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ABSTRACT 

Kenchington, E., Callery, O., Davidson, F., Grehan, A., Morato, T., Appiott, J., Davis, A., Dunstan, 

P., Du Preez, C., Finney, J., González-Irusta, J.M., Howell, K., Knudby, A., Lacharité, M., Lee, 

J., Murillo, F.J., Beazley, L., Roberts, J.M., Roberts, M., Rooper, C., Rowden, A., Rubidge, E., 

Stanley, R., Stirling, D., Tanaka, K.R., Vanhatalo, J., Weigel, B., Woolley, S. and Yesson, C. 2019. 

Use of Species Distribution Modeling in the Deep Sea. Can. Tech. Rep. Fish. Aquat. Sci. 3296: ix 

+ 76 p. 

In the last two decades the use of species distribution modeling (SDM) for the study and 

management of marine species has increased dramatically. The availability of predictor variables 

on a global scale and the ease of use of SDM techniques have resulted in a proliferation of research 

on the topic of species distribution in the deep sea. Translation of research projects into 

management tools that can be used to make decisions in the face of changing climate and 

increasing exploitation of deep-sea resources has been less rapid but necessary. The goal of this 

workshop was to discuss methods and variables for modeling species distributions in deep-sea 

habitats and produce standards that can be used to judge SDMs that may be useful to meet 

management and conservation goals. During the workshop, approaches to modeling and 

environmental data were discussed and guidelines developed including the desire that 1) 

environmental variables should be chosen for ecological significance a priori; 2) the scale and 

accuracy of environmental data should be considered in choosing a modeling method; 3) when 

possible proxy variables such as depth should be avoided if causal variables are available; 4) 

models with statistically robust and rigorous outputs are preferred, but not always possible; and 5) 

model validation is important. Although general guidelines for SDMs were developed, in most 

cases management issues and objectives should be considered when designing a modeling project. 

In particular, the trade-off between model complexity and researcher’s ability to communicate 

input data, modeling method, results and uncertainty is an important consideration for the target 

audience. 
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RÉSUMÉ 

Kenchington, E., Callery, O., Davidson, F., Grehan, A., Morato, T., Appiott, J., Davis, A., 

Dunstan, P., Du Preez, C., Finney, J., González-Irusta, J.M., Howell, K., Knudby, A., Lacharité, 

M., Lee, J., Murillo, F.J., Beazley, L., Roberts, J.M., Roberts, M., Rooper, C., Rowden, A., 

Rubidge, E., Stanley, R., Stirling, D., Tanaka, K.R., Vanhatalo, J., Weigel, B., Woolley, S. and 

Yesson, C. 2019. Recours à la modélisation de la répartition des espèces en haute mer. Can. Tech. 

Rep. Fish. Aquat. Sci.  3296: ix + 76 p. 

Au cours des deux dernières décennies, le recours à la modélisation de la répartition des espèces 

pour étudier et gérer les espèces marines a considérablement augmenté. La disponibilité des 

variables prédictives à l’échelle mondiale et la convivialité de ces techniques de modélisation ont 

entraîné la multiplication des recherches sur la répartition des espèces en haute mer. La traduction 

des projets de recherche en outils de gestion pouvant servir à prendre des décisions dans le contexte 

des changements climatiques et de l’exploitation accrue des ressources en haute mer est moins 

rapide, quoique nécessaire. Cet atelier visait à discuter des méthodes et variables pour la 

modélisation de la répartition des espèces dans les habitats en haute mer, et à établir des normes 

pour évaluer les méthodes de modélisation pouvant aider à atteindre les objectifs en matière de 

gestion et de conservation. Pendant l’atelier, les approches envers la modélisation et les données 

environnementales ont fait l’objet de discussions, et des lignes directrices ont été élaborées. 

Celles-ci comprenaient les caractéristiques souhaitées qui suivent : 1) les variables 

environnementales devraient être choisies selon leur importance écologique a priori; 2) l’ampleur 

et l’exactitude des données environnementales devraient être prises en compte durant la sélection 

d’une méthode de modélisation; 3) dans la mesure du possible, les variables substitutives, comme 

la profondeur, doivent être évitées si des variables causales sont disponibles; 4) les modèles dont 

les résultats sont statistiquement solides et rigoureux sont privilégiés, mais leur utilisation n’est 

pas toujours possible; 5) la validation du modèle est importante. Même si des lignes générales sur 

la modélisation de la répartition des espèces ont été mises au point, les objectifs et enjeux de 

gestion devraient généralement être pris en compte pendant la conception d’un projet de 

modélisation. En particulier, le compromis entre la complexité du modèle et la capacité du 

chercheur à communiquer les données d’entrée, la méthode de modélisation, les résultats et les 

incertitudes sont des facteurs importants pour le public cible. 
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1. INTRODUCTION 

The use of species distribution modeling (SDM; also known as habitat suitability modeling or HSM) 

in marine ecology has grown enormously in recent years with the accumulation of appropriate 

response and predictor data sets, and software that is freely available and often global in scope. 

Exploitation of the deep sea is increasing and diversifying, while knowledge of the actual distribution 

of deep-sea biodiversity is still poor due to the limited spatial footprint of sampling to date. There is 

now a great need for robust species distribution modeling that can inform decision-making and 

anticipate the influence of global change. In particular, to support the Voluntary Specific Workplan 

on Biodiversity in Cold-water Areas within the Jurisdictional Scope of the Convention as adopted at 

CBD COP13. However, the variables that may be useful predictors for species and communities 

living in shallow waters and on the continental shelves may not be appropriate for modeling 

distributions below 100 m. For example, in the northwest Atlantic temperature and salinity are 

relatively constant below this depth but are key determinants of distributions at shallower depths. 

The goal of this workshop was to discuss appropriate variables and methods for modeling of species 

and communities of deep-sea habitats, including seamounts, and to produce a set of standards for 

publication that will lead to more comparable work in this field.  

This document summarizes the discussions of a workshop that brought together global experts 

(including from the EU Horizon 2020 research projects ATLAS and SponGES) on species 

distribution modeling and deep-sea biology to discuss this topic. The main objectives of the workshop 

were to: 1) showcase existing attempts to develop species distribution modeling in the deep sea; 2) 

to discuss biological and environmental datasets relevant to the deep sea; 3) discuss temporal and 

spatial scales relevant for developing species distribution modeling in the deep sea; 4) discuss 

appropriate modeling tools in the context of data-limited situations, and in the context of single 

species and joint species modeling; and 5) establish more effective collaborations within the deep-

sea modeling community. 

Participants were asked to prepare short working papers addressing agenda items and to make ten 

minute presentations to stimulate discussion. Those presentations are presented in the Extended 

Abstract section below.  

Co-chairs:  Ellen Kenchington (DFO, Canada), Anthony Grehan (NUI, Galway, Ireland), Telmo 

Morato (IMAR, Azores, Portugal) 

1.1. Setting the Context: Voluntary Specific Workplan on Biodiversity in Cold-water 

Areas within the Jurisdictional Scope of the Convention on Biological Diversity 

J. Murray Roberts 

ATLAS project coordinator, University of Edinburgh, School of GeoSciences, 

Grant Institute, James Hutton Road, Edinburgh, UK 
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In 2012 the 11th Conference of the Parties (COP) to the Convention on Biological Diversity (CBD) 

requested that the CBD Executive Secretary prepare a draft specific workplan on biodiversity and 

ocean acidification in cold-water areas of the ocean. Developed through a collaborative process 

involving other governments and relevant organisations, this workplan would build upon elements 

of a previous workplan on physical degradation and destruction of coral reefs, including cold-

water corals (CBD, 2004). The ‘cold-water areas’ workplan should link closely with relevant work 

under the CBD, including the description of areas meeting the scientific criteria for Ecologically 

or Biologically Significant marine Areas (EBSAs) and the UN Food & Agriculture Organisation’s 

(FAO) identification of Vulnerable Marine Ecosystems (VMEs).  

This process began when the CBD Executive Secretary issued a notification in May 2015 

requesting scientific and technical information and suggestions from Parties, other Governments 

and relevant organisations. Information was received from Argentina, Australia, Brazil, Canada, 

Colombia, France, Mexico, New Zealand, the United Kingdom of Great Britain and Northern 

Ireland (UK), the European Union, the International Atomic Energy Agency, the OSPAR 

Commission and the UN Division on Ocean Affairs and the Law of the Sea. Alongside updates to 

the 2014 CBD Technical Series report on ocean acidification (CBD, 2014), these contributions 

were used to prepare a background document for peer review. Following reviews from Canada, 

the UK and FAO this background document was considered at the 20th meeting of the CBD’s 

Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) in April 2016 

(CBD, 2016a).  

The background document and SBSTTA meeting in April informed discussion at the 13th COP in 

December 2016 where Decision XIII/11, a ‘voluntary specific workplan on biodiversity in cold-

water areas within the jurisdictional scope of the Convention’, was formally adopted (CBD, 

2016b). COP Decision XIII/11 helps set the wider context for the expert workshop on deep-sea 

SDM organised through the European Union’s ATLAS and SponGES projects in May 2018 at the 

CBD Secretariat in Montreal, Canada. Compared to other biomes, the need for reliable species 

distribution modeling in the deep sea is particularly pressing. This need is because the vast extent, 

remoteness, technical challenge and expense of deep-sea research greatly limit the amount of 

species and habitat distribution data available. Reliable deep-sea species distribution models offer 

a potentially valuable resource to managers struggling to develop policies to manage rapidly 

increasing human activities in the deep ocean, including on-going fisheries and hydrocarbon 

extraction through to possible future deep-sea mining. However, while the potential of species 

distribution modeling is great, there are many issues to be worked through to optimise underlying 

species occurrence/absence information, environmental data and the modeling approaches applied 

– issues addressed at the Montreal workshop and described in this report. 

The background document underpinning COP Decision XIII/11 considered the biodiversity of 

deep, cold areas of the global ocean excluding polar regions. Implications of human activities and 

global change were summarised, and activities to monitor key parameters and relevant policy 
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instruments were reviewed in that document. It also included analysis of knowledge gaps in both 

the scientific evidence-base and the policy instruments available. The background document 

highlighted several key points, many of which are now subject to increased research and 

management action in several parts of the world: 

(a) Cold-water areas sustain ecologically important habitats, such as cold-water corals and 

sponge fields, which play important functional biological and ecological roles, including 

supporting rich communities of fish as well as suspension-feeding organisms such as 

bryozoans and hydroids; 

(b) Ocean acidification, increases in ocean temperature and deoxygenation can have 

significant impacts on biodiversity and ecosystems in cold-water areas, including 

decreased ocean mixing, changes in nutrient cycling and oxygen supply, community shifts, 

and impacts on habitat structure and range, and organism physiology; 

(c) Ocean acidification, in particular, presents a significant threat to ecosystems in cold-water 

areas, including through weakening and dissolution of cold-water coral skeletons, and 

impacts on diverse taxa such as sponges, squid species, pteropods, krill and fish. Because  

the aragonite saturation horizon is projected to become much shallower by 2100, more 

cold-water ecosystems and habitats are expected to be exposed to the impacts of ocean 

acidification in the coming years; 

(d) There are existing and potential pressures on biodiversity in cold-water areas from 

anthropogenic sources, including destructive fishing practices, deep-sea marine mining, 

hydrocarbon exploitation, shipping and bioprospecting, as well as impacts related to the 

accumulation of plastic microfibers and other pollutants; 

(e) Although knowledge on biodiversity and acidification in cold-water areas is growing and 

global monitoring of ocean acidification is increasing, there is a need for further research 

in this area, including on the interactions among species within food webs, impacts of 

ocean acidification on different life stages of cold-water organisms, impacts of multiple 

stressors on biodiversity and ecosystems, the goods and services they provide and 

variability in the response by organisms to various pressures; 

(f) There is a need to address pressures through targeted policy and management responses at 

the global, regional and national levels, supported by identification of specific areas that 

are of high biological and ecological importance. 

 

Decision XIII/11 encourages Parties to the CBD, other Governments and competent 

intergovernmental organizations to:  

(a) Avoid, minimize and mitigate the impacts of global and local stressors, and especially the 

combined and cumulative effects of multiple stressors; 
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(b) Maintain and enhance the resilience of ecosystems in cold-water areas in order to 

contribute to the achievement of Aichi Biodiversity Targets 10, 11 and 15, and thereby 

enable the continued provisioning of goods and services; 

(c) Identify and protect refugia sites and areas capable of acting as refugia sites, and adopt, as 

appropriate, other area-based conservation measures, in order to enhance the adaptive 

capacity of cold-water ecosystems; 

(d) Enhance understanding of ecosystems in cold-water areas, including by improving the 

ability to predict the occurrence of species and habitats and to understand their 

vulnerability to different types of stressors as well as to the combined and cumulative 

effects of multiple stressors; 

(e) Enhance international and regional cooperation in support of national implementation, 

building on existing international and regional initiatives and creating synergies with 

various relevant areas of work within the Convention. 

 

The activities proposed in Decision XIII/11 included enhanced policy integration, strengthened 

management, development and application of Marine Protected Areas, improved monitoring, 

improved research coordination and capacity building and initiatives that would secure and sustain 

funding.  

The explicit inclusion of predictive mapping approaches was expanded in Annex 3 ‘Monitoring 

and research needs’ under Subsection 5 to develop or expand upon predictive model research to 

determine how projected climate change will impact cold-water biodiversity over different time 

scales: 

5.1 Improve ocean carbonate models to understand the temporal and three-dimensional spatial 

changes in carbonate saturation state and its main drivers, including changing atmospheric 

CO2 conditions and ocean currents; 

5.2 Document existing gaps in knowledge on global, regional and national scales that limit the 

predictive power of models; 

5.3 Couple ocean carbonate chemistry mapping and oceanographic models to biophysical and 

ecological information to predict the temporal and spatial variability of acidification impacts 

in order to help identify areas under the greatest threat as well as possible refugia; 

5.4 Optimise habitat modeling to predict key habitats and biodiversity occurrence from seawater 

carbonate chemistry, oceanographic and water mass modeling and larval dispersal. 

 

The CBD’s voluntary specific workplan on biodiversity in cold-water areas is a significant 

demonstration of how important it has become to not only understand the implications of global 

change on marine biodiversity and ecosystem function, but to enhance our abilities to monitor and 

make predictions of how marine ecosystems could change. Given the great complexity and 
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interconnected nature of deep and open ocean ecosystems the challenge is great but, as the 

discussions in this workshop demonstrate, the underlying data and techniques required for robust 

deep-sea predictive species distribution modeling have developed rapidly in the last decade. The 

onus is now on the marine scientific and policy communities to take up these challenges and 

deliver integrated assessments that allow us to develop a truly predictive ability to forecast not 

only where key species occur but how their distributions will change in the future.   

Acknowledgements 
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2.1. Model-Based Thinking for Community Ecology 

Piers Dunstan  

Commonwealth Scientific and Industrial Research Organisation (CSIRO), Oceans 

and Atmosphere, Hobart, Tasmania, Australia  

One of the key challenges of ecology is to understand the distribution and abundance of species 

through space and time. Ecologists have been searching for the most parsimonious explanations 

of these patterns for decades. One of the earliest analytical approaches was developed by Bray and 

Curtis (1957), and application of similar methods has been extensive in ecology since then. 

However, recent developments have demonstrated that these distance-based methods may have 

serious flaws (Warton et al., 2011; Woolley et al., 2017) and alternatives are needed. 

Fundamentally, when we are observing ecological systems we are observing individuals from 

different species – this is the data that can be used in analysis. From these data, we infer 

assemblages, communities, bioregions and other higher-level properties. Warton et al. (2015a, b) 

suggests that an appropriate approach to this problem is through model-based ecology. The key 

concept is that a statistical model can be developed that describes the relationship between the 

observations (individuals of species) and the higher-level properties of interest (e.g., assemblages, 

bioregions). These models use latent variables to capture the higher-level properties and use well-

described covariates (e.g., environmental) to estimate the functional responses of the latent 

variables. 

