5,7</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>26,4 12,5 44,9</td>
<td>7,7 6,3 9,1</td>
<td>3,6 1,7 5,7</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>24,7 11,7 41,9</td>
<td>4,9 3,7 6,1</td>
<td>5,3 2,6 8,3</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>19,0 8,3 32,9</td>
<td>4,8 4,0 5,6</td>
<td>4,2 1,8 6,7</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche à la palangre – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>16,8 7,2 29,3</td>
<td>4,3 3,4 5,2</td>
<td>4,2 1,7 6,8</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>15,7 6,5 28,6</td>
<td>4,5 3,3 5,8</td>
<td>3,8 1,6 6,1</td>
</tr>
</tbody>
</table>

R. dawsoni

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Médiane 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>27,5 15,1 43,2</td>
<td>9,0 8,0 10,1</td>
<td>3,2 1,7 4,7</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>26,3 11,9 45,6</td>
<td>7,7 6,3 9,1</td>
<td>3,6 1,6 5,8</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>24,5 11,9 41,6</td>
<td>4,9 3,7 6,1</td>
<td>5,3 2,6 8,1</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>19,2 8,2 34,2</td>
<td>4,8 4,0 5,6</td>
<td>4,2 1,8 7,0</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche à la palangre – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>16,8 6,9 30,4</td>
<td>4,3 3,4 5,2</td>
<td>4,2 1,7 7,0</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>16,3 6,7 30,4</td>
<td>4,5 3,3 5,8</td>
<td>3,9 1,6 6,4</td>
</tr>
</tbody>
</table>
Galathée

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif (Médiane</th>
<th>10 %</th>
<th>90 %</th>
<th>Moyenne</th>
<th>10 %</th>
<th>90 %</th>
<th>Conséquence (Moyenne</th>
<th>10 %</th>
<th>90 %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>31,8</td>
<td>13,9</td>
<td>55,5</td>
<td>9,0</td>
<td>8,0</td>
<td>10,1</td>
<td>3,7</td>
<td>1,6</td>
<td>6,1</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>26,5</td>
<td>11,3</td>
<td>46,8</td>
<td>7,7</td>
<td>6,3</td>
<td>9,0</td>
<td>3,7</td>
<td>1,5</td>
<td>6,0</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>15,3</td>
<td>6,4</td>
<td>27,2</td>
<td>4,8</td>
<td>4,0</td>
<td>5,6</td>
<td>3,4</td>
<td>1,4</td>
<td>5,6</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche à la palangre – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>14,7</td>
<td>6,4</td>
<td>26,4</td>
<td>4,2</td>
<td>3,4</td>
<td>5,2</td>
<td>3,7</td>
<td>1,6</td>
<td>6,1</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Hydrocarbures/contaminants</td>
<td>12,3</td>
<td>4,4</td>
<td>25,7</td>
<td>5,3</td>
<td>3,7</td>
<td>7,2</td>
<td>2,6</td>
<td>0,9</td>
<td>4,6</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>11,7</td>
<td>4,4</td>
<td>23,6</td>
<td>4,9</td>
<td>3,7</td>
<td>6,1</td>
<td>2,7</td>
<td>0,9</td>
<td>4,7</td>
</tr>
</tbody>
</table>

