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ABSTRACT 
Status assessments for Chum Salmon (Oncorhynchus keta) under the Wild Salmon Policy 
(WSP) have been limited, in part because recruitment time-series required to calculate stock-
recruitment based benchmarks are not consistently available. Alternative benchmarks have 
been proposed for data-limited Conservation Units (CUs) using percentiles of the observed 
spawner abundance time-series.  However, these benchmarks have not been evaluated against 
stock-recruitment benchmarks currently used to assess status on abundances for data-rich 
CUs.  Our goals were to evaluate percentile-based benchmarks against stock-recruitment 
based benchmarks accounting for high uncertainties and possible biases in spawner 
abundances, catches, recruitment estimates, and age-at-maturity.  We used two approaches to 
evaluate benchmarks based on a retrospective comparison through the historical record and a 
prospective simulation model under numerous hypothetical future scenarios. We demonstrate 
an approach for providing assessments that accounts for uncertainties in benchmarks, and 
provide advice on the applicability of percentile-based benchmarks for data-limited CUs of 
Chum Salmon relative to stock-recruitment benchmarks used for data-rich CUs. In general, our 
results support the application of percentile-based benchmarks for data-limited CUs of Chum 
Salmon when productivity is moderate to high (>2.5 recruits/spawner) and harvest rates are low 
to moderate (≤40%). However, we suggest further evaluation of percentile benchmarks (and the 
consideration of alternatives) when productivity is expected to be low and/or harvest rates high. 
Under these conditions, concurrent declines in abundances and percentile benchmarks can 
results in status assessments that are more optimistic than those from stock-recruitment 
benchmarks due to a shifting baseline. 
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1  INTRODUCTION 

1.1 BACKGROUND AND OBJECTIVES  
Canada’s Wild Salmon Policy (WSP) outlines strategies and action steps to restore and 
maintain healthy and diverse salmon populations for future generations (DFO 2005). In the first 
strategy of the WSP, benchmarks of biological status are used to assign status of Conservation 
Units, CUs (population units of biological assessment under the WSP), into one of three zones: 
green, amber and red, representing increasing conservation concern and management 
intervention. Benchmarks on abundances for data-rich CUs, defined here as CUs with time-
series of spawners and recruitment, have been developed from stock-recruitment relationships 
(Holt et al. 2009) and applied to status assessments under the WSP for Sockeye Salmon (Grant 
and Pestal 2013), Coho Salmon (DFO 2015), and Chinook Salmon (DFO 2016).  

The lower benchmark, delineating red and amber zones, is established at a level to ensure a 
buffer between it and a level considered at risk of extinction under COSEWIC, the Committee 
on the Status of Endangered Wildlife in Canada, taking into account data uncertainties and 
harvest management. For data-rich CUs, the lower benchmark on abundances is set at, Sgen, 
the number of spawners required to recover to SMSY (spawners at MSY) within one generation, 
under equilibrium conditions in the absence of fishing (Holt et al. 2009). The upper benchmark, 
delineating amber and green zones is set at the escapement level associated with the maximum 
average annual catch, under current environmental conditions. For data-rich CUs, the upper 
benchmark is 80% of SMSY (Holt et al. 2009). While the policy lays out a basic framework for the 
assessment of conservation status of CUs, it does not require a single set of benchmarks for all 
CUs in BC. Rather, it states that benchmarks will be determined on a “case-by case basis, and 
depend on available information and the risk tolerance applied” (DFO 2005). 