Two examples of this approach are Species Archetype Models (SAM, Dunstan et al., 2011; 

Dunstan et al., 2013) and Regions of Common Profiles (RCP, Foster et al., 2014a; Foster et al., 

2017; Hill et al., 2017). Species Archetype Models are multivariate mixture regression models 

where species are grouped together based on a common response to environmental covariates. 

Species that have a statistically identical response to environmental gradients are grouped together 

and a regression model is estimated for each species group. The species groups can then be used 

to predict the distribution of the group into space using environmental covariates. The model 

retains information on the species in each group and propagates uncertainty from data to 

prediction. The models can be estimated with presence only data (Inhomogeneous Poisson Point 

Models), presence/absence data (binomial models), abundance data (negative binomial models) 

and biomass data (Tweedie models). Examples of SAMs have been on distribution of species in 

Western Australia (Woolley et al., 2013) and the response of species to trawl fisheries (Foster et 

al., 2014b). 

RCP models are similar to SAM models, except that the grouping is on sites rather than species. 

The RCP models group sites based on biological content and see how these groups vary with the 

environment – these models suppose that assemblages exist. The assumption is that an assemblage 

can be characterised by its mean expectation of all species (its profile) and that different 

assemblages have different profiles. This assumption means that different assemblages will have 
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different expected biological content. Each site contains one assemblage, which we don't observe, 

but can be described as a mixture of sites (characterised by biological profiles). We label this 

model as `region of common profiles', but it is also known as a `mixture of experts' model. In a 

similar way to SAM models, RCP models can handle a range of different data types (presence 

only data (Inhomogeneous Poisson Point Models), presence/absence data (binomial models), 

abundance data (negative binomial models) and biomass data (Tweedie models) and propagate 

uncertainty from the observations to the predictions. Examples of RCPs are the distribution of 

demersal fish on Kerguelen Plateau (Hill et al., 2017) and predictions where sampling artefacts 

are present (Foster et al., 2017). 

SAM and RCP models often give slightly different predictions as a result of differences in the 

assumptions. Assemblages often share species with different expected abundances. This property 

means that there will be multiple species groups from SAMs at any site. However, sites are often 

the unit of spatial management and distinguishing between sites is an important tool for planning 

and management decisions. We expect that SAMs and RCPs will give similar results when there 

are very strong environmental gradients acting across the area of interest, which will cause groups 

of species to be tightly correlated with each other under specific environmental conditions. As 

gradients weaken, more species groups should be present at any site.  

Future applications of this work will start to link the outputs from both SAMs and RCP with other 

models types, such as qualitative and quantitative ecosystem models. 
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for community ecology. Plant Ecol. 216:669–682. 
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biogeographical subdivision across the Western Australian continental margin – a 

multispecies modeling approach. Divers. Distrib. 19: 1506-1517. DOI: 

10.1111/ddi.12119 
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2.1.1. Group Discussion 

Following Dr. Dunstan’s presentation, there was a discussion comparing and contrasting SAMs 

and RCP as approaches to the statistical analysis and prediction of multispecies data. It was agreed 

that each have potential benefits, and the more suitable approach depends on the intended use of 

the outputs and questions to which answers are being sought. For example, for the purposes of 

marine spatial planning where we might want to group sites which share common sets of species 

with common probabilities of occurrence, the RCP approach may be more suitable, while for the 

purposes of understanding how species and groups of species respond to their environment and 

various pressures, SAMs may provide more useful predictions. One can expect these two methods 

(grouping by sites and grouping by species) occasionally will give similar results, for example, 

when there are strong environmental gradients or strong associations between species. It was 

agreed that there were obvious benefits to multispecies modeling approaches; not least of which 

is the reduction in the number of models required to describe an ecosystem comprising large 

numbers of species. Also, many workshop participants noted that they had often observed multi-

species modeling approaches to have better predictive power to describe the distributions of 

individual species than single species models targeted at that species alone. For example, there are 

occasions where rare species, for which occurrence data is extremely limited, may be fit to an 

archetype thereby improving both the overall archetype model as well as its ability to make 
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predictions for that rare species. It was conceded, however, that where data for a species was so 

scant as to impede its being fit to an archetype, it may be better to exclude those data entirely. 

SAMs offer improvements over previous multi-species modeling as the processes of species 

assembly and model prediction are performed simultaneously. This approach is in contrast to 

previously implemented modeling approaches where either 1) species are assembled first and 

predictions made based on grouped species, or 2) where model predictions are made first and 

multiple predictions assembled thereafter. The primary advantage of this simultaneous 

prediction/assembly approach is that users can obtain an estimate of uncertainty – an element that 

is too often ignored by other modeling approaches despite its importance to the use of model 

predictions in subsequent decision-making processes.  

To facilitate implementation of both SAMs and RCP modeling, two R packages - “SpeciesMix” 

and “RCPmod” – have been made available on the CRAN repository – these are currently being 

combined together into a single interface, “EcoMix”, to make them more user-friendly and to 

provide more flexibility. It is envisaged that future work in the area of multispecies modeling will 

focus on using SAMs combined with mechanistic models with the goal of building whole 

ecosystem-level models which have both descriptive/predictive and explanatory utility. 

  

2.2. Point Process Framework for Species Distribution Modeling and Joint Species 

Distribution Models  

Jarno Vanhatalo 

Department of Mathematics and Statistics and Organismal and Evolutionary 

Biology Research Programme, University of Helsinki, Finland 

Point process framework for species distribution modeling 

Herein, I briefly review the point process modeling approach for species distribution modeling 

and illustrate it with few case examples. The benefits from this approach for deep-sea species 

distribution modeling could be that they i) cover both occurrence and abundance modeling, ii) 

allow integration of heterogeneous data from different survey setups (including presence only), 

and iii) can be straightforwardly extended to current joint species distribution models (JSDM). I 

will consider log-Gaussian Cox processes (LGCP; Banerjee et al., 2015) whose connection with a 

common species distribution modeling method, MaxEnt, was shown by Renner and Warton 

(2013). I will assume spatial LGCP, but the same framework can be extended to spatio-temporal 

cases.  

Let’s denote by 𝑠 as spatial locations (e.g., longitude-latitude coordinates – and possibly depth), 

and 𝑥𝑠 to be the vector of environmental covariates associated with that location (e.g., depth, 
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temperature etc.). A key component of point process models is the intensity function 𝜆(𝑠, 𝑥𝑠) 

which, loosely speaking, is the probability that one individual is present at location 𝑠. The number 

of animals (abundance) in any fixed area/volume of water, 𝐷, is Poisson distributed with expected 

value ∫ 𝜆(𝑠, 𝑥𝑠)d𝑠
𝑠∈𝐷

 which is the “total intensity” over 𝐷. For example, for benthic animals the 

intensity function can be directly interpreted as the expected number of animals per unit area (m2), 

whereas for pelagic animals this function is interpreted as the expected number of animals per 

volume of water (m3). Let’s assume that the sampling effort and, hence, observation probability, 

varies in space, and denote this by 𝑧(𝑠, 𝑥𝑠). In this case the expected number of observed individual 

animals in an area is ∫ 𝜆(𝑠, 𝑥𝑠)𝑧(𝑠, 𝑥𝑠)d𝑠
𝑠∈𝐷

. Now, the sampling effort can be treated as known or 

as an uncertain parameter of the model. In many cases the observation probability is not known 

but can be assumed to be constant, in which case 𝜆 corresponds to relative intensity. 

In practice LGCPs are typically discretized so that observations are considered to be made over 

finite areas (e.g., discrete lattice grid), over which the intensity is treated to be constant (Renner 

and Warton, 2013; Banerjee et al., 2015). Hence, given a set of species observations 𝑦1, … , 𝑦𝑛 over 

a set of 𝑛 finite areas indexed with locations 𝑺 = (𝑠1, … , 𝑠𝑛), the likelihood for an intensity and 

effort function is  

𝐿(𝑦1, … , 𝑦𝑛|𝜆, 𝑧) = ∏ Poisson(𝜆(𝑠𝑖, 𝑥𝑖)𝑧(𝑠𝑖, 𝑥𝑖)𝐴𝑖)

𝒏

𝒊=𝟏

 

where 𝑠𝑖 is the (center) location of 𝑖’th sampling area, and 𝐴𝑖 is the size of that area (or volume of 

water). See Figure 2.2.1 for an illustration. To finalize the species distribution model we build a 

model for the intensity function which is typically constructed using a log linear model with spatial 

random effects so that 

log 𝜆(𝑠, 𝑥𝑠) = 𝑓(𝑠, 𝑥𝑠) = 𝛼 + 𝑥𝑠
𝑇𝛽 + 𝜑(𝑠) 

where the intercept 𝛼 corresponds to the average log intensity, 𝑥𝑠
𝑇𝛽 describes the effect of 

environmental covariates and 𝜑(𝑠) is a spatial random effect that explains spatially correlated 

patterns not explained by environmental covariates. The spatial random effect is modelled with 

zero mean Gaussian process (Banerjee et al., 2015), and it has been shown to improve the 

explanatory and predictive performance of species distribution models in many studies (Latimer 

et al., 2006; Vanhatalo et al., 2012; Clark et al., 2014; Kallasvuo et al., 2017). The linear 

environmental predictors can also be replaced by non-linear functions (e.g., Kallasvuo et al., 

2017). If we assume independent random noise per sampling location/area, the Poisson likelihood 

extends naturally to a Negative-Binomial model that allows for over-dispersion (Vanhatalo et al., 

2017). 
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Hence, from an analysis point of view, simple point process models are generalized linear models. 

However, the added value is that their interpretation is ecologically meaningful, and allows 

integration of alternative data sets and prediction of relative biomasses. 

 

Figure 2.2.1. A schematic illustration of a point process model implemented over a lattice grid. 

The survey data has resulted in a table of count observations at surveyed cells (𝑧 > 0). After 

solving the posterior distribution of model parameters, we can predict the species intensity in cells 

not surveyed. 

Bayesian predictive inference and example applications 

Relative effect on intensity 

Given training data, we can calculate the posterior distribution (Banerjee et al., 2015) of the model 

parameters, examine the effect of environmental covariates and use the model for making 

predictions in locations not covered by data. Due to the log-link function, the additive model 

components have particularly simple interpretation as log relative change in intensity (Vanhatalo 

et al., 2017). For example, the relative effect to intensity by the spatial random effect is: 

𝑅𝐸(𝑠) =
𝜆(𝑠, 𝑥) − 𝜆(𝑠, 𝑥; 𝜑(𝑠) = 0)

𝜆(𝑠, 𝑥; 𝜑(𝑠) = 0)
=

𝑒𝛼+𝑥𝑠
𝑇𝛽+𝜑(𝑠)

𝑒𝛼+𝑥𝑠
𝑇𝛽

− 1 = 𝑒𝜑(𝑠) − 1 

which tells how much larger (>0) or smaller (<0) the density of a species is at location 𝑠 compared 

to a density estimate based only on (environmental) covariates. Similarly, the relative effect of the 

𝑑’th covariate is 𝑅𝐸(𝑥𝑑) = 𝑒𝑥𝑑𝛽𝑑 − 1 regardless of the other covariates or spatial locations. 

Vanhatalo et al. (2017) used LGCP to analyze spatial-temporal fluctuations of Crown of Thorns 

Starfish (COTS) in the Great Barrier Reef, Australia. The log intensity included spatial and spatio-

temporal random effects. The discrete sampling areas 𝐴𝑖 varied by observations and corresponded 

to the surveyed reef area. One of the key results was the visualization of the spatial and spatial-
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temporal relative effects, which revealed high/low intensity COTS hot/cold spots and COTS 

outbreak dynamics (Figure 2.2.2).  

Bayesian predictive inference and biomass estimates 

We can use point process models for (relative) biomass predictions. Kallasvuo et al. (2017) 

analyzed larval areas of four commercially important coastal fish species. Each of their 

observations corresponded to number of fish larvae in a volume of water, 𝑉𝑖, sampled by sampling 

nets and, hence, the intensity function 𝜆(𝑠, 𝑡, 𝑥) corresponded to relative larvae density (number 

per m3 multiplied by catch probability). Based on the relative density predictions, Kallasvuo et al. 

(2017) divided the study region into three classes: important regions (the highest density areas 

producing 80% of total number of larvae), suitable regions (regions with >50% probability to 

observe larvae) and non-suitable regions (regions with <50% probability to observe larvae). In 

practice this analysis was done by predicting 𝜆 in approximately 15 million 50 m × 50 m grid cells 

and calculating the total (relative) number of larvae in the study region, 𝑁tot = ∑ 𝑉𝜆(𝑠𝑖, 𝑥𝑠𝑖
) where 

the sum goes through all the grid cells and 𝑉 is the volume of water (surface layer) in the grid cell. 

The highest intensity grid cells, whose total relative number of larvae was 0.8 × 𝑁tot, comprise 

the important larval production region. One of the key findings of their study was that the 

important regions can be much smaller in size than regions suitable for larval production. 

Moreover, the difference between important and suitable areas varied dramatically between 

species, which shows that using only presence/absence models to predict species distributions 

might give a biased view of the important areas (see Figure 2.2.3). 

Accounting for unequal sampling effort 

For a last example, we consider integration of heterogeneous data and modeling the survey effort. 

Mäkinen and Vanhatalo (2018) conducted marine mammal distribution modeling in the Arctic 

using heterogeneous data collected from earlier publications and free data sources. The data were 

comprised of species sightings made during survey cruises, but the exact survey protocol during 

the surveys was unknown, for which reason they also explicitly modeled the survey effort, 𝑧. In 

their model, each survey had its own, unknown effort, which was considered constant throughout 

the study region and was given a log-Gaussian prior distribution. Other examples of analyses with 

non-constant survey effort are presented by Renner and Warton (2013) and Warton et al. (2013), 

who consider modeling presence only data. In their applications, the effort is a function of 

environmental covariates and spatial location, 𝑧(𝑠, 𝑥). Yuan et al. (2017) consider LGCP models 

for transect surveys where the observation probability decreases with distance from survey vessel. 
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Figure 2.2.2. Illustration of spatial (left) and spatial-temporal (right) random effects reported as 

relative change/effect in intensity in the Great Barrier Reef, Australia. The spatial-temporal 

random effect is projected on the reef system’s center line. In plot c) the outbreak corresponds to 

a 2-fold increase in Crown of Thorns starfish abundance relative to the local mean abundance. 

Reproduced with permission from (Vanhatalo et al., 2017). 

 

Figure 2.2.3. Illustration of abundance predictions and classification of spatial regions based on 

their relative importance to fish production. Reproduced with permission from (Kallasvuo et al., 

2017). 
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Joint species distribution models 

Joint species distribution models (JSDM) have gained increasing interest in recent years (Warton 

et al., 2015). The key assumption behind most of the JSDMs is that the model should include 

interspecific dependence between species-specific environmental effects and spatial random 

effects. In our context, extension to JSDMs corresponds to denoting the species-specific log 

intensity with: 

𝑓𝑗(𝑠, 𝑥 𝑡) = 𝛼𝑗 + 𝑥𝑠
𝑇𝛽𝑗 + 𝜑𝑗(𝑠), 

where 𝑗 denotes a species and gives the species-specific parameters a hierarchical prior/model that 

introduces the dependence. For example, in the hierarchical model of species communities 

(HMSC, Ovaskainen et al., 2017), the species-specific linear weights are given a Gaussian prior 

𝛽𝑗~𝑁(𝜇𝑗, 𝑉), where 𝜇𝑗 is the mean vector and 𝑉 the covariance matrix. The interspecific 

dependence is then included by, for example, modeling the mean vector as a function of species 

traits; that is 𝜇𝑗 = ∑ 𝑡𝑗𝑙𝜏𝑙𝑘 where 𝑡𝑗𝑙 is the 𝑙’th trait of the species and 𝜏𝑙𝑘 are the trait weights. The 

HMSC allows also for a generic multivariate Gaussian prior for 𝜇1, … 𝜇𝐽, as well as inclusion of 

phylogenetic information into the correlation between 𝛽1, … 𝛽𝐽. In species archetype modeling the 

responses of the species to the environment are clustered into a few archetype models 

corresponding to shared 𝛽 between group of species (Dunstan et al., 2013; Hui et al., 2013). 