Squelettes d’éponges siliceuses

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif (Médiane</th>
<th>10 %</th>
<th>90 %</th>
<th>Moyenne</th>
<th>10 %</th>
<th>90 %</th>
<th>Conséquence (Moyenne</th>
<th>10 %</th>
<th>90 %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>37,2</td>
<td>16,0</td>
<td>64,8</td>
<td>9,0</td>
<td>8,0</td>
<td>10,0</td>
<td>4,3</td>
<td>1,8</td>
<td>7,1</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>31,3</td>
<td>13,5</td>
<td>56,3</td>
<td>7,7</td>
<td>6,3</td>
<td>9,0</td>
<td>4,4</td>
<td>1,8</td>
<td>7,2</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>25,0</td>
<td>11,7</td>
<td>42,7</td>
<td>4,7</td>
<td>3,6</td>
<td>5,8</td>
<td>5,6</td>
<td>2,7</td>
<td>8,7</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>20,1</td>
<td>8,6</td>
<td>35,3</td>
<td>4,8</td>
<td>4,0</td>
<td>5,6</td>
<td>4,4</td>
<td>1,8</td>
<td>7,2</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche à la palangre – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>17,4</td>
<td>7,5</td>
<td>31,2</td>
<td>4,3</td>
<td>3,4</td>
<td>5,2</td>
<td>4,4</td>
<td>1,8</td>
<td>7,1</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Hydrocarbures/contaminants</td>
<td>14,7</td>
<td>5,2</td>
<td>30,7</td>
<td>5,3</td>
<td>3,6</td>
<td>7,2</td>
<td>3,1</td>
<td>1,1</td>
<td>5,5</td>
</tr>
</tbody>
</table>
Jardins d’éponges

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Médiane 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>34,5 14,8 59,1</td>
<td>9,0 8,0 10,1</td>
<td>4,0 1,7 6,5</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>31,9 13,9 55,8</td>
<td>7,7 6,3 9,1</td>
<td>4,4 1,9 7,1</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>25,0 12,0 43,0</td>
<td>4,7 3,5 5,8</td>
<td>5,6 2,7 8,8</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>19,9 8,7 34,1</td>
<td>4,8 4,0 5,6</td>
<td>4,4 1,9 7,1</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche à la palangre – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>17,7 7,7 31,5</td>
<td>4,3 3,4 5,2</td>
<td>4,4 1,9 7,1</td>
</tr>
<tr>
<td>Recherche</td>
<td>Utilisation de submersibles – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>16,5 7,0 30,5</td>
<td>4,5 3,3 5,8</td>
<td>4,0 1,6 6,5</td>
</tr>
</tbody>
</table>

Sébaste bocace

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Médiane 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>34,3 15,3 58,7</td>
<td>9,0 8,0 10,0</td>
<td>4,0 1,7 6,4</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Circulation – Perturbation [bruit]</td>
<td>30,3 12,3 54,4</td>
<td>8,5 6,9 10,4</td>
<td>3,8 1,5 6,3</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>25,1 11,7 42,4</td>
<td>7,7 6,3 9,0</td>
<td>3,4 1,6 5,4</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche aux casiers – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>18,3 8,0 31,7</td>
<td>4,8 4,0 5,6</td>
<td>4,0 1,7 6,4</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche à la palangre – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>16,0 7,0 28,1</td>
<td>4,3 3,4 5,2</td>
<td>4,0 1,7 6,4</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>12,1 4,6 23,8</td>
<td>4,7 3,6 5,7</td>
<td>2,9 1,0 5,0</td>
</tr>
</tbody>
</table>
Figure 25. Risque cumulatif pour chaque CIE lié aux facteurs de stress actuels uniquement. Les chiffres entre crochets indiquent le nombre de facteurs de stress actuels à résilience non nulle qui contribuent à la cote cumulative.
Figure 26. Puissance des facteurs de stress actuels uniquement pour l’ensemble des CIE.
L.2. Sous-ensemble de résultats fondé sur l’exclusion des interactions pour lesquelles les deux termes de la résilience sont nuls et utilisant une distribution normale

L’approche initiale de présélection des interactions avant le calcul des risques utilisée dans les processus antérieurs du CERE (Thornborough et al., 2017; Rubidge et al., 2018) excluait toutes les interactions avec des facteurs de stress ayant une cote de 0 pour les deux termes de la résilience, à savoir le changement aigu et le changement chronique. À l’aide du script R fourni dans le présent document, des résultats pour le détroit d’Hécate sont fournis ici afin qu’ils puissent être directement comparés aux processus existants du CERE (c.-à-d. la ZPM du champ hydrothermal Endeavour et la ZPM du mont sous-marin SGaan Kinglas-Bowie), y compris l’utilisation d’une distribution normale pour estimer l’incertitude.