For Chum Salmon in southern BC, many CUs do not have reliable time-series of recruitment, 
though relative escapement time-series are often available. These CUs are considered data-
limited for the purposes of this paper. Godbout et al. (2004) assessed status of data-limited 
Chum Salmon Fishery Management Areas in central and southern BC by comparing current 
abundances to historical medians. For data-limited salmon populations in Alaska, percentile-
based approaches have been used to determine sustainable escapement goals (SEGs) by the 
Alaska Department of Fish and Game (ADFG), and have been proposed as biological 
benchmarks under Canada’s Wild Salmon Policy (Holt and Folkes 2015).  This type of 
benchmark requires escapement data only, and simply compares current escapement levels 
with the percentiles of historical observations, similar to metrics and benchmarks on long-term 
trends in spawner abundances already considered under the WSP (Holt et al. 2009). Data 
deficient CUs have been defined in previous WSP assessments as those without sufficient data 
to assign an overall status, missing both reliable time-series of spawner abundances and 
recruitment (Grant and Pestal 2013; DFO 2016).  

Status assessments under the WSP integrate numerous metrics, including those on 
abundances, trends in abundance, and spatial distribution (Holt et al. 2009). Benchmarks on 
abundances (percentile or stock-recruitment based) are only one component of an integrated 
assessment of status that includes numerous other metrics (Grant and Pestal 2013; DFO 2015; 
DFO 2016). 

Biological benchmarks under the WSP differ from management reference points that inform 
harvest decision rules, as biological benchmarks depend only on biological criteria and do not 
include socio-economic considerations (Holt and Irvine 2013). Management reference points 
are quantitative states that characterize desirable biological and/or economic properties of 
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fisheries, and can be used as a basis for harvest decision rules. Management reference points 
are required for the management of Chum Salmon domestically and internationally. For 
example, the Pacific Salmon Treaty (PST) Chum Annex requires management reference points 
for PST related fisheries, including the Johnstone Strait fisheries and subsequent terminal 
fisheries. Management reference points for Chum Salmon in southern BC are 20-35 years out 
of date, and do not reflect current trends in productivity, stock status, or other ecosystem 
considerations.  

Marine Stewardship Council certification of southern BC Chum Salmon also requires 
assessment of status against reference points.  Although Portley and Geiger (2014) suggested 
that WSP benchmarks (Sgen and 80% of SMSY) were compliant with MSC certification 
requirements for reference points, data limitations have prevented their application in many 
cases. Instead, percentile-based benchmarks have been applied for MSC purposes (e.g., 
Hilborn et al. 2013, English et al. 2014) without a thorough evaluation of the properties and 
possible biases of those benchmarks compared with WSP benchmarks. 

In one exception, the ADFG evaluated the extent to which various percentiles of spawner 
abundances approximated 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 as a basis for Sustainable Escapement Goals, SEGs (Clark et 
al. 2014). Based on this study, a multi-tiered system was recommended for escapement goals 
in Alaska, where percentile values are adjusted based on data contrast, data uncertainty, and 
harvest rates. However, the extent to which percentile benchmarks are consistent with biological 
benchmarks already identified under the WSP remains uncertain. For data-limited Chum 
Salmon CUs in southern BC, percentile benchmarks at the 25th and 75th percentiles have been 
proposed and provisionally implemented as lower and upper benchmarks, respectively, for MSC 
certification (Hilborn et al. 2013).  

It is widely recommended that assessment methods be evaluated prior to implementation to 
avoid costly investments in approaches that provide little information or do not achieve stated 
objectives in practice (Peterman 2004, Butterworth 2007). Our objectives were to fill this gap for 
percentile-based benchmarks by: 

• Evaluating biological benchmarks for data-limited Conservation Units of Chum Salmon 
based on percentiles of observed abundances by comparing them to standard model-based 
benchmarks, accounting for high uncertainties and possible biases in spawner abundances, 
catches, recruitment estimates, and age-at-maturity.  

• Examining and identifying uncertainties in the data, methods, and benchmarks. Developing 
and demonstrating an approach for providing assessments that accounts for those 
uncertainties.  

• Providing advice on the applicability of percentile-based benchmarks for data-limited 
populations of Chum Salmon in southern BC. 

To emphasize, our goal was to provide a quantitative evaluation of percentile-based 
benchmarks for application to Chum Salmon, and not to provide specific assessment advice on 
individual CUs.  