Similarly, the spatial random effects are extended to include interspecific correlations. Vanhatalo 

et al. (manuscript) extended point process based JSDMs to semiparametric models, where the 

effects of environmental covariates are allowed to follow a semiparametric Gaussian process 

model. 

Key advantages of JSDMs compared to single species models can be summarized as follows. The 

inclusion of interspecific dependence allows information flow between species, which improves 

the estimates for covariate effects especially for species with only scarce data (e.g., Ovaskainen et 

al., 2017; Hui et al., 2013; Clark et al., 2014). From the predictive point of view, this approach has 

added benefit that the models predictive accuracy also improves in both interpolation (Ovaskainen 

et al., 2017; Hui et al., 2013) and extrapolation (Vanhatalo et al., manuscript). JSDMs have also 

been demonstrated to more accurately estimate the joint distribution of multiple species, whereas 

single species models typically predict larger distribution areas than JSDMs (see Figure 2.2.4). 

Moreover, the distribution of species is not governed only by their environment and stochastic 

processes and species interactions play a significant role in the realized distribution (Ovaskainen 

et al., 2017). The interspecific correlations in the spatial random effects account also for the 

species-to-species interactions. By examining the interspecific correlation matrices, we can gain 

understanding of the similarities in the response of species to the environment, and of species-to-

species interactions (see Figure 2.2.5 for illustration). 
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Figure 2.2.4. Abundance predictions with single and joint species distribution models for the 

three-spined stickleback in the Gulf of Bothnia, northern Baltic Sea. The JSDM typically predicts 

smaller distribution ranges. Reproduced with permission from (Vanhatalo et al., manuscript). 

 

Figure 2.2.5. Interspecific correlations between the fixed effects, 𝛽𝑗, (first 7 plots) and spatial 

random effect. Reproduced with permission from (Vanhatalo et al., manuscript).  
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Discussion 

Point process models are classical tools in spatial statistics as well as in some areas of applied 

ecology. In recent years, they have gained increasing attention in the general species distribution 

modeling literature as well. In this working paper, I discussed their connection to traditional 

generalized linear model-based species distribution models, as well as to current developments in 

joint species distribution models. I also highlighted some of their useful properties from a practical 

modeling viewpoint. Namely, the point process framework provides results that are directly 

interpretable as (relative) species densities. 

The case studies reviewed in this work included classical count data observed either visually or 

collected with fishing nets. However, an interesting area for future development would be to 

extend the methods to other types of data as well. In the deep-sea context this could include, for 

example, combining trawling and visual data with acoustic survey data. Juntunen et al. (2012) 

proposed a Bayesian method to integrate trawling and acoustic survey data to estimate species 

composition and abundance (biomass) of multiple fish in the Baltic Sea. Their approach does not 

follow the point process framework as such, but is very closely related to it, and could in principle 

be extended to it as well. 
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2.2.1. Group Discussion 

The discussion following Dr. Vanhatalo’s presentation examined issues surrounding specifics of 

species distribution modeling and joint species distribution modeling (JSDM), as well as exploring 

the user-friendliness of various models, and how this attribute affects model usefulness. Dr. 

Vanhatalo posited that the point process approach described in his presentation was in essence no 

https://doi.org/10.1111/ddi.12776
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more complicated than a standard GLM approach in R, and felt that any user who could use the 

latter would have no difficulty in implementing the former. An instructional/guidance document 

complete with sample data and worked examples will be made publicly available to improve the 

ease with which interested parties might adopt the point process approach described in Dr. 

Vanhatalo’s talk. 

Point process models can be very useful where a user wants to make use of data with high degrees 

of uncertainty to improve modeling performance. For example, data from acoustic monitoring 

equipment can be helpful in detecting how many distinct species of fish are in a given area 

(however, further data would be required to try to identify those species etc.). Observational data 

(e.g., data from acoustic monitoring) has quantitative aspects, which can aid in analysis, and the 

amount of information with these data reduces the residual variance because more aspects of these 

data are explained. The discussion also focused on how the MaxEnt (maximum entropy) model 

approach compares with the spatial point process. The point was raised that many scientists have 

short timeframes to produce results and MaxEnt is a very user-friendly option of model. Other, 

more complicated models are being developed but are not as easy to use. The discussion indicated 

that, if MaxEnt is used properly, it can return excellent results and can produce a similarly smart 

analysis. However, there are benefits to investing time in learning more about model-based 

approaches because in the long term they will likely give more information alongside the model 

output. Following this discussion of MaxEnt’s user-friendly nature, the point was raised that no 

matter which type of model is being used, it is still being written in R as a type of Generalized 

Linear Model (GLM) at the base level. The challenge arrives once the user goes beyond R 

packages and focuses on more complex data types and spatial correlations. It is important to 

consider the analysis before fieldwork is completed because often datasets do not correspond well 

with the analysis that will be done. One method of helping users become more familiar with these 

methods is producing test datasets alongside publications, which can be used as trial projects for 

users and gives them the tools to do such analyses properly. It was agreed that the provision of 

trial datasets is an important aspect of increasing the uptake of new complex methods.  

 

3. EXTENDED ABSTRACTS 

 

Participants were invited to provide extended abstracts for this publication on a topic of their 

choice. Some authors volunteered to present their subject more formally in the Participants Forum 

on Day 1 (Appendix 1), and the topic was discussed further by the group. For those abstracts a 

summary of the group discussion follows the extended abstract. The formatting follows the 

original style of the submission, and figures are numbered consecutively within each abstract with 

the numbering restarting with the next.  
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3.1. What do Environmental Managers and Stakeholders want from a Model?  

Ashley A. Rowden 

National Institute of Water & Atmospheric Research, Wellington, New Zealand 

Human activities are increasingly impacting the deep-sea environment, and there is a need to 

manage the effects of these impacts on deep-sea species. To design effective spatial management 

measures to conserve and protect deep-sea species it is necessary to know their distribution 

patterns. Environmental managers and stakeholders understand that it is necessary to use 

numerical models to determine distribution patterns because of the paucity of deep-sea species 

records. However, the acceptance and use of species distribution models in spatial management 

planning can depend on several factors that model-building scientists don’t always perceive or 

address. Recent experience producing species distribution models for Vulnerable Marine 

Ecosystems (VMEs), as part of a process to design management measures for deep-sea bottom 

trawling in the South Pacific, has highlighted what environmental managers and stakeholders want 

from a model. These need to include the following: A model should to be relevant; models for 

species that act as proxies or indicators for VMEs are not as acceptable as models that attempt, 

even coarsely, to model the ecosystem feature itself (e.g., coral reef). A model should be made at 

the appropriate spatial scale; because it is possible, models are sometimes made at a resolution 

that is smaller or bigger than the use to which they will be put, but this impacts upon their 

usefulness and acceptance (e.g., making a model at 1 km2 resolution when spatial closures will be 

applied at a scale of >1000 km2). The modeling approach should be conservative and 

parsimonious; multiple model or ensemble approaches are preferred over reliance on a single 

model approach (even if considered by scientists to be the latest and best), and models using fewer 

predictor variables are more easily understood and accepted. A model should to be believable; 

field validation of a model is highly valued (even for a small portion of the modelled area), and 

the more broadly understood metrics used for internal model validation are preferred over those 

that are more model-approach specific (e.g., correlation metrics versus AUC). A model’s 

limitations must be expressed spatially; quantifying and mapping the spatial uncertainty of a model 

helps acceptance (acknowledgment that model not equally good everywhere), and is a particularly 

useful output for designing spatial management measures.  In the main, these needs are similar or 

the same as the concerns of a model-building and evaluating scientist, but there are subtle 

differences in viewpoint that impact acceptance of models by managers and stakeholders. This 

presentation will expand upon these differences with the aim of assisting in the making of models 

and their outputs which are more readily accepted and used by environmental managers and 

stakeholders for spatial management planning. 

3.1.1. Group Discussion 

The discussion following this talk focused on concerns arising from designating vulnerable marine 

ecosystems (VMEs)  and which thresholds should be used to quantify these boundaries (e.g., 
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where a VME indicator species is at a “significant concentration” that represents a VME). A 

comment was raised questioning how best to move from a species approach to a VME approach 

and whether the threshold of abundance of a VME indicator species should be used.  

A second comment questioned the possibility of jointly modeling species and traits, and whether 

this can be used to designate VMEs. This approach would be useful because the FAO Guidelines 

for the identification of VME indicators provides a list of traits that such species should possess.  

Finally, it was suggested that model predictions for species habitat should (when published) be 

compared to areas where stakeholders and managers want to ban fishing. These maps can often 

show different areas, and for this reason, communication between model creators, managers, and 

stakeholders has to be increased to ensure that management decisions are properly informed by 

the best available information. 

 

3.2. Rough Data: Imperfect Data and Directional Rugosity  

Cherisse Du Preez, Emily Rubidge and Jessica Finney 

Pacific Region, Fisheries and Oceans Canada (DFO) 

 

This working paper covers two topics applicable to species distribution models (SDMs) in the 

deep sea: imperfect data and seafloor roughness (rugosity). The following is based on the 

experiences of Fisheries and Oceans Canada scientists who modeled vulnerable marine 

ecosystems and ecologically or biologically significant areas in the deep Northeast Pacific. 

Imperfect data and transparency about it  

Imperfect detection 

The probability of detecting a species at a site when it is present is calculated through repeated 

sampling of the same site, and combined with statistical models to estimate species’ occupancy. 

Although factoring in the probability of detection is standard in terrestrial ecology, it has proven 

impractical in the deep sea. Why? Cost, time, accessibility… If you haven’t already, may I suggest 

reading “How long should we ignore imperfect detection of species in the marine environment 

when modeling their distribution?” by Jacquomo Monk (2014). In response to ideas like those 

discussed by Monk, a team of DFO researchers are planning a repeat survey study using remotely 

operated vehicles and visual benthic surveys.    

Uncertainty in extrapolations vs. interpolations 

It is common practice to model beyond the range of data sampled for one or more environmental 

variables, be it carefully and within reason. A shaded overlay on an uncertainty map is often used 

to identify such extrapolations (Figure 1). An extrapolated area analyses is a standard SDM output, 
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but there isn’t an equivalent for interpolation, to identify data gaps within a range sampled. During 

the 2012 Cobb Seamount expedition, the team sampled between 34 and 1154 m depth, but 

technical issues prevented them from surveying between 211 and 472 m depth. The ~250 m gap 

occurred over problematic depths, at the transition region from flat plateau to steep flanks, and the 

known narrow depth ranges of unique cold-water coral gardens and reefs and dense lost-fishing 

gear (discussed in Du Preez et al., 2016). To clearly identify the unreliable interpolation within 

the range of data sampled, the team manually added a hatching overlay to their uncertainty map 

(Figure 1). 

Figure 1. Outputs from the Random Forest model on Cobb Seamount illustrating the extrapolated 

areas (grey shading) and the unreliable interpolated area (i.e., 211 to 472 m depth gap not 

surveyed; hatching) (Du Preez et al., 2016). 

Combination models 

If you are fortunate enough to have density input data for modeling, consider the value of applying 

a presence probability threshold to your density predictions (e.g., only display predicted density 

if output presence probability is > 0.5). While the drawback is that densities will not be displayed 



 

 

22 

over the full study area, the advantage is that they will only be displayed where there is a higher 

probability that the species is present.  A similar result can be achieved by applying an uncertainty 

threshold (a common species distribution modeling output).  

Directional rugosity 

Seafloor roughness (or complexity) is a common environmental variable used in species 

distribution models. There are many metrics for measuring seafloor roughness. One useful metric 

is the arc-chord ratio (ACR) (Du Preez, 2015), which is part of the ESRI ArcGIS Benthic Terrain 

Modeller toolbox (Walbridge et al., 2018). Regardless of the specific roughness metric used, scale 

and directionality are two important factors to consider. The former is a fairly common 

consideration, while the latter is often overlooked, especially when the 3-D bathymetric 

geoprocessing uses a moving window or circular polygon. In environments with dominant flow 

directionality (uni- or bi-directional), using a linear metric of rugosity upstream may provide a 

strong indicator for species distributions and other biological characteristics (e.g., biodiversity) 

downstream (Figure 2). Physical mechanisms may include changes in pressure, dissolved gases, 

shear stress, particulate load, entrained organisms and larvae, and water stratification. Changes in 

the local bottom flow regime (e.g., changes to flow velocity, energy, and directionality) affect 

epibenthic communities through larval delivery and recruitment, delivery of oxygen and nutrients, 

feeding opportunities, removal of waste, the passive collection or dispersal of organisms, 

suspension and deposition of sediment (i.e., available substratum and turbidity), scouring and 

erosion of sediment and of organisms, and levels of biotic and abiotic disturbance (likely 

influencing sessile fauna more than mobile fauna). Incorporating directionality into roughness 

metrics may improve the predictive power of species distribution models over conventional 

rugosity metrics. Directional linear ACR rugosity will be released within the ESRI ArcGIS 

Benthic Terrain Modeller soon.  
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Figure 2. In a study comparing different scales, dimensions, and directionality, large-scale linear 

rugosity upstream was found to be the best predictor of local benthic biodiversity (Du Preez, 

2014). 
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3.3. Determining the best methods for model validation 

Chris Rooper*, Rachel Wilborn and Pam Goddard 

Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, 

Seattle, Washington, USA 

*Current affiliation: Pacific Biological Station, Fisheries and Oceans Canada, 

Nanaimo, British Columbia, Canada 

Model validation for species distribution modeling usually takes one of three forms; resubstitution 

or resampling, testing with new or held back data, or testing with independent data collected from 

a different area or an independent survey. The general purpose of model validation exercises is 

most often to determine the robustness of the model and the confidence that can be placed in a 

model’s predictions.  

Within-sample model validation (resubstitution or resampling) is the most commonly used method 

for model evaluation, typically as a leave-one-out analysis or a k-fold cross-validation, where the 

effects of different partitions of the modeled data on the results are examined. Testing with held 

back data from the same modeled area (either from a new time or a random selection of data) is 

also fairly common. Transferring the model to a new area or a newly collected data set designed 

to test model predictions are fairly uncommon methods, possibly because of the associated high 

cost of additional sampling. The literature (and practical experience) indicates that predicting an 

entirely new data set from a new area is probably the most difficult test of any species distribution 

model.  

Models are usually evaluated using the same criteria as the initial models (e.g., using AUC, TSS 

and R2). An example of a model validation is shown in Figure 1. These results are from SDMs of 

structure-forming invertebrates in the Aleutian Islands of Alaska. Predictions of species 

distributions were initially developed using Generalized Additive Models and bottom trawl survey 

data. The models were tested on a year of data that was held back (2012). The results of this testing 

were good for both presence-absence models and abundance models (with the exception of 

Stylasteridae).  
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Figure 1. AUC values and R2 values for coral and sponge models developed using bottom trawl 

survey data in the Aleutian Islands. Test data was a year (2012) that was held back for testing 

purposes and camera data was an independent camera survey completed in 2014. Details of these 

results can be found in Rooper et al. (2014) and Rooper et al. (2018).  Sponges are combined 

classes (Hexactinellida and Demospongiae) and corals include the order Antipatharia, suborders 

Holaxonia (families Plexauridae, Acanthogorgiidae), Calcaxonia (families Primnoidae and 

Isididae), Scleraxonia (family Paragorgiidae), family Paramuriceidae, and hydrocorals from the 

family Stylasteridae. 