Tableau 41. Pour chaque composante importante de l’écosystème (CIE), voici les six principales interactions à résilience non nulle.

H. calyx

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trafic maritime</td>
<td>Déversement d’hydrocarbures – Pétrole</td>
<td>98,5</td>
<td>62,4</td>
<td>145,2</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>30,8</td>
<td>9,4</td>
<td>56,4</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Perturbation du substrat [écrasement]</td>
<td>29,3</td>
<td>10,0</td>
<td>53,4</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>26,3</td>
<td>8,3</td>
<td>49,8</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Prélèvement de matières biologiques</td>
<td>26,2</td>
<td>9,2</td>
<td>49,0</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>25,8</td>
<td>9,8</td>
<td>47,8</td>
</tr>
</tbody>
</table>

A. vastus

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trafic maritime</td>
<td>Déversement d’hydrocarbures – Pétrole</td>
<td>137,7</td>
<td>94,8</td>
<td>188,8</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>28,9</td>
<td>14,3</td>
<td>46,9</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Perturbation du substrat [écrasement]</td>
<td>28,6</td>
<td>10,1</td>
<td>53,2</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>26,9</td>
<td>8,5</td>
<td>49,8</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Prélèvement de matières biologiques</td>
<td>26,0</td>
<td>9,4</td>
<td>48,5</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>25,2</td>
<td>10,4</td>
<td>45,6</td>
</tr>
</tbody>
</table>
F. occa

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trafic maritime</td>
<td>Déversement d'hydrocarbures – Pétrole</td>
<td>Médiane 128,5</td>
<td>10 % 88,8</td>
<td>90 % 174,7</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>29 % 9,0</td>
<td>10 % 52,8</td>
<td>90 % 8,4</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Perturbation du substrat [écrasement]</td>
<td>26 % 9,6</td>
<td>10 % 49,0</td>
<td>90 % 4,1</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>24 % 7,9</td>
<td>10 % 46,4</td>
<td>90 % 6,7</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Prélèvement de matières biologiques</td>
<td>24 % 9,0</td>
<td>10 % 45,3</td>
<td>90 % 4,9</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>24 % 8,7</td>
<td>10 % 44,3</td>
<td>90 % 4,9</td>
</tr>
</tbody>
</table>

R. dawsoni

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trafic maritime</td>
<td>Déversement d'hydrocarbures – Pétrole</td>
<td>Médiane 135,9</td>
<td>10 % 93,8</td>
<td>90 % 187,6</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Perturbation du substrat [écrasement]</td>
<td>28 % 10,3</td>
<td>10 % 52,6</td>
<td>90 % 5,5</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>28 % 14,2</td>
<td>10 % 46,1</td>
<td>90 % 8,4</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>26 % 8,2</td>
<td>10 % 49,7</td>
<td>90 % 6,8</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Prélèvement de matières biologiques</td>
<td>25 % 9,1</td>
<td>10 % 48,1</td>
<td>90 % 4,9</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>25 % 10,1</td>
<td>10 % 45,7</td>
<td>90 % 4,9</td>
</tr>
</tbody>
</table>

Galathée

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trafic maritime</td>
<td>Déversement d'hydrocarbures – Pétrole</td>
<td>Médiane 72 1,0</td>
<td>10 % 11,2</td>
<td>90 % 12,0</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>24 % 4,3</td>
<td>10 % 49,7</td>
<td>90 % 8,4</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>21 % 4,0</td>
<td>10 % 44,0</td>
<td>90 % 8,2</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Échouement – Introductions [EAE]</td>
<td>16 % 1,2</td>
<td>10 % 38,9</td>
<td>90 % 4,9</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Perturbation du substrat [écrasement]</td>
<td>13 % 2,2</td>
<td>10 % 28,9</td>
<td>90 % 5,5</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pélagique – Prélèvement de matières biologiques</td>
<td>12 % 2,2</td>
<td>10 % 25,8</td>
<td>90 % 4,9</td>
</tr>
</tbody>
</table>
Jardins d'éponges