Here we employed two approaches to evaluate performance of percentile-based benchmarks 
based on their performance in the historical record and in a prospective simulation under 
numerous hypothetical future scenarios. In retrospective analyses, performance of benchmarks 
was evaluated by comparing temporal pattern of assessments using benchmarks derived from 
percentiles against those from stock-recruitment models. Status in red, amber or green zones 
was determined by comparing benchmarks to the generational (geometric) mean spawner 
abundances. In this way, we evaluated if biological status derived from data-limited benchmarks 
would have differed from those based on stock-recruitment benchmarks for data-rich CUs using 
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only data prior to the generation being assessed (Figure 1). These analyses were performed on 
a subset of CUs where both data-limited and data-rich benchmarks could be estimated.  

 

Spawners
Recruits

…

Y1Y2Y3
…

Upper benchmark1Lower benchmark1Upper benchmark2Lower benchmark2

Status1Status2

…

DATA

BENCHMARKS

STATUS

Retrospective Analyses

Figure 1. Schematic of retrospective analyses. A minimum of 10 years of spawner data or 10 years of 
paired spawner and recruitment data aligned by brood year are required to estimate percentile and stock-
recruitment benchmarks, respectively. Y1, Y2, Y3, represent brood years. Benchmarks derived from one of 
two methods are used to estimate statuses against generational mean abundances (geometric mean) 4 
years later. 

Simulation modelling has the advantage over retrospective analyses of evaluating benchmarks 
over a wide range of hypothetical future scenarios and explicitly accounting for uncertainty in 
data and population dynamics. Here, candidate benchmarks for data-limited CUs were 
evaluated against data-rich counterparts using a Monte Carlo simulation model that included 
stochastic variability in population dynamics, observations of abundances, and harvest. The 
simulation model employed a retrospective analysis as in Figure 1, but the underlying data were 
simulated instead of empirical, and analyses were repeated over numerous random iterations 
and scenarios.  

To compare benchmarks using current methodologies, we evaluated percentile benchmarks 
against two alternate stock-recruitment benchmarks, one based on a standard, Ricker (1975), 
stock-recruitment model and one based on hierarchical Ricker stock-recruitment model that 
used information on productivity from neighbouring CUs to improve parameter estimates and 
reduce uncertainties (described in more detail in Section 2). Although a comparison between 
standard and hierarchical models is outside the scope of the current study, hierarchical models 
were included in our analyses because they are increasingly being applied to status 
assessment of Pacific salmon in BC where recruitment time-series are available (Dorner et al. 
2013, Korman and English 2013).  

Chum salmon generally spawn in the lower reaches of coastal streams or rivers, and their fry 
spend little time in freshwater (≤ 6 months). Outmigration occurs in spring but fry remain in 
estuaries throughout the summer before migrating offshore in the fall. Adults return to spawn 
generally at ages 3-5, in late summer and fall. Due to their limited jumping ability, the distribution 
of spawning is restricted to lower reaches of rivers with a few exceptions (e.g. Yukon River). 
Females select spawning habitat according to water depth, velocity, gravel composition, cover 
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and related characteristics (Groot and Margolis 1991). Density dependent survival may occur at 
spawning, freshwater and estuary rearing stages, and marine life-stages, where Chum Salmon 
compete for prey resources with other CUs and salmon species (Groot and Margolis 1991, 
Debertin et al. 2016). 