In 2012 and 2014 an independent validation survey was conducted at 216 randomly selected sites 

in the Aleutian Islands. These data used a different gear (underwater camera) and surveyed a 

somewhat different area, as camera transects were able to be conducted in rough, rocky areas 

where the bottom trawl could not be deployed. The results were still adequate for presence absence 

and abundance models of coral. However, the ability of the bottom trawl survey models to predict 

sponge presence or absence and abundance in the camera survey was not good. This result 

demonstrates that challenging a species distribution model with new and different data can 
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sometimes reduce the confidence in its performance relative to the performance on resampled or 

held back data.  

Some potential questions for discussion are: 

 What are the best methods for testing species distribution models (especially when 

collecting new data is not feasible) 

 Are there better ways to evaluate model performance in validation exercises? 

 How good does model performance in validation exercises need to be in order to accept a 

model? 
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3.3.1. Group Discussion 

Dr. Rooper’s presentation explored three main validation techniques: resubstitution or resampling, 

testing with new or held back data, or testing with independent data collected from a different area 

or independent survey. The discussion following this presentation focused mainly on bias inherent 

with different types of data collection and model validation. To begin, it was noted that one must 

use the same method of data collection to both test and train the data (for example camera data, 

trawl data, etc.). Next, trawl data, ROV (Remotely Operated Vehicle) data, drop cameras and other 

methods of data collection all come with biases in terms of the area they describe. Validating 

models with ROV data is problematic due to the data often being comprised of a 500 m by 500 m 

cell, while the ROV moves only through the middle of this area, therefore missing large amounts 

of seafloor. Validating models with drop camera data was mentioned as resulting in less bias for 

habitat mapping than ROVs due to their blind sampling, however, drop cameras stop working well 

on steep slopes and potentially in other areas such as very soft sediments where plumes can be 

created. This limitation may result in a similar bias if such areas are included in the study area, 

because it limits possible deployment areas.  
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3.4. Distribution Models Applied to Climate Change in the Deep Sea. A Promising but 

Challenging Development Field 

José Manuel González-Irusta and Telmo Morato  

Departamento de Oceanografia e Pescas, Universidade dos Açores 

PT-9901-862 HORTA, Portugal  

Species distribution models are being currently used to inform marine spatial planning worldwide, 

modeling the distribution of relevant species (González-Irusta et al., 2015; Greathead et al., 2015; 

Parra et al., 2016), the distribution of benthic assemblages as a proxy to biological habitats 

(Serrano et al., 2017) or the abundance of structural species such as Lophelia pertusa as a proxy 

to the habitat itself (Howell et al., 2011; Fernandes et al., unpublished). These models have also 

been successfully used to delineate essential fish habitats of commercial fish species, modeling 

the abundance of juveniles (nursery areas, Aires et al., 2014; Asjes et al., 2016), the abundance of 

adults at their spawning stage (spawning grounds, González-Irusta and Wright, 2016a, 2016b, 

2017) and fish egg distribution (e.g., Loots et al., 2011; Lelièvre et al., 2014). More recently, these 

models have been combined with other type of approaches to answer different questions than 

species presence or habitat location. For instance, distributions have been combined with 

Biological Traits Analysis and effort maps (from Vessel Monitoring Systems) to determine and 

map the impact of trawling disturbance on sensitive species (González-Irusta et al., 2018). They 

have also been combined with ecosystem simulation models to produce maps of ecosystem 

production across entire ecosystems such as the Gulf of Mexico (Grüss et al., 2018), and their use 

combined with particle tracking analysis in connectivity studies has been already proposed (e.g., 

Gallego et al., 2016). Finally, these models have been combined with future climatic scenarios to 

predict distribution changes for different marine species (e.g., Tittensor et al., 2010; Sequeira et 

al., 2014; Gallego et al., 2017). The combination of species distribution models with other 

techniques (such as biological traits analysis or community analysis), and its use to predict climate 

change impacts on marine biodiversity, are probably two of the most promising fields for the 

implementation of the ecosystem approach into the management of the marine ecosystems. In the 

framework of the ATLAS project, we are currently working on the use of these models to predict 

changes in future distributions of cold-water coral species and fish under different climate change 

scenarios at a North Atlantic basin scale. Although some of the challenges we are facing are 

common to most of the model exercises (lack of biological data, sampling bias, poor resolution in 

some environmental layers, etc.) others are specific to the application of these models to predict 

future changes in distribution. One of the challenges is the environmental variable selection and 

its impact on the models’ sensitivity to future changes. One example of this issue, especially 

important for the deep sea, is the inclusion or not of depth into the models. In fact, depth is not an 

environmental variable stricto sensu but usually is the variable with the most accurate information, 

and a very good proxy for several other relevant variables (such as temperature near bottom, 

salinity, light intensity, pressure, etc). To include depth in the models will improve them in most 
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cases, but can also reduce the sensitivity of these models to future changes in environmental 

conditions. A better understanding of the relationship between the modelled species and depth is 

a key factor to make the right decision. Another important challenge is the lack of appropriate 

tools to predict the accuracy of these models to extrapolate their present prediction into the future. 

Current evaluation methods such as AUC and TSS are controversial even for present predictions 

(Lobo et al., 2008; Jiménez-Valverde, 2014). Fourcade et al. (2018) has recently demonstrated the 

inability of current evaluation metrics to assess the biological significance of the relationship 

between the response variable and the explanatory variables in distribution models, if they are not 

based on a solid knowledge of the species and its ecological niche. This issue is especially relevant 

when these models are used to extrapolate present predictions into the future based on these 

relationships. Species distribution models can predict accurately the distribution of habitat and 

species even based on spurious relationships, but they will only be able to predict future changes 

if the model is really based on the ecological niche of the species. A sound knowledge of the 

environmental requirements of the species, the support of experimental work on this topic, and the 

inclusion of the whole range of environmental variability for the target species are key for 

producing a correct distribution model that is able to predict future changes in species distribution 

under different climate change scenarios.  
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3.4.1. Group Discussion 

To begin the discussion, the concept of evolutionary adaptability was introduced. It was noted that 

most correlative models assume to capture the process of evolutionary adaptability, unlike 

mechanistic models. A question was raised as to whether there is a way to incorporate the 

mechanistic component into statistical models and not completely rely on correlative models. 

Mechanistic distribution models look at the physiological attributes of an animal and can 

determine factors needed for survival (i.e., water, food, etc.), and potentially suitable areas can 

then be determined based on variable thresholds (a fundamental niche). However, there are often 

insufficient data on the physiological attributes of deep-sea species. It was also noted that it is 

important to consider for what use future predictions are being developed; many scientists 

extrapolate to 2050, 2100 and dates such as this, but managers and stakeholders are likely to be 

working on a shorter time frame, generally decadal, so what would a 2100 prediction be used for? 

If one wanted to look specifically at smaller sections of one larger area, it may be beneficial to 

look at areas where one knows conditions will change (i.e., salinity, temperature), so perhaps only 

these regions could be used to apply species distribution models. Next, it was mentioned that as a 

field of study, we need a greater experimental understanding of how animals respond to changes 

in specific variables; many animals can still survive certain levels of change and more 

experimental tests would be helpful in order for models to be more applicable. Finally, it was 

mentioned that many studies that model the future distribution of VME indicator taxa do not take 

into account reproduction and conditions necessary for reproduction, and rather focus on mature 

animals. This focus has led to a large gap in knowledge and possibly unrealistic predictions. 
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3.5. Including Predictions of Community Functional Traits in Species Distribution 

Models using Hierarchical Modeling of Species Communities (HMSC) 

Benjamin Weigel 

Research Centre for Ecological Change, Organismal and Evolutionary Biology 

Research Programme, University of Helsinki, Helsinki 00014, Finland 

Background 

The ever-increasing impact of human-induced pressures on marine ecosystems causes 

reorganization of communities by reshuffling species compositions, altering distribution ranges 

and affecting species interactions, through changing environmental parameters and physical 

disturbances. Geographic distribution, as well as species interactions within a community, 

ultimately depend on the individual traits of a species. Functional traits may reflect information 

on the species’ life history strategies, as well as morphological, physiological and behavioural 

characteristics. Such information provides insight into, for example, preferred habitat types, 

feeding modes or size distribution, among various other aspects that can be linked to ecosystem 

functions and services (Weigel et al., 2016). Hence, considering species traits in distribution 

modeling is a promising tool to better understand and predict community developments under 

environmental changes, while also including the functional implications of community changes, 

and therefore may be a useful framework for management and conservation. 

Aim and Approach 

The aim of this working paper is to highlight the possible application of including functional trait 

information within Hierarchical Modeling of Species Communities (HMSC; Ovaskainen et al., 

2017), an approach that belongs to the class of joint species distribution models (JSDM; Warton 

et al., 2015). To illustrate some of the possibilities HMSC allows for, I used zoobenthos 

community datasets extracted from the EMODnet data base (www.emodnet-biology.eu) for the 

Gulf of Finland (Finnish Environment Institute SYKE; 2018), including a total of 93 species at 

541 locations that have been sampled between 2009 and 2014. I used time and depth as 

explanatory variables. The trait data was obtained from the MERP Trait Explorer 

(http://www.marine-ecosystems.org.uk/Trait_Explorer, Bruggeman et al., 2009; Brey et al., 2010; 

Webb and Hosegood, 2013; Webb et al., 2017) offering inferred trait information for all marine 

species, while indicating the uncertainty of their values based on available data. I included traits 

such as maximum size and maximum mass of the species (or family) as well as feeding types, to 

illustrate this approach.  

Preliminary Results and Conclusions 

In Figure 1, I highlight some relevant outputs that can be generated in HMSC exemplified on 

coastal zoobenthos data from the Baltic Sea, but applicable and relevant to all community types 

http://www.emodnet-biology.eu/
http://www.marine-ecosystems.org.uk/Trait_Explorer
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and habitats. The results focus on the inclusion of functional traits in community analysis and the 

species interaction network, to illustrate species associations. Species-to-species interactions, and 

hence their associations ultimately depend on the set of functional traits they express. Not being 

fully included yet, one future task will be to better incorporate traits into the species interaction 

network structure (Figure. 1b). However, there is already now a huge potential to predict 

geographic ranges of community-weighted traits in relation to their environment that could  

 

Figure 1. a) Results of variance partitioning. Variation in species occurrence is partitioned into 

responses to fixed and random covariates. Fixed effects include depth and year, with the sampling 

unit set as the random effect. The bar-plot shows the species-specific results whereas the legend 

indicates averages over all species. Traits explain 16 % of the fixed effect. b) Estimates of species 

associations measured by residual correlation. Species-to-species association matrices 

highlight species pairs, with positive associations indicated in red and negative ones in blue, here 

with statistical support of at least 75% posterior probability (the remaining cases are shown in 

white). Species are ordered to emphasize the network structure. c) Mean predicted trait values 

of zoobenthos assemblages for each sampling site, here exemplified for the traits: size, as 

maximum length and two feeding types, deposit feeders and predators. Blue indicates low and red 

indicates high values. d) Predicted community weighted mean of traits as response to included 

covariates, here exemplified with the predicted development of passive suspension feeders over 

time, showing a general decrease, and the maximum length against depth, which indicates that 

species tend to be bigger in deeper waters. Both predictions show high confidence intervals and 

can here only point out broad trends for a general illustration of the approach.  
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support conservation and management programmes. Especially being able to predict the impact 

of changing environmental factors on functional aspects of communities will be a key element to 

better understand the effect of climate-induced changes on ecosystem functioning and services. 

HMSC provides a framework for the inclusion of functional traits in community analysis as a 

hierarchical Bayesian joint species distribution model (Ovaskainen et al., 2017) and is 

implemented in R and a Matlab package. 
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Rationale 

The ocean is the largest habitat on earth, covering approximately 70% of the planet. Our 

knowledge of patterns within surface waters is fairly extensive, principally driven by the 

development of earth observing satellites. Whilst marine scientists have clearly benefitted from 

such technologies, effectiveness is limited to the upper parts of the water column (e.g., ocean 

colour: Behrenfield and Falkowski, 1997) or coarse gravity estimates of the sea-surface that 

correlate with ocean depth (Smith and Sandwell, 1997). Accurate data regarding conditions at the 

seafloor remain scarce and are generally concentrated around developed countries (Ramirez-

Llodra et al., 2010). Even with the now widespread adoption of technologies such as multibeam 

echosounders, remotely operated vehicles and autonomous underwater vehicles (Danovaro et al., 

2014), only approximately 5% of the seafloor has been mapped, and a far smaller area has been 

investigated in great detail (Ramirez-Llodra et al., 2010). Recently, there has been renewed interest 

in ocean exploration, driven by the need to have a better understanding of geological features, 

underwater resources and species distributions. However, studies in many parts of our ocean 

remain constrained by the availability of high quality and validated data on seafloor conditions. 

Large-scale ocean mapping requires significant infrastructure and investment, and as a result, our 

understanding of the ocean floor significantly lags behind terrestrial environments.  

Towards a new deep-sea climatology 

Several marine climatologies are currently available. For example, Bio-ORACLE initially 

provided a data package that focusses on surface waters (Tyberghein et al., 2012) which was 

recently extended to include some benthic and future climate data (Assis et al., 2017). The 

MARSPEC dataset was based upon a higher resolution bathymetric dataset (i.e., SRTM30 Becker 

et al., 2009), and provides several benthic terrain variables and temperature/salinity for the sea 

surface (Sbrocco and Barber, 2013). GlobENV aims to extend these previous climatologies by 

providing an up-scaling approach that can be applied to any bathymetric dataset available of any 

resolution by using the best available environmental data in the ocean. It extends previously 

upscaled datasets (Davies and Guinotte, 2011; Guinotte and Davies, 2014), by providing a more 

mailto:davies@uri.edu
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accurate and computationally efficient methodology and by implementing a robust validation 

framework that can be applied to each variable. 

Methodology 

Trilinear interpolation on a three-dimensional regular grid was used to estimate conditions on the 

seafloor from various environmental data sources. This approach interpolates the value of a point 

at depth z with coordinates x and y from eight surrounding points obtained from regularly gridded 

environmental data (Figure 1). GlobENV is designed to take gridded environmental data of 

varying resolution, and bathymetric data of an equal or finer resolution, producing an output that 

is an estimate of the variable at that particular depth and position. Finally, after computation of a 

variable (for an example see Figure 2), a validation process is conducted that compares 

performance against various environmental data. Several key parameters are calculated, 1) overall 

root-mean-square error, 2) spatial error calculations, 3) error by depth bin and 4) correlation 

metrics. 