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Médiane 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Déversement d'hydrocarbures – Pétrole</td>
<td>133,9 93,4 183,7</td>
<td>9,3 6,8 12,0</td>
<td>14,6 11,8 17,1</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>31,0 5,5 61,7</td>
<td>9,5 8,4 10,6</td>
<td>3,5 0,6 6,4</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Perturbation du substrat [écrasement]</td>
<td>29,3 10,7 53,2</td>
<td>5,4 4,1 6,6</td>
<td>5,7 2,1 9,4</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>28,6 5,3 58,0</td>
<td>8,3 6,8 9,7</td>
<td>3,7 0,7 6,9</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Prélèvement de matières biologiques</td>
<td>26,0 9,6 48,6</td>
<td>4,9 3,5 6,3</td>
<td>5,7 2,1 9,5</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>25,1 9,3 45,8</td>
<td>4,7 3,5 5,9</td>
<td>5,6 2,1 9,3</td>
</tr>
</tbody>
</table>

Sébaste bocace

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Médiane 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Déversement d'hydrocarbures – Pétrole</td>
<td>117,7 83,7 158,7</td>
<td>9,3 6,8 12,0</td>
<td>12,8 10,9 14,5</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Prélèvement de matières biologiques</td>
<td>54,7 42,1 68,8</td>
<td>5,0 4,3 5,7</td>
<td>11,1 8,9 13,2</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>28,5 5,4 56,8</td>
<td>9,5 8,4 10,6</td>
<td>3,2 0,6 5,9</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Collisions</td>
<td>25,7 9,5 45,1</td>
<td>5,6 4,9 6,3</td>
<td>4,8 1,7 8,0</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Circulation – Perturbation [bruit]</td>
<td>23,5 1,9 51,0</td>
<td>8,3 6,9 10,6</td>
<td>3,1 0,2 6,1</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>23,0 7,4 41,8</td>
<td>8,2 6,8 9,7</td>
<td>2,9 0,9 5,0</td>
</tr>
</tbody>
</table>

Squelettes d'éponges siliceuses

<table>
<thead>
<tr>
<th>Activité</th>
<th>Sous-activité – Facteur de stress</th>
<th>Risque relatif</th>
<th>Exposition</th>
<th>Conséquence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Médiane 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
<td>Moyenne 10 % 90 %</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Déversement d'hydrocarbures – Pétrole</td>
<td>98,0 62,2 143,2</td>
<td>9,3 6,8 12,0</td>
<td>10,8 7,5 14,0</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut de fond – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>33,0 5,8 66,0</td>
<td>9,5 8,4 10,6</td>
<td>3,7 0,6 7,0</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Perturbation du substrat [écrasement]</td>
<td>29,2 10,5 53,3</td>
<td>5,5 4,1 6,7</td>
<td>5,7 2,1 9,5</td>
</tr>
<tr>
<td>Trafic maritime</td>
<td>Rejet – Hydrocarbures/contaminants</td>
<td>28,9 5,2 58,5</td>
<td>8,3 6,8 9,7</td>
<td>3,7 0,7 7,0</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Prélèvement de matières biologiques</td>
<td>25,9 9,3 48,5</td>
<td>4,9 3,5 6,3</td>
<td>5,7 2,1 9,5</td>
</tr>
<tr>
<td>Pêche</td>
<td>Pêche au chalut pêlagique – Perturbation du substrat [remise en suspension des sédiments]</td>
<td>25,1 9,2 46,8</td>
<td>4,7 3,5 5,9</td>
<td>5,7 2,1 9,6</td>
</tr>
</tbody>
</table>
Figure 27. Risque cumulatif pour chaque CIE limité aux interactions à résilience non nulle et utilisant une distribution normale pour l’estimation de l’incertitude.
Figure 28. Puissance des facteurs de stress (limitée aux interactions à résilience non nulle) dans toutes les CIE. Les estimations de l’incertitude ont été obtenues à l’aide d’une distribution normale.