2 EVALUATION OF PERCENTILE-BASED BENCHMARKS AGAINST DATA-RICH 
STOCK-RECRUITMENT-BASED BENCHMARKS USING RETROSPECTIVE 

ANALYSIS 
The goal of our retrospective analysis was to compare status reached under both data-rich and 
data-limited biological benchmarks for Conservation Units in southern BC (Figure 2). For the 
data-rich scenarios, we compared benchmarks derived from two different forms of the Ricker 
stock-recruitment model: the standard model, which estimates parameters independently for 
each CU, and a hierarchical model where CUs within groupings are assumed to have 
productivity values from a shared distribution, centered on an overall mean productivity (Figure 
3a). We used the Ricker model because it is the basis for abundance-based benchmarks under 
the WSP (Holt 2009, Holt et al. 2009) and it adequately captures stock-recruitment dynamics for 
Chum Salmon (Dorner et al. 2008). Given evidence for spatial covariation in productivities 
among Chum Salmon populations within regions in BC (Pyper et al. 2002), hierarchical models 
may reduce uncertainties and biases in parameter estimation by sharing information on 
productivity across populations. We used two regional groups for the hierarchical model: the 
Inner South Coast (including east coast of Vancouver Island, Strait of Georgia and Johnstone 
Strait) and the west coast of Vancouver Island, which aligned with different large-scale marine 
circulation systems (Holtby and Ciruna 2007). Given evidence for widespread changes in 
productivity over time (Malick and Cox 2016), we further identified temporal trends in 
productivity. This variability in productivity informed the magnitude of uncertainty in productivity 
to consider in scenarios generated within the simulation evaluation (Section 3). 
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Figure 2. Map of Conservation Units for Chum Salmon in BC from Holtby and Ciruna (2007). The inner 
south coast CUs, labelled UKnight (Upper Knight), Bute (Bute Inlet), Howe (Howe Sound-Burrard Inlet) , 
GStr (Georgia Strait), Lough (Loughborough), SCS (Southern Coastal Streams), and NEVI (Northeast 
Vancouver Island), and west coast of Vancouver Island CUs, labelled SWVI (Southwest Vancouver 
Island) and NWVI (Northwest Vancouver Island), were included in our retrospective analyses. 
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Figure 3. (a) Schematic diagram of standard and hierarchical Ricker models. For the standard Ricker model, CU-specific 
parameters 𝛼𝛼 and 𝛽𝛽 (1/Smax) are estimated from uninformative priors. For the hierarchical model, priors on µα and σα are 
used to estimate a hyper-distribution of 𝛼𝛼 parameters, from which CU-specific estimates are drawn. (b) Parameter 
estimates from the standard and hierarchical Ricker models (black and grey, respectively) in the final year (2012 for ISC 
CUs, 2015 for WCVI CUs) across CUs. Circles indicate posterior medians, and lines indicate 95% credible intervals.
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2.1 DATA 

2.1.1 Inner South Coast (ISC) Chum Salmon Data  
Historical time-series of escapement and returns were available for seven CUs of Inner South 
Coast Chum Salmon: Upper Knight, Bute Inlet, Howe Sound-Burrard Inlet, Georgia Strait, 
Loughborough, Southern Coastal Streams, and Northeast Vancouver Island. Escapement data, 
identified as either wild-origin (naturally spawning) or hatchery-origin, were available for these 
CUs from 1953-2012, while CU-specific return data were reconstructed from catches, migration 
timing and patterns, spawner abundances, and age distributions, for brood years 1955-2006 
(Van Will 2014). Wild recruitment to systems with associated hatchery stocks were estimated by 
assuming that proportions of wild fish in catches were equal to the proportion in observed 
escapement. Historical wild and hatchery composition of the catches was not available to 
identify the respective proportion of catches, though hatchery and wild stocks are thought to be 
harvested at approximately equal rates. Exploitation rate time-series for all CUs examined here 
are provided in Appendix A. 

In years when spawner abundances (escapement) were missing, data have been infilled using 
a commonly applied approach that assumes covariation in abundance trends across sites within 
CUs (Van Will 2014). On average, across CUs and years, 45% of sampling sites were surveyed 
(ranging from 27% for the Howe Sound–Burrard Inlet CU to 57% for the Bute Inlet CU). Infilling 
occurred at the CU level for 2 CUs in years where no sites were surveyed (17 of 61 years for 
the Upper Knight CU and 8 of 61 years for the Bute Inlet CU), assuming covariation in 
abundance trends among CUs. Although infilling across CUs reduces independence of data 
among CUs, it was done infrequently and is unlikely to cause a consistent bias in our results.  
Infilled escapement and return data were combined with age-composition data to create brood 
tables from which stock-recruitment time series were formulated. 