Conclusion 

To date, GlobENV variables have been created for 10 different bathymetric datasets (5 global and 

5 regional), and 7 environmental variables extracted from the World Ocean Database. Several 

more are planned, and both code and data products will be released under an open source license 

in the near future. Overall, the validation of the various variables indicates that finer resolution 

bathymetry produces a consistently lower RMSE than coarse bathymetric products, indicating that 

multibeam data would have particular value when used with GlobENV. However, the approach 

does suffer from several limitations as observed in Davies and Guinotte (2011). Depth and spatial 

error validation shows that the approach does not resolve well in shallower coastal seas, but 

performance improves rapidly at depths below 50 m irrespective of the bathymetric layer used. As 

such, this climatology may have particular value for the study of deep-sea species at varying 

resolutions depending on the data available. 
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Figure 1. GlobENV workflow (a) and a schematic of the trilinear interpolation technique (b). 
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Figure 2. Example output from GlobENV at approximately 100 m XY grid resolution for the 

variable temperature (°C) based INFOMAR bathymetry and World Ocean Atlas 2013 data. 
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One of the advantages of using species distribution models is their ability to take advantage of 

diverse data sources using a variety of different methods. The data used for modeling the 

distribution of species in the deep-sea can range from statistically robust and well-designed 

surveys (e.g., Laman et al., 2018) to compilations of data from museum specimens, opportunistic 

collections or multiple sources (e.g., Davies and Guinotte, 2011). Modeling methods can 

incorporate different types of records, such as presence-only data (e.g., maximum entropy models) 

or presence/absence and abundance records using either statistical (e.g., generalized linear models 

and generalized additive models) or computer-learning (e.g., random forest and boosted regression 

tree models) methods. Species distribution models can also account for spatial autocorrelation 

explicitly in the method (e.g., kernel density models and vector auto-regressive spatial-temporal 

models), implicitly (e.g., maximum entropy models) or not at all. The choice of which data to use 

in the modeling and which modeling method to pursue can sometimes result in different 

representations of the species distribution (Figure 1). 

Often ensembling data into a species distribution model can be problematic. The most common 

example of this in the deep-sea environment is combining data collected with different gear types 
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into a single modeling framework. This is routinely done with maximum entropy models, but can 

also be achieved with statistical and computer learning models where a term for gear type is 

included in the model formulation. An example of this can be found in vector-auto-regressive-

spatial-temporal (VAST) models where a separate “catchability coefficient” can be set for each 

gear type (Thorson et al., 2015).  

Another example of using ensembled data in species distribution models is for models predicting 

future changes in species distribution due to climate change effects. In this case there may be 

multiple climate scenarios each providing a time series of future temperatures. These data could 

be fed into a single model to produce multiple potential representations of species distributions. 

An example of this is shown for multiple climate scenarios acting on Pacific cod distributions in 

the eastern Bering Sea (Figure 2) or Araujo and New (2007). 

Ensemble models have seen wide use in climatology, where multiple scenarios are combined to 

come up with the best predictions attainable. Ensembling is also becoming more prevalent in the 

fisheries stock assessment realm, where multiple types of assessment models with different 

assumptions can be combined into a trend in population status (e.g., Anderson et al., 2017 and 

Rosenberg et al., 2018 papers on “super-ensembles”). In the species distribution modeling 

literature there are a number of examples of using multiple models in an ensemble (Robert et al., 

2016; Rowden et al., 2017; Rooper et al., 2017). The methods used to combine models into an 

ensemble have varied, but most are weighted by some type of measure of variability in the 

goodness-of-fit (e.g., AUC, SD, or R2). In some cases, some sort of scaling of predictions may be 

necessary to combine model types into an ensemble. A particular subset of ensembling, that is 

interesting and relatively underutilized, is spatially explicit model ensembles. In some cases 

models have been constructed at different spatial scales, for example a PICES working group has 

been conducting broad-scale modeling of corals and sponges for the entire North Pacific ocean. 

This is an effort that is fairly data poor for some regions and uses presence only data. However, 

within the North Pacific Ocean there are a number of EEZ’s and seamounts for which better 

models have been produced. For example, Miyamoto et al. (2017) constructed models for the 

Emperor Seamount chain. It would be beneficial to ensemble these smaller scale and larger scale 

models to come up with better overall predictions. Importantly, this type of ensemble should 

somehow represent spatially explicit confidence estimates for the predictions.  

Key questions for ensembling data and models are: 

 What are the advantages and disadvantages of combining data sets into a single modeling 

method versus modeling each data set independently and combining predictions? 

 How to best weight or scale models when ensembling (especially across different data 

types) 

 How to represent error in ensemble models that reflects individual model prediction 

variability 
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An example of ensembling methods with different data and models can be found with the 

distribution of skate nursery areas in the eastern Bering Sea. Several species of skates in the eastern 

Bering Sea deposit eggs in highly concentrated areas that are persistent through time (Hoff, 2010). 

The skate eggs incubate and develop for up to several years before a small but fully developed 

juvenile emerges. The persistence and concentration of eggs in specific nursery locations has been 

well documented, but the distribution of the nursery areas is relatively unknown. The data set for 

these nurseries is limited to 26 locations that have been discovered since 2008 during camera 

surveys and bottom trawl surveys. Recorded absences from the same camera and trawl surveys 

can be used, however, the catchability of skate eggs is presumed to be low, so these are probably 

not all “true” absences.  

 

Figure 1. A) Map of the best model of probability of suitable habitat for skate nursery areas based 

on environmental variables, presence observations (n = 26), and absences for the eastern Bering 

Sea outer shelf and slope. The contour line indicates the threshold probability (0.60) at which 

presence of suitable habitat was determined. B) Kriged surface of the number of skate egg cases 

in the commercial fisheries catch across multiple gears, seasons and years. The data was collected 

by observers onboard the fishing vessels. 

A second data set is available on the distribution of skate egg cases recorded by observers on 

commercial fishing vessels. This data set includes abundance (counts) and locations of catches of 

skate eggs. There are no absence records for these data and because of confidentiality issues and 

the relatively coarse position data available for the presence records, they are resolved on a scale 
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of ~5-10 km. These data are very different to the bottom trawl survey catches and camera survey 

data.  

 

Figure 2. Predictions from a species distribution model for Pacific cod in the eastern Bering Sea 

using 6 climate forecasts. A) shows the distribution of Pacific cod in 2016, B) shows the predicted 

distribution of Pacific cod in 2099, C) shows the reduction (average and standard deviation) in 

area occupied by Pacific cod from 1980 to 2099 and D) shows the latitudinal and longitudinal 

shifts of the center of distribution for each of the climate scenarios. 

In response to management concerns species distribution models were developed that predicted 

potential nursery locations based on the 26 known areas and the fisheries data. Combining the two 
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data sets was unreasonable given their fundamentally divergent properties, thus two modeling 

approaches were used. A maximum entropy model was used for the camera and bottom trawl 

surveys (with recorded absences as pseudo-absences). This model resulted in a fairly narrow depth 

band along the upper continental slope that was predicted to be suitable habitat (Figure 1). For the 

commercial fisheries data a kriging method was used that incorporated the abundance data.  

These two outputs (Figure 1) reflect similar patterns in some cases, but are fundamentally 

different. How can these outputs best be combined in an ensemble to inform management on where 

skate nurseries are likely to be found? 
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3.7.1. Group Discussion 

Dr. Rooper’s presentation focused on the difficulties associated with ensembling data into species 

distribution modeling work and using this method to predict future changes in species 

distributions. Two comments were made concerning climate change predictions. First, it was 

suggested that it is important to understand the difference between climate predictions and climate 

projections. Projections are averaged statistical properties over a period of time, while projections 

deemed most likely become predictions or forecasts. Second, it was noted that one should use the 

same climate model when training data as when making predictions. It was suggested that it would 

be better to produce six models for six climate prediction data sets, and then ensemble the model 

output, rather than ensembling the data and producing a single output from that. Also, to obtain 

finer-scale climate predictions it was suggested that coarse climate change predictions could be 

upscaled by applying the data in “large pixels” to “finer pixels” which are available in present 

“nowcasts”.  

 

3.8. Resolution of Seabed Features in the Deep-Sea: Implications for Habitat 

Characterization 

Myriam Lacharité and Craig J. Brown 

Applied Oceans Research Group, Nova Scotia Community College, Dartmouth, 

NS, Canada 

Seabed features – i.e., shape of the seafloor and substratum type - play a central role in habitat 

characterization for deep-sea benthos (e.g., Tong et al., 2012; Zeppili et al., 2016; and many 

others). Marine geomorphometry quantifies patterns of the shape of seafloor with derived 

bathymetric (i.e., ‘terrain’) variables (e.g., slope, roughness, curvature), which are also often used 

as proxy of substratum type, in particular in complex benthic ecosystems to predict the presence 

of hard substratum.  
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Using high-resolution seafloor data increases quality and accuracy of species distribution models 

(SDMs) in the deep-sea benthos (Rengstorf et al., 2012).  Coarser environmental data can omit 

fine- (i.e., sub-grid) scale variability relevant to habitat characterization, introducing error into 

predictive models by mis-representing the distribution of a species’ suitable habitat (Vierod et al., 

2014). Because of data scarcity in the deep sea, SDMs are increasingly used at scales relevant to 

management (e.g., regional/territorial seas) to predict the occurrence of specific taxa of interest 

(e.g., cold-water corals) in unsurveyed regions. However, Vierod et al. (2014) suggest that the lack 

of accurate fine-scale bathymetric data limits the use of broad-scale models in the deep sea, and 

clear discrepancies between predicted and observed presence can arise during model validation 

(Anderson et al., 2016). While bathymetric gridded data are available at the global scale, their 

resolution remains coarse (30 arc-seconds: ~1 km at the equator; Weatherall et al., 2015), and the 

availability of higher-resolution bathymetric data from local surveys (sub-meter to 10s of meters) 

is sporadic (Mayer et al., 2018). 

Here, we first suggest that in addition to fine-scale bathymetric data in the deep sea, care must be 

given to fine-scale substratum type, the characterization of which may not necessarily be captured 

using derived bathymetric variables.  For example, recent studies have demonstrated the role of 

glacial dropstones (sporadic large boulders) at temperate and high latitudes in fostering diverse 

deep-sea benthos (Lacharité and Metaxas, 2017; Ziegler et al., 2017), the presence of which is 

captured with optical imagery or very-high bathymetric resolution (sub-meter). A detailed 

depiction of a wider extent of the surficial geology is detected with the reflectivity of the seafloor 

(i.e., acoustic backscatter), and advances in its standardization make these datasets increasingly 

more comparable (Brown et al., 2011; 2012).  

Second, we suggest open and shared high-resolution bathymetric data available to multiple end-

users would benefit habitat characterization for deep-sea benthos. The benefits of this approach 

for deep-sea SDMs goes beyond increased model accuracy by also supporting interdisciplinary 

research, in particular the development of high-resolution ocean hydrodynamic and 

biogeochemical models. Derived outputs from these models can enhance local habitat 

characterization and support spatially-explicit distribution models incorporating connectivity.  

Finally, we support the view that broad-scale habitat characterization in the deep sea would benefit 

from the availability of multiresolution (spatially-varying) and multi-layered (bathymetry and 

backscatter) seabed data. Recent efforts aim to increase the bathymetric resolution at the global 

scale (Mayer et al., 2018). However, we suggest that high-resolution bathymetric datasets should 

be available wherever they have been collected, including the raw data and backscatter return for 

substratum characterization. Future research in deep-sea SDMs could explore how developing 

multiresolution modeling approaches would limit dependence of broad-scale high-resolution 

bathymetry.  
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3.8.1. Group Discussion 

Discussion following the presentation focused on the lack of high-quality broad-scale seabed data 

and possible methods of adjusting to this lack of data while still providing well-informed model 

outputs. Variables vary at different spatial scales and different variables are more or less useful as 

predictors depending 1) on the species/habitat whose distribution is being modeled, and 2) the 

questions that are being asked of the model (i.e., the model’s intended use). Fine-scale data can be 

highly relevant to a given species’ distribution, yet data at such a resolution may not (and likely 

won’t) be available. One solution to this problem could be the use of proxy data, for example using 

satellite-based glacier tracking as a proxy for dropstones. A second method mentioned creating a 

substrate predictive map for small areas such as the coast of British Columbia; using substrate data 

from small areas to predict other areas is a good option when fine-scale data is unavailable.  

Finally, it is important to distinguish between the scale at which the habitat varies compared to the 

scale at which the biota is sampled. Multiscale models were suggested as a possible answer for 

this problem. An additional example was given: it would be expected that rock would vary at a 

fine scale compared to other covariates that vary at large scales. If available data is limited, such 

as specific rock location, certain habitats can be eliminated for certain species. Models are 

conditional on covariates, and if these are absent it will show in the error. 

 

3.9. Best Practices in the Development and Application of Species Distribution Models 

to Support Decision Making in Marine Spatial Planning  

Jessica Finney1,  Emily Rubidge1, Cherisse Du Preez1, Jessica Nephin1, 

Candice St. Germain1, Cole Fields1, and Edward Gregr2  

1 Pacific Region, Fisheries and Oceans Canada (DFO) 
2 SciTech Consulting, Vancouver, BC 

 

The Marine Spatial Ecology and Analysis (MSEA) Section is a part of Fisheries and Oceans 

Canada (DFO) in the Pacific Region.  The MSEA Section is involved in several areas of research 

that use SDMs to support ocean management, including marine protected area network design, oil 

spill response planning, forecasting the impacts of climate change, and identifying sensitive 

benthic areas. The Species Distribution Modeling Working Group (SDM WG) was formed to 

provide coordination and advice to help facilitate the use and development of species distribution 

models within MSEA and more generally in DFO in the Pacific Region.   
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A key output of the SDM WG will be a best practices workbook.  The intent of this workbook 

is to provide users with a well-referenced guide to the development of species distribution models. 

The workbook will include discussions on appropriate data usage, pre-processing and data 

preparation, modeling approaches and development, model validation, and interpretation of 

results. The workbook will outline best practices to standardize the species distribution modeling 

approach within the MSEA section (to ensure 

consistent quality and rigor in the models 

developed in the section).  It will also include 

important information about how to interpret 

model outputs and how to convey underlying 

uncertainty to managers.  The workbook will 

facilitate and simplify the model building and 

interpretation process, support the use of best 

practices, and provide consistent outputs, 

measures of uncertainty, and evaluation 

metrics for managers.   

The workbook will present three types of 

commonly used models of increasing 

complexity and data needs to highlight the importance of the four basic steps of species 

distribution models development (data preparation, model development, model validation, and 

interpretation) and to identify when a simple approach may be more appropriate than a complex 

approach. The three models that will be included in the workbook to demonstrate these points are: 

1) Habitat Suitability Index (HSI) models (simple model); 2) Generalized Linear Models 

(GLMs) (medium complexity); and 3) Boosted Regression Tree (BRT) models (most complex).  

This tiered approach increases the utility of the workbook by making it applicable to a wide range 

of data availability scenarios.  It also lets users decide how complex they need or want their models 

to be.  For example, if a simple model provides good results, it may not be necessary to spend the 

time and effort required to build a more complex model. 

 

An additional component of the workbook will be automated code for both the GLM and BRT 

models.  The species distribution modeling procedure for both models is run in two stages.  The 

first stage processes species (presence/absence or abundance) and environmental data, produces 

diagnostic plots, and maps environmental data. The second stage builds and evaluates the GLM 

and BRT models using k-fold cross validation, produces validation plots, estimates the marginal 

effects and relative influence of predictor variables in the model and uses models to predict the 

presence or abundance of species in new locations. 

 

The workbook will initially be tested out using a set of 12 benthic marine species representing a 

variety of life-history strategies, habitats and data availability scenarios.  Results of this analysis, 

as well as the completed workbook, are expected in early 2019. 

Model interpretation
Uncertainty Application Limitations

Model validation
Numerical Spatial

Model development
HSI GLM BRT

Data preparation
Environmental Species
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3.10. Evaluating Effects of Rescaling and Weighting Data on Habitat Suitability 

Modeling   

Ying Xue1,2, Lisha Guan2, Kisei R. Tanaka2, Zengguang Li1,2, Yong Chen2, 

Yiping Ren1  

1 Fisheries College, Ocean University of China, Qingdao 266003, China  
2 School of Marine Sciences, University of Maine, Orono, ME 04469, USA 

Background 

Habitat suitability index (HSI) models are important tools in identifying suitable habitats of living 

marine resources (LMR). Abundance indices (AI) derived from fishery-independent surveys are 

often used to calibrate HSI models. However, AIs tend to have a highly right-skewed distribution 

as a result of large spatial heterogeneity of LMR distributions, which can further affect subsequent 

HSI model performance. Furthermore, traditional HSI models are often based on unrealistic 

assumptions that environmental variables have equal impacts on the AIs. Using American lobster 

(Homarus americanus) in the inshore Gulf of Maine as a case species, this study evaluates the 

performance of different approaches in developing HSI models.  