Fitting the Ricker model to uncertain data can lead to biased parameter estimates because of 
observation errors in escapement (i.e., errors-in-variables) and time-series biases (Walters and 
Martell 2004). These time-series are relatively long (51 years) and contrast in escapement 
observations is high (ratio of maximum to minimum spawner abundances ranged from 8-2600, 
mean=481), thereby reducing these possible biases (Walters and Martell 2004). However, these 
results should be considered in conjunction with those from simulation model that incorporates 
multiple sources of data and assessment uncertainties. 

2.1.2 West Coast of Vancouver Island (WCVI) Chum Salmon Data  
Time series of escapement and returns from 1953-2015 were available for both the Southwest 
and Northwest coast of Vancouver Island CUs (SWVI, NWVI). Brood tables were constructed 
based on yearly age composition data beginning in 1959, but with a gap in the mid-1960’s. The 
corresponding stock-recruitment time-series ranged from 1956-2010, with a 6-year gap in the 
1960’s. There has been hatchery production in this area since the 1970’s, and the data used in 
this analysis excludes these hatchery populations. Specifically, hatchery contributions in Nitinat 
(Area 22) and Tlupana (Area 25) within the SWVI CU were removed, as they are dominated by 
hatchery populations. The proportion that Tlupana contributed to catches in Areas 25 was 
estimated from marking data and terminal fisheries. Nitinat is the only population within Area 22 
and catches from this Area were removed. Similar to the ISC data set described above, the 
WCVI CUs have relatively long time-series (~50 years, after accounting for gaps) and show 
considerable contrast (max/min spawner ratio ranged from 9-26, mean=18), which may 
ameliorate  biases associated with errors in spawner abundances and time-series biases. 
However, due to infilling and assumptions made in the run reconstruction stock-recruit time 
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series should not be considered the “true” state of the population, and these results should be 
considered alongside simulation results, which consider these uncertainties. 

2.2 METHODS 
For both stock-recruitment based and percentile-based benchmarks, we assumed that 10 years 
of data were required to estimate the first benchmark, and benchmarks were re-estimated every 
year after that. Since recruitment information is required for the stock-recruitment based 
benchmarks, and recruitment from a given brood year cannot be calculated until the oldest age 
class has recruited to the fishery, data used to calculate Ricker benchmarks lag behind 
percentile benchmarks by 5 or 6 years (for ISC and WCVI, respectively). Therefore, stock-
recruitment based benchmarks and statuses were calculated for years 1970-2012 for ISC, and 
1976/1977-2015 for WCVI. These benchmarks were calculated using parameters from Ricker 
models fit using data from brood years 1964-2006 for ISC CUs, and 1957-1958, 1965/1966-
2010, for WCVI CUs. Lower and upper benchmarks were compared to generational mean 
escapements to determine status. Generational mean escapement was estimated as the four-
year running geometric average. 

2.2.1 Standard Ricker Model 
For each year with sufficient data and for each CU 𝑖𝑖, a standard Ricker model (Eqn. 1) was fit in 
a Bayesian context, using Markov Chain Monte Carlo (MCMC) methods, using all data available 
up that year (brood years  𝑦𝑦 = 1 𝑡𝑡𝑡𝑡 𝑌𝑌). 

(1) 𝑅𝑅𝑖𝑖,𝑦𝑦 = 𝛼𝛼𝑖𝑖𝑆𝑆𝑖𝑖,𝑦𝑦𝑒𝑒−𝛽𝛽𝑖𝑖𝑆𝑆𝑖𝑖,𝑦𝑦,   

where R is the abundance of adult recruits from a given spawning event, S is the number of 
spawners that