Objectives 

The objectives of this study are to compare the performance of HSI models derived using 

untransformed abundance indices (AIs) versus log-transformed AIs and evaluate the effectiveness 

of a boosted regression tree (BRT)-based weighting approach.  

Approaches 

The existence of large AI values might result in underestimation of HSI values for most sampling 

stations. One approach to avoid this problem is to use rescaled AIs (e.g., log-transformed AIs) to 

reduce the impact of large AI values on SIs. In this study, boosted regression tree (BRT) models 

were used to determine the weights of environmental variables in HSI modeling. 

Key findings 

Both cross-validation and predicted habitat suitability maps suggested that the weighted HSI 

model based on log-scaled AI data tended to yield a more reliable prediction of optimal habitats 

for American lobster (Figure 1). The unweighted HSI model based on the original AI data, 

however, tended to underestimate optimal habitats and overestimate suboptimal habitats. We 

recommend using log-transformed AIs and determining the weights of different environmental 

variables based on the BRT method in HSI modeling, especially when AI data are highly skewed. 
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The approach demonstrated in this study can improve the quality of HSI modeling, leading to 

better definitions of suitable habitats (Xue et al., 2017). 

 

 

Figure 1. Spatial distribution of observed abundance indices (AIs) for American lobster in fall of 2013 

overlaid on two predicted habitat suitability index (HSI) maps derived from HSI-AI and weighted HSI-

lnAI models in Maine–New Hampshire inshore bottom trawl survey areas.  

Reference 

Xue, Y., Guan, L., Tanaka, K., Li, Z., Chen, Y., and Ren, Y. 2017. Evaluating effects of rescaling 

and weighting data on habitat suitability modeling. Fish. Res., 188: 84–94. 
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3.10.1. Group Discussion 

The discussion following Dr.  Tanaka’s  presentation  focused  on  the  use  of  a  simple  rank-

based  (i.e.,  non-statistical)  Habitat  Suitability  Index  (HSI)  model  to  predict  species  

https://doi.org/10.1016/j.fishres.2016.12.001
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distribution.  It  was  pointed  out  that  this  type  of  qualitative  method  can  be  useful  for  

introducing  non-statisticians  to  the  field  of  species  modeling  –  this  is  particularly  important  

in  helping  non-modeller  scientists  who  engage  with  stakeholders  and  need  to  understand  

species distribution models  to  a  sufficient  degree  to  simply  explain  the  methodologies  and  

their  outputs  to  stakeholders.  One  problem  with  this  method,  however,  is  that  when  

calibrating  HSI  with  highly  skewed  zero-inflated  data,  species  abundance  and  environmental  

variables  may  not  be  associated  appropriately  in  terms  of  computing  the  habitat  suitability  

of  marine  species.  Furthermore,  if  environmental  variables  are  weighted  equally,  the  model  

output  can  be  problematic  as  it  ignores  the  difference  in  ecological  importance  of  each  

environmental  variable.  The presentation showed that rescaling skewed observations (e.g.,  log-

transformation) and applying machine-learning techniques (e.g.,  boosted  regression  tree)  can  

address  these  known  shortcomings  in  the  HSI  modeling.  These  approaches  are important  

because  weighted  environmental  variable  contributions  are  generally  an  output  which  is  

sought  after  from  species distribution modeling  work,  rather  than  used  as  an  input.  

 

3.11. Developing a Generalized Climate-niche Modeling Framework to Improve 

Management of Commercially Important Species in a Climatically Altered Marine 

Environment: A Case Study with American lobster and Atlantic scallop in the Gulf 

of Maine   

 K. R. Tanaka*1,2, M. P. Torre*1, V. S. Saba3, and Y. Chen1 

    *Both authors contributed equally  

1School of Marine Sciences, University of Maine, Orono, ME 04469, USA 
2Atmospheric and Oceanic Sciences Program, Princeton University, 300 Forrestal 
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3National Oceanic and Atmospheric Administration, National Marine Fisheries 

Service, Northeast Fisheries Science Center, c/o Geophysical Fluid Dynamics 

Laboratory, 201 Forrestal Road, Princeton University Forrestal Campus, 

Princeton, New Jersey 08540, USA 

 

Background 

Climate change has been identified as a key driver of ecology and population dynamics of 

commercially important fish and shellfish stocks within marine ecosystems. Accounting for 

changing biogeography of fish populations is essential to the effective assessment and 

management of fisheries; however, the majority of fishery management frameworks in the United 

States have yet to incorporate information about how environmental conditions influence 
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distribution and abundance of commercial stocks (Saba  et  al.,  2015;  Skern-Mauritzen  et  al.,  

2015). That observed biogeographic ranges shift as consequences of ongoing climate change has 

raised a lot of concerns and uncertainty over the effectiveness of the current survey programs and 

subsequently in associated stock assessment models. The development of a forecasting ability to 

evaluate climate change impacts on the ecology of commercially valuable marine stocks has been 

advocated as an important step in mitigating uncertainty in climate change adaptation strategies. 

Objectives  

Using two commercially important stocks (American lobster and Atlantic scallop) in the northeast 

USA continental shelf as case studies, the objective of this research is to develop a generalized 

climate-niche modeling framework that can be a part of a coordinated regional effort to assess 

climate change effects on commercial fish and their fisheries. The proposed climate-niche 

modeling framework will improve our management of marine fish and shellfish stocks by 

providing (1) enhanced hind/now/forecasting capacity of spatio-temporal changes in their 

biogeography, and (2) a space/time varying estimate of their availability to the existing fishery 

surveys and management zones. Such a modeling framework will provide excellent tools for 

climate change-related research in fisheries, thus greatly enhancing foundations for future climate-

change-related research proposals in fisheries.   

Approach  

The proposed climate-niche modeling framework will consist of using a delta-generalized linear 

mixed model (delta-GLMM: Thorson et al., 2015) and ensemble niche model (biomod2: Thuiller 

et al., 2016) coupled with a dispersion simulation (MigClim: Engler et al., 2012) for 

hindcasting/forecasting spatio-temporal changes in distribution of American lobster and Atlantic 

scallop on the northeast USA continental shelf. In this project we would like to address the 

following questions: (1) How did abundance and distribution of American lobster and Atlantic 

scallop change over time? (2) What are the management implications of changing biogeography 

of the lobster and scallop stocks to the existing fishery survey designs and management zones?   

Preliminary results  

The ensemble niche model was used to predict the change in spatial distribution of American 

lobster and Atlantic scallop based on an 80-year time series of future bottom temperatures and 

salinity changes based on a transient climate response (2xCO2) simulation where atmospheric CO2 

is increased by 1% per year (Figures 1, 2). The model results will be used to (1) evaluate the past, 

present and future performance of the existing fishery-independent survey design in capturing 

annual variability of lobster and scallop stock abundance, and (2) discuss management 

implications of changing biogeography of the lobster and scallop stocks to the existing fishery 

management zones.   
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Figure 1. Predicting the change in American lobster probability of occupancy in the U.S.A. 

northeast continental shelf region. Predictions represent the mathematical average of ensemble 

models of probability of presence from years 1984–2015. Model predictions from the first and last 

10 years are compared. 
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Figure 2. Predicting the change in sea scallop probability of occupancy in the U.S.A. northeast 

continental shelf region. Predictions represent the mathematical average of ensemble models of 

probability of presence from the years 1984–2015. Model predictions from the first and last 10 

years are compared. 
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3.11.1. Group Discussion 

Following Dr. Tanaka’s presentation, a suggestion was made that time-frames for predictions 

should be quantified scientifically rather than arbitrarily. For example, using timelines relevant to 

lobster fisheries stock assessments would be beneficial rather than picking 80-100 years to look 

at, simply because that timeframe is commonly used. Variables will likely change drastically on a 

smaller timeframe than 100 years, for example SST will likely change drastically on the 10-15 

year timeframe. A second comment focused on scale: when a regional scale is used, more attention 

must be paid to individual variable responses. When a global scale is used, larger patterns must be 

looked at such as global fish decline. Finally, a third comment focused on how to quantify change. 

The Gulf of Maine was provided as an example, and how the baseline should be set was 

questioned, for example which date to start the analysis at when projecting into the next five or 

ten years.  
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One of the primary uses of species distribution models is to predict where habitat for a deep-sea 

organism occurs and where it does not. This is a binary solution requiring a “yes” or “no” for each 

location of interest. Most species distribution models use data to predict a probability of presence 

or absence. The movement from probability of presence to presence or absence requires 

implementation of a threshold probability. Secondarily, many of the metrics used to evaluate 

performance of models are based on predictions of presence or absence (e.g., Cohen’s Kappa, 

TSS).  

The choice of a threshold for use in a management strategy can have impacts on the results that 

are communicated to decision makers. For example, Figure 1 shows an analysis of thresholds for 

four models related to eastern Bering Sea trawl fisheries. In this case, the question was asked 

“should we be protecting Pribilof Canyon from bottom trawling to protect deep-sea corals”. An 

important decision point was how much of the total coral habitat was contained within the canyon. 

Three data sources were separately modeled (using two disparate methods) and an ensemble model 

was constructed as well. Using a number of different thresholding methods found in the literature, 

the proportion of coral habitat in Pribilof Canyon was predicted to range from ~17% to 90%. This 

example shows some of the major questions and concerns that arise when using thresholds with 

species distribution models. An incomplete list of these concerns that could be discussed are: 

 Should we be doing this and are there alternatives? 

 Which method should be chosen or how should the determination of method be made? 

 Are there general guidelines that can be followed? 

 How to best represent uncertainty in conclusions resulting from the choice of a specific 

threshold? 

A growing body of literature has sought to evaluate some of these questions (e.g., Manel et al., 

2001; Liu et al., 2005; Bean et al., 2011; Lawson et al., 2014). The consensus of most of these 

evaluations is that the best methods for thresholding are objective; meaning they set the threshold 

using statistics derived from the data (such as the prevalence approach) or the model predictions 

(such as sensitivity = specificity approach). However, it appears that the distribution of the 

modeled data and the modeling method are important considerations when choosing a 

thresholding method.  
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Figure 1. The proportion the total area of coral habitat in eastern Bering Sea that occurs in Pribilof 

Canyon predicted by four models as a function of the threshold probability for presence. Lines 

indicate the results for Generalized Additive Models of coral presence based on bottom trawl 

survey data (bottom trawl), camera survey data (camera survey) and both (Unified model) from 

Rooper et al. (2016) and a maximum entropy model based on camera data (Miller et al., 2015). 

The black arrows indicate the threshold where the predicted error rates for presence and absence 

are equal. The red numbers indicate two suggested thresholds based on high probabilities. 
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3.12.1. Group Discussion 

The discussion following the presentation focused on thresholds, as well as model validation and 

uncertainty measures. To begin with, the concept of deriving a threshold without human selection 

was brought up, and whether it is better to use a mathematical based approach rather than a human-

derived approach for thresholds. As well it was noted that the research question supporting the 

work will impact how conservative a threshold selection must be, whether it is more dangerous to 

have false positives or false negatives is an important consideration. When a threshold is selected, 

information is immediately lost, and this is important for managers and stakeholders to be aware 

of. An alternative approach was offered which suggested picking for example 80% of density 

(where 80% of observations will be occurring) rather than picking a threshold. Following this 

discussion, the concept of model validation was briefly covered. In order to calibrate a model, it 

must be validated, which can be expensive and unlikely for deep-sea situations. Independent data 

can be used for validation: often with a statistical model, available data is used to teach the model 

and then in order to validate it, cross-validation can be used rather than retrieving additional field 

data for validation. Finally, the concept of measuring uncertainty was covered. One question was 

raised concerning using data from one area to predict to another, and if these areas should be 

environmentally similar in order to do this. As well it was mentioned that a good idea is assigning 

a level of certainty to outputs based on which areas of the final prediction had input data compared 

to which areas were completely extrapolated towards, because uncertainty in the data will be 

translated to uncertainty in the model. In regards to the research question once more, which is 

better, 50% probability with 90% certainty, or 80% probability with lower certainty. This will 

depend upon the manager/stakeholder and what the model is being created for. 

 

3.13. Some Uncertainties of Bathymetry Data   
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Bathymetric data are important constituents of many habitat models, both directly in the form of 

seabed depth measurements and indirectly as constituents of other environmental layers. For 

example, oceanographic models have bathymetric grids as inputs, which help shape predictions of 

currents and temperature. Furthermore, we can directly infer seabed characteristics from 

bathymetry data by examining local variation in depth to create layers such as slope, aspect and 

terrain roughness, which are useful predictors of benthic organisms (e.g., Dolan et al., 2008). We 

can also examine the shape of the seabed to predict topographic features such as seamounts (e.g., 

Yesson et al., 2011), which are regarded as important habitats for many species (e.g., Bouchet et 

al., 2014). These topographic layers are often the highest resolution datasets upon which to base 

predictions of habitat suitability, and can be very important constituents of the models. However, 

it is important to consider uncertainties in the underlying bathymetry and consider the implications 

of this uncertainty on any resulting model. 

Global bathymetry grids such as GEBCO (Weatherall et al., 2015) and SRTM (Becker et al., 2009) 

are widely used in large-scale habitat modeling studies. However, the grids themselves are models 

based on a combination of soundings (i.e., high resolution acoustic surveys) and satellite altimetry 

(lower resolution data from satellite sensors). Satellite- altimetry provides global coverage and is 

the foundation of bathymetry models, but these sensors cannot determine small features (i.e., 

seamounts under 1.5km, Wessel et al., 2010). Acoustic surveys generate data best suited for 

determining seabed depth and these are used to constrain models used to create bathymetry grids 

(Becker et al., 2009). Soundings are limited to a small proportion of the ocean and the majority of 

bathymetry grid data is derived from the underlying model, rather than acoustically surveyed. For 

example only 18% of GEBCO grid cells are directly supported by acoustic surveys (Weatherall et 

al., 2015). With so little sounding data available, there is a premium on making full use of the data 

available, and historical soundings (based on weighted lines) have been extracted from nautical 

charts to expand these data (Becker et al., 2009). 

An example of the shortcomings of these data are presented as an anecdote. A survey was 

conducted in February 2016 in the British Indian Ocean Territory to visit seamounts around the 

Chagos Archipelago. Two shallow seamounts (summit <500m) predicted by Yesson et al., (2011), 

derived from a global bathymetric grid, were visited, but no seabed feature was detected above 

1,500m. An examination of Admiralty charts for the area showed that the summits of these features 

had soundings reporting “no bottom detected at depth X” where the bathymetry grid (and 

subsequent seamount predictions) showed seamount summits at depth X. We believe these “no 

seabed” soundings have been misinterpreted as seabed depths in bathymetry grids such as 

GEBCO. In this case, spatially isolated, erroneously interpreted sounding data can lead to the false 

prediction of seabed features such as seamounts. We estimate that 12.5% of seamounts predicted 

to be in the British Indian Ocean Territory by Yesson et al., (2011) are “phantoms” based on 

falsely interpreted soundings. 

http://www.gebco.net/
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Bathymetry grids are continually improving, whether that be from new multibeam acquisition, 

such as that collected during the search for Malaysian Airlines flight MH370 (Smith and Marks, 

2014), or improved satellite gravity data (Sandwell et al., 2014). However, these bathymetry grids 

still rely on sparse sounding data for many regions. It is important that we consider the 

uncertainties in the bathymetry when using these to make predictive habitat maps.  
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3.14. Mapping Uncertainty of SDM Predictions   

 Fiona Davidson and Anders Knudby 

Department of Geography, Environment and Geomatics, University of Ottawa 

Introduction 

To help decision-makers use species distribution modeling for conservation planning, the accuracy 

of predictions made by the model must be estimated. While overall model accuracy is commonly 

evaluated using metrics such as the AUC, the uncertainty of predictions is better estimated 

spatially, especially when models are used to extrapolate predictions to a new area. The relative 

confidence in predictions across separate regions of the modeling extent can be assessed with a 

bootstrap method (Anderson et al., 2016; Rowden et al., 2017). This working paper presents the 

initial results of such a bootstrap method used to map uncertainty for a spatially extrapolated 

model. 

Data 

The data used for this project included hexactinellid sponge presence and absence data from the 

Pacific Ocean along the North American coast (Figure 1).  

Methods 

We trained a MaxEnt model on data from British Columbia using 19 environmental data layers, 

and extrapolated predictions for Alaska. We then trained 200 bootstrapped models, and calculated 

the standard deviation (SD) and the coefficient of variation (CV) of the predictions on a cell-by-

cell basis for Alaska. We also applied the sum of sensitivity and specificity threshold to each 

bootstrapped model, and quantified the proportion of predictions falling in the least frequent class 

multiplied by two, and called this measure categorical uncertainty (CU; e.g., with 40 ‘presence’ 

and 160 ‘absence’ predictions, CU = 40/200 * 2 = 0.4). We then compared model predictions with 

the presence/absence data from Alaska, to show the relationship between estimated uncertainty 

(SD/CV/CU) and the actual accuracy of predictions. 
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Figure 1. Sponge Data. Glass sponge presences in British Columbia, Canada (Red) and Alaska, 

USA (Blue), and absences (Green). 

 

Results 

Figure 2 shows the predictions made for the Alaska region, extrapolated using the MaxEnt model 

trained with data from British Columbia, as well as the three uncertainty metrics. Figure 3 shows 

the overall accuracy of the predictions, binned into 10 equally spaced ranges of uncertainty 

estimates.  

Discussion 

For the SD and CU metrics, data bins with higher uncertainty (on the right side of each plot) have 

lower accuracies, and vice versa, suggesting that these two metrics can effectively be used to 

quantify the amount of confidence that should be placed in the predictions. For the CV metric, on 

the other hand, data bins with high uncertainty have high accuracy of predictions, suggesting that 

this metric should not be used to guide confidence in predictions. 
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Figure 2. Top left: Mapped predictions of sponge presence/absence in Alaska. Top right: Standard 

deviation (SD) of bootstrapped predictions. Bottom left: Coefficient of variation (CV) of 

bootstrapped predictions. Bottom right: Categorical uncertainty (CU) based on bootstrapped 

predictions. 

 

 

 

 

 

 

Figure 3. SD, CV and CU values, binned, and the corresponding accuracy of predictions. 
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4. THEME 2 - BIOLOGICAL AND ENVIRONMENTAL DATASETS RELEVANT 

TO DEEP-SEA SPECIES AND COMMUNITIES 

 

Chair: Dr. Telmo Morato  

Issues related to data gaps and data quality hampering the development of improved species 

distribution models in the deep sea were discussed. This discussion focused largely on data 

quality, accuracy, extent, resolution, ecological relevance, and temporal scales.  

Some of the points made are summarised below: 

1. Overall data availability is improving. Archiving the available environmental data and 

derived data so that it is open access would be important moving forward.  

2. Scientists should be encouraged to publish new environmental data in ‘data journals’ 

rather than as supplementary data linked to the original research paper to facilitate more 

ready access. 

3. There is a need for a shared data repository, for example linked to an expert forum similar 

to the group assembled for this workshop. Data layers from many institutes could be 

continuously updated, however quality control and oversight would be required for such 

a project. Also, a critique of new papers coming out would also be helpful. A web portal 

could be created with metadata of relevant datasets.  Users could rank their usefulness 

using a simple 1 to 5 star system.  An example of an existing repository is BioOracle 

(http://www.bio-oracle.org). Action: Dr. Andrew Davies agreed to set up a simple 

website where relevant datasets could be listed in order to facilitate species distribution 

modeller’s efforts.   

4. Required data quality relates directly to the scale at which the model will be used. 

http://www.bio-oracle.org/
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Biological data needs to be georeferenced with much greater care and attention; often, 

very high-quality bathymetry is available for an area and the georeferencing of biological 

data becomes the weak point. Actual position reference data is required for samples, 

rather than data aggregated at a 1 km cell size. Often, global databases contain limited 

metadata describing what and how data were collected.  Often only the geographic 

coordinates describing the location of the organism are given with no information about 

gear type/length of tow used to collect the sample available - this increases uncertainty. 

OBIS (Ocean Biogeographic Information System) facilitates entry of comprehensive 

metadata associated with biological data if available.   

5. In terms of ecologically relevant data, for species such as corals and sponges, process 

studies are very important in identifying variables which are important to individual 

species. It was noted that adding hydrodynamic data into species distribution models will 

be an important next step (e.g., Mohn et al., 2014). 

 

A short discussion on the topic of new data sources proposed the inclusion of detection 

probability. To do this, repeat sampling surveys would be needed, but this will only be possible 

for some species. Occupancy counts are often lower than actual occupancy due to the probability 

of missing some counts; this should be quantified in some way, e.g., using still images taken 

from the same sampling sites. For cryptic deep-water sponge species - repeat images could yield 

a value for detection probability. How this differs across the study area is also potentially 

significant.  

The importance of biological traits was then discussed and how they might be incorporated into 

modeling approaches. A major issue identified was the availability of sufficient data. It was 

mentioned that information pertaining to other closely related species could be used to help fill 

gaps in knowledge for certain species (see e.g., the Marine Ecosystem Research Program 

(MERP); the Trait Explorer).  

The Hierarchical Modeling of Species Communities (HMSC) package opens the door for 

including traits and modeling the response to covariates in the model.  

1. Joint Species Distribution Models (JSDMs) are still rather new; it has been demonstrated 

that when trait information is included, the result is similar to responses of species to 

their environment. In some cases, it has been demonstrated as a positive influence on the 

model, but other cases show including species-to-species interactions also helps; this 

does not need to come from trait information. The deep sea is not the best place to test 

species interactions and their impact upon models, however linking ecosystem models 

with species models can yield interesting results.  

2. Looking at connectivity and MPA design, SDMs can be used to understand population 
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structure and how it matches environmental gradients (looking at adaptations of specific 

groups). Genetic differences can be used as input to models rather than environmental 

data, and this can produce interesting habitat delineated areas. Suitability models can be 

developed for either side of the genetic break (the WoRMs repository can be used as a 

starting point). Species responses to climate change will vary based on their habitat 

determined genetic structure, so this is an important theme to follow up on.  

Finally, the concept of community modeling was discussed (particularly the question of whether 

there is specific data required for this that has not been addressed). 

1. Many deep-sea species have very wide dispersions. When regional studies are created, 

these don’t consider their entire distribution; it is known that species exists outside of the 

area for which a local model is produced.  

2. If there is a species present in different ocean basins, how should that data be combined 

so that location specific traits are not erased? Fisheries stock assessment models use joint 

stock/population distribution models. Each stock has its own parameters based on where 

it is located. Each regional population should be treated as having its own niche, and 

each population should be modeled rather than the whole species.  
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5. THEME 3 - TEMPORAL AND SPATIAL SCALES RELEVANT FOR 

DEVELOPING SDM IN THE DEEP SEA 

 

Chair: Dr. Skipton Woolley  

This discussion focused on issues of temporal scale as well as spatial scale. In terms of 

phylogenetic information, the discussion considered what kind of factors would be useful for 

species distribution models in a deep-sea context where the species may not be fully identified. 

A number of points were made: 

1. It is possible to look at niche patterns across phylogeny with the assumption that 

closer species have similar niches. This information can be used to infer data for 

species for which little is known.  



 

 

65 

2. With regard to niche partitioning, species are very good at finding niches that have 

not been occupied previously, for example they inhabit different bathymetry to 

avoid competition or unfavourable environments. How can this knowledge be 

applied in models? The hypothesis that closer species have similar niches can be 

tested through species distribution models. 

 

3. Exploring how species change with geography is an approach which can help 

interpret models. In one example of species archetype modeling, two resultant 

groups corresponded with phylogenetic history (Arctic vs Boreal sponges).  

Short versus long-term climate variability. It is important to note that when using climate 

predictions (short-term) or climate projections (long-term), research questions might be 

fundamentally different between these two time scales. As well, the data types used will also be 

different. 

1.  Historical data can be used for validation of modelled temperature values. This can 

provide increased confidence in the prediction.  

2. If the habitat distribution between a predator and prey (for example) changes with 

predictions, can this be modeled using JSDM? Yes, and scenario predictions can be 

used as well, for example, what would happen if one species was removed? It is 

more difficult to add predictions to JSDM and interpret these results. 

3.  What is a reasonable time frame to be looking at? For example, if data is available 

per five days for 20 years, or per month for 20 years. The purpose of the study will 

drive the answer to this question, for example, if the question is looking at shifting 

geographically it would be important to have a long time-frame. 

Potential for adaptation to climate variability. Different data covariates can result in different 

model results. In order to make mechanistic models productive, information on microclimate is 

required. For example, when looking at how koalas survived in different heat scenarios, by 

looking at the microclimate it was possible to see how the koala would find the coolest area 

possible. This presents the issue of scale, is it possible to have fine-scale data such as this for the 

deep sea? Perhaps it would be more relevant to take for example in situ records of specifics such 

as water temperature and salinity at the exact location of species occurrence and use a spatial 

method of analysis. Values such as these can then inform spatial model creation.  

Finally, the discussion focused on the main issues of spatial scales. 

1. Probability of occurrence is less meaningful without information about the 

sampling unit. Recommendation for future work involves always being explicit 



 

 

66 

in what the probability of occurrence actually references and how it was 

calculated.  

2. The occurrence probability is an average for the grid cell, physical features may 

be smoothed in the prediction maps, this means that the probability of occurrence 

would be very low because the majority of that cell would be unlikely habitat for 

that species. This needs to be made clear throughout the project.  

3. When using data such as commercial fishing trawl occurrences, there is bias 

because these trawls will occur in highly productive areas as well as uncertainty 

in the data as trawl gear aggregates catches over long distances.  

 

6. THEME 4 - MODELING TOOLS IN THE CONTEXT OF DATA-LIMITED 

SITUATIONS AND IN THE CONTEXT OF SINGLE SPECIES AND JOINT SPECIES 

MODELING 

Chair: Dr. Andrew Davies 

This discussion had three topics: issues with modeling in data-limited situations, future 

directions of modeling tools in these situations, and finally any suggestions for overall modeling 

approaches. 

To begin, the main issues relating to modeling in data-limited situations were looked at. Some 

starting terms were: model uncertainty, model validation, modeling assumptions, model 

ensembling, model transferability, thresholds for interpretation of probabilistic maps.  

1. In the instance of producing species distribution modeling work for guiding policy, there 

should be more weight placed on measuring uncertainty in the model output in order to 

not produce an overestimate. 

2. Issues associated with calibration and validation were next presented:  

a. It is important to separate statistical validation and ecological validation;  

b. In terms of metrics, is AUC useful? Selecting covariates for the model is one of 

the most important steps, what form do they take (linear, unimodal etc.). 

3. While an ensemble prediction/multi-model approach is often considered to be better, it 

must also be considered that the likelihood of finding one model that fits well with a 

specific case is higher. However, if doing ensemble prediction, the models must be 

weighted properly. One problem raised with ensemble prediction is that response curves 

are lost. Is the relationship between species not one of the most important aspects of 

modeling? The second problem with the multi-model approach is if the models have to 
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be weighted because some are bad, why include bad models in the ensemble prediction? 

A well-constructed single species model may give a better result than many less well-

constructed models.  

The second main topic discussed in this theme focused on if we can identify or suggest future 

direction or guidelines for modeling tools in the context of data-limited situations.  

1. A unique approach would be to use something like BRT or MaxEnt (especially if 

presence only data is available) and use this to identify functional relationships. By 

looking at the output plots of these models, useful information is produced concerning 

the relationships. The problem with model types like BRT or MaxEnt is then the 

uncertainty measures are not the best. A multi-model approach would be best in this case, 

with the incorporation of GLMs or GAMs.  

2. It is important to consider what ideally will be achieved and what data sources are 

available. Often it is impossible to rely on available data to be representative of the 

system, this is why a model-based approach should always be taken.  

3. Using informative priors from literature as a basepoint to start models was a method 

suggested of moving forward with modeling in data-limited situations.  

a. By building a habitat suitability index before beginning the modeling, one can 

produce base level data that the model can then be compared to.   

4. Finally, it was noted that machine learning depends on a lot of data, this is not available 

for the deep sea. If there is enough data available, it is significantly easier to reach a 

correct, or close-to-correct answer.  

The final topic for this theme was focused on looking at future directions for modeling 

approaches in the deep sea:   

1. It was noted that this depends on the audience as recommendations will vary between 

experts and non-experts.  

2. Ideally there would be an increase in publications outlining new outlines for SDM work.  

3. How should model performance be assessed, many current evaluation methods are 

perhaps not the most important. It may be best to continue to use GLM and GAM 

formats.  
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7.        DEVELOPMENT OF GUIDELINES 

 

Workshop participants divided into one of three break-out groups to formulate ideas on what type 

of content might go into the future development of Guidelines for Species Distribution Modeling 

in the Deep Sea. The notes from those discussions are summarized here in the format presented. 

Ideally these notes will be translated into a structured set of guidelines that can be published 

separately. 

 

Biological data 

1. What sort of  data  do  you  have? 

a.  Good and well-understood dataset:  systematic repeated survey; well randomised 

design; conducted systematically; good spatial coverage of area of interest; known and 

interpretable gear; quantifiable detectability; standard operation procedure. 

b.  Ad hoc/OBIS/literature search: QC of these sorts of data is important, so need to 

consider - taxonomic alignment; can we assess spatial accuracy (spatial uncertainty); 

depth-based validation?; how  was  the  data  collected?; what  are  the  data  gaps?; What 

are the spatial/taxonomic/environmental/temporal biases? 

2. Think about the model 

a. What are the objectives of the model? – used to examine global or local patterns, 

answer ecological questions or used as managements tools?  

b.  Are the data good enough to model?  -  take pre-emptive steps to address before 

modeling; does the resolution of the response and environmental data match (particular 

problem for deep sea)?      

    

Environmental data 

1. Where are you looking at?  - e.g., predicting suitable habitat distribution or connectivity and 

dispersal of organisms. 

2. Think about the justification of your variable choice and how you can explain it – e.g., learn 

about the physiology of your modelled species -  what environmental variables may be known 

that limit the distribution of your species? 

3. Understand your environmental data before model use – e.g., consider scales of data; 

bathymetry -  look at acoustic and satellite -  where are interpolation?; what  do  derivatives  of  

bathymetry  mean  for  us?; check  interpolation  of  your  data. 
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4. Validate the environmental data if you can – e.g., do we have direct measurements -  use it to 

validate -  what is a realistic expectation of comparison; look at environmental profiles of your 

samples -  is this what you expect for your species? 

5. Special considerations for the deep sea? – e.g., bathymetry; bathymetry derivatives; surface 

layers -  are they of relevance?; 3d  models; flow  direction  importance?; proxies?; spatial  bias; 

distance  to  seamount; internal  waves?; human  impacts? 

6. Use layers of the same resolution where possible and consider whether up-scaling or down-

scaling is appropriate 

 

Modeling methods 

1.  What desirable qualities in a model do we want? – e.g., uncertainty; clarity of what the model 

is doing; does the model formally describe the data?; ease to use; reproducible (using scripts and 

makes  the modeling steps very transparent); purpose of  prediction; interpolation  and  

extrapolation  and  report  uncertainty; suitable for hypothesis  testing. 

2. Predicting outside environment space and geographical space - if we are willing to make a 

hypotheses about the prediction and explicitly state that hypotheses in modeling steps and model 

reporting.   

For example, we may be willing to predict to the western Pacific Ocean from a model that is fit to 

eastern Pacific Ocean. Under the assumptions that the models fitted in the west are representative 

for the animals we find in the east.  Providing these assumptions and hypotheses, we can justify 

model prediction and extrapolation into other regions. Another example might be the lessons that 

come from invasive species modeling and understanding the potential extrapolations of where 

species might be to understand risk for management objectives.   

3. Something to do within a paper that describes guidelines –  would be to use data degradation to 

demonstrate that for good data cases that there are readily made tools which do the model you 

want, but as the data degrades or becomes more complex, then you have to use more complicated 

modeling packages or other variations on these models to deal with the data. Then if it gets really 

complicated, you might have to create your own model and/or talk to a statistician and get some 

help with building a more complex model which can deal with nuances in the data you are 

modeling.   

4.  Do we need a spatial prediction? Based on the objectives of the outputs can we get more 

informative models based on a-spatial statistical models? 

5.  Identifying candidate models (your chance to talk to a statistician). Has the approach to model 

identification been justified with respect to published advice, statistician’s advice, and the 

availability of species survey data? Is uncertainty formally reported within the model you are 
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choosing? Given the choice of the model what package should we use?  e.g., Package 'ppmlasso' 

instead of MaxEnt. 

6.  When given a choice use a statistical-model based approach. For example, MaxEnt and IPPMs 

are the same thing, so use a IPPM which formally defines the model and removes the black box. 

Desirable qualities of statistical models – they describe the error distribution and explain it with 

respect to described model. Not a machine learning, but algorithmic approaches. There are many 

machine learning approaches which are based on statistical modeling.  

7.  Dependent and independent variables in model fitting and testing. Have the statistical 

relationships between environmental variables and species occupancy (or abundance) been 

provided in a clear graphical form? Visualising the response of coefficients during model fitting 

and test. Because of the sparse nature of data, we should try and fit ecological relevant 

relationships.   

8.  Model diagnostics. Have model diagnostics been presented and discussed (e.g.,  residuals)? 

9. Statistical evaluation, model selection and cross-validation.  

a. Has model evaluation been undertaken? Have output habitat maps produced by the ‘best 

model’ and the ‘most competitive of the non-preferred plausible models been presented 

and considered?  Has the relative statistical support for each model been presented using 

information criteria? 

b. Cross-validation is the number one method for validating the fit of the model. When 

testing the model through cross validation use left out, and make sure your predictions 

from a training model are correctly fitting a testing model.  Do model validation well and 

make sure you are happy with the predictions based on the data used to fit the model. 

Touched on the different cross-validation methods and what they can do and what they are 

useful for. 

c. Model selection is very hard  and no one accuracy metric is the best. Even the current 

evaluation methods such as AUC and TSS are controversial. When considering an 

accuracy metric its best to report several (e.g. AUC, TSS, Kappa) and discuss the pros and 

cons in relation to the type of error you want to control (e.g. omission or commission error). 

.  

d. Model comparison of different regions or dataset is ok, if you are honest with the 

potential issues with differences in the way the data was collected and species you are 

making inference about. You are the best expert about the data, you need to be critical if 

datasets are comparable. Leave out model-averaging because it’s very hard to do well.  
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Guidelines for SDM products   

1. Maps   

a. People want maps in a form they can use. Should discuss with end-users, provide GIS 

immediately (colour ramps etc).    

b. Maps showing uncertainty are necessary: coefficient of variance; confidence intervals 

(how close to estimating mean) or prediction intervals; include input data points (especially  

absence or pseudo-absence); areas of extrapolation –  physical extent of extrapolation; 

show depth distribution of where samples were taken. Add histogram showing depth 

distribution of data points. 

 

2. Thresholds   

a. Both predicted probability (percentage) maps and binary maps showing areas of suitable 

vs. unsuitable habitat are useful depending on the application (e.g. conservation 

management).   

 

b. Choose a percentage of the probability distribution function (e.g., 80%) and plot that 

rather than a threshold based on the overall probability. 

c. Try to obtain ecological (in field) validation data for your thresholds (understand 

assumptions).   

d. Can we establish minimum guidelines for field validation? 

 

3. Data accessibility/archiving (for stakeholders)   

a. Be prepared to make all underlying raw data and modelled data available (for 

transparency) to (project) stakeholders. Identify good repositories (e.g., Australian 

example (video and photo)). 

b. Ensure long-term archiving of data. Local, regional and global data repositories 

(institutes should have automated process to archive data). More problematic for individual 

academic researchers. Australia – Integrated Marine Observing System has a portal called 

the Australia Ocean Data portal that takes all data.  New Zealand example –  will archive 

data in old publications etc.  

 

4. Climate change predictions   

a. Which are the most appropriate sources of climate change scenario information?     

b. It’s important to distinguish whether to use climate prediction (short time frame tuned 

to current climate conditions) versus climate projection (longer term projection – not tuned 

to current climate conditions). Need a rationale to choose the time frame used in modeling. 

Management decisions are typically required on a 10-20 year time frame. 
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c. Ecologists need a better understanding of how climate change models work. 

d. Link predictions to follow-up monitoring to see which trajectory your ecosystem is on 

in climate change terms.     

e. What parameters should be monitored? Annual ENSO/tuna catch/tuna futures. Depends 

on species (mobile vs sedentary).   

f. Climate change SDMs may indicate direction of migration of species (e.g., towards 

poles, deeper or shallower) or identify areas of increased conservation importance in the 

future due to contractions/concentration of species. Implications for MPA design. May 

need new MPA areas to buffer future species movements.   

g. Validate niches identified in climate change prediction models with measured data on 

environmental tolerances when possible. 

5. Modeling Decision Support Tree  

a. Work being undertaken by Jessica Finney for DFO and should be available in early 

2019. 
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APPENDIX 1. WORKSHOP AGENDA 

 

WORKSHOP ON THE USE OF SPECIES DISTRIBUTION MODELING  

IN THE DEEP SEA 

May 17-18, 2018 - MONTREAL, QUEBEC, CANADA 

Venue: Joke Waller-Hunter Conference Room, Secretariat of the Convention on Biological 

Diversity, 413 Saint-Jacques Street, Suite 800, Montreal, Quebec H2Y 1N9 

Thursday, 17 May  
815  Meet in the Lobby for security escort to meeting room 

840  Convenors Welcome (Ellen Kenchington) 

845 
 Welcome from the CBD 

900 

 

Setting the Context: Voluntary Specific Workplan on Biodiversity in Cold-water 

Areas within the Jurisdictional Scope of the Convention  

 Murray Roberts, ATLAS Project Co-ordinator, University of Edinburgh 

915 

 
Theme 1 Showcase Approaches to Develop SDM/HSM in the Deep-sea  

(Anthony Grehan) 

920  Keynote Talk: Dr Piers Dunstan, CSIRO Marine Biodiversity Hub, Australia 

1030  Coffee/Tea Break and Mixer 

1100  Keynote Talk: Dr Jarno Vanhatalo, University of Helsinki, Finland 

1145  Open Discussion of Keynote Talks 

1230  Lunch (Catered In) to Facilitate Informal Discussions 

 1330-1730 Participant's Forum (Ellen Kenchington Moderator) 

 
No formal Coffee Break but coffee will be available through the afternoon (self 

service) 

  

Short presentations by participants on pertinent issues collated by subject followed by 

discussion (30 min approximately) 

1. What do environmental managers and stakeholders want from a model? (Ashley 

Rowden) 

2. Resolution of seabed features in the deep-sea: Implications for habitat 

characterization. (Myriam Lacharite) 

3. Determining thresholds for interpretation of probabilistic maps. (Chris Rooper) 

4. Model validation. (Chris Rooper) 

5. Evaluating effects of rescaling and weighting data on habitat suitability modeling. 

(Kisei Tanaka) 

6. How to undertake ensembling of multiple models/multiple data sets. (Chris 

Rooper) 

7. Distribution models as a tool to predict climate change effects in the deep sea. 

(José González)  
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8. A generalized climate-niche modeling framework for commercially important 

species: A case study with American lobster and Atlantic scallop in the Gulf of 

Maine. (Kisei Tanaka) 

1900  Group Dinner  Restaurant Les Pyrénées, 320 Saint-Paul St W, Montreal 

Friday, 18 May  
845 

 
Theme 2 Biological and Environmental Datasets relevant to Deep-sea Species 

and Communities (Telmo Morato) 

1030 
 

Coffee/Tea Break with Mixer 

1100 
 

Theme 3 Temporal and Spatial Scales Relevant for Developing SDM/HSM in 

the Deep-Sea (Skip Woolley) 

1230  Lunch (Catered In) to Facilitate Informal Discussions 

1330 
 

Theme 4 Modeling Tools in the Context of Data-Limited Situations and in the 

Context of Single Species and Joint Species Modeling (Andy Davies) 

1430  Development of Guidelines (Chris Yesson and Anthony Grehan) 

  Break out groups  

1630-1700  Conclusions and Next Steps (Ellen Kenchington) 
 

 

Notes for Participants 

Participants have been asked to prepare short (max. 1-2 pages) working papers addressing agenda 

items and to make short presentations (10 min max – 2-4 ppt slides) to stimulate discussion. These 

do not necessarily have to be on the same topic. The workshop will address data, knowledge, 

methods, and performance gaps and identify further steps to improve species distribution modeling 

in the deep sea. However, we also want to use this opportunity for participants to discuss problems 

that they have encountered or areas where they would appreciate other viewpoints. Therefore, the 

working paper could provide background for an issue that will be discussed in the presentation, or it 

could be a stand-alone paper on recent work. The presentations will slot into the Participants Forum 

or one of the Theme Sessions depending upon the topic. There is no requirement to make a 

presentation but we hope that you will! 

Timelines:  (please send to Ellen.Kenchington@dfo-mpo.gc.ca) 

Presentation Topic Before 1 April 2018  

Working Papers 30 April 2018  

PPT Presentation Before 15 May 2018 

 

Publications 

The working papers will be combined along with the meeting notes and conclusions into a jointly 

authored technical report in the Canadian Technical Report of Fisheries and Aquatic Sciences series 

(http://publications.gc.ca/site/eng/9.514691/publication.html ).  

mailto:Ellen.Kenchington@dfo-mpo.gc.ca
http://publications.gc.ca/site/eng/9.514691/publication.html
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Participants may also want to consider publishing their work in the ‘Managing Deep-sea 

Ecosystems at Ocean Basin Scale’ Research Topic that Telmo Morato and Murray Roberts are 

putting together for Frontiers in Marine Science: https://www.frontiersin.org/research-

topics/7768/managing-deep-sea-ecosystems-at-ocean-basin-scale . The deadline for abstracts is 12 

July 2018 with the manuscript due 15 November 2018. This is something we can discuss at the 

workshop and if some of the topics warrant it we could look at putting together collaborative (or 

otherwise) papers to submit. 

Dropbox 

A dropbox will be set up to allow participants to upload papers (their own or others) that bear on 

the workshop. Please name files using the following format: FIRST AUTHOR 

SURNAME_YEAR_JOURNAL  ABBREV and check to see that the paper has not already been 

posted. 

Travel Notice 

Non-Canadian travellers may need an Electronic Travel Authorization (eTA) to board their flight to 

Canada. It is the responsibility for each traveller to obtain this (it is not part of the airline ticket). 

For more information on how to purchase this please visit the links provided in the Information 

package of 9 March 2018. The cost is very small and can be done online. 

  

https://www.frontiersin.org/research-topics/7768/managing-deep-sea-ecosystems-at-ocean-basin-scale
https://www.frontiersin.org/research-topics/7768/managing-deep-sea-ecosystems-at-ocean-basin-scale
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APPENDIX 2. LIST OF PARTICIPANTS 

 

Participant Affiliation Email Address 

Appiott, Joseph CBD, Montreal, PQ Canada joseph.appiott@cbd.int  

Beazley, Lindsay  DFO, BIO, Canada Lindsay.Beazley@dfo-mpo.gc.ca  

Callery, Oisin   NUI, Galway, Ireland oisin.callery@nuigalway.ie  

Davidson, Fiona  University of Ottawa, Ontario, Canada fdavi065@uottawa.ca  

Davis, Andrew  University of Bangor, Bangor, UK andrew.j.davies@bangor.ac.uk  

Dunstan, Piers 

CSIRO, Oceans and Atmosphere, 

Hobart, Tasmania, Australia Piers.Dunstan@csiro.au 

Du Preez, Cherisse    DFO, Pacific Region, Canada Cherisse.DuPreez@dfo-mpo.gc.ca  

Finney, Jessica  DFO, Pacific Region, Canada jessica.finney@dfo-mpo.gc.ca  

González-Irusta, 

José   IMAR, Azores, Portugal gonzalezirusta@gmail.com  

Grehan, Anthony NUI, Galway, Ireland Anthony.Grehan@nuigalway.ie  

Howell, Kerry*  University of Plymouth, Plymouth, UK kerry.howell@plymouth.ac.uk  

Kenchington, 

Ellen DFO, BIO, Canada 

Ellen.Kenchington@dfo-

mpo.gc.ca  

Knudby, Anders  University of Ottawa, Ontario, Canada aknudby@uottawa.ca   

Lacharité, Myriam  

Nova Scotia Community College, 

Dartmouth, NS, Canada myriam.lacharite@nscc.ca    

Lee, Jihyun CBD, Monteal, PQ Canada jihyun.lee@cbd.int  

Morato, Telmo IMAR, Azores, Portugal t.morato@gmail.com  

Murillo, Javier DFO, BIO, Canada 

Javier.MurilloPerez@dfo-

mpo.gc.ca  

Roberts, Martyn  University of Bangor, Bangor, UK emyr.roberts@bangor.ac.uk  

Roberts, J. Murray University of Edinburgh, Edinburgh, UK Murray.Roberts@ed.ac.uk  

Rooper, Chris  

Alaska Fisheries Science Center, NMFS, 

NOAA, Seattle, Washington USA  Chris.Rooper@dfo-mpo.gc.ca 

Rowden, Ashley  

National Institute of Water and 

Atmospheric Research, Wellington, NZ Ashley.Rowden@niwa.co.nz  

Rubidge, Emily   DFO, Pacific Region, Canada Emily.Rubidge@dfo-mpo.gc.ca  

Stanley, Ryan*  DFO, BIO, Canada Ryan.Stanley@dfo-mpo.gc.ca  

Stirling, David*  Marine Scotland Science, Aberdeen, UK D.A.Stirling@MARLAB.AC.UK  

Tanaka, Kisei  

Atmospheric and Oceanic Sciences 

Program, Princeton University, USA kiseit@princeton.edu  

Vanhatalo, Jarno University of Helsinki, Helsinki, Finland  jarno.vanhatalo@helsinki.fi  

Weigel, Benjamin  University of Helsinki, Helsinki, Finland  benjamin.weigel@helsinki.fi  

Woolley, Skipton 

CSIRO, Oceans and Atmosphere, 

Hobart, Tasmania, Australia Skip.Woolley@csiro.au  

Yesson, Chris  

Zoological Society of London, London, 

UK chris.yesson@ioz.ac.uk  

*Indicates Webex Participation 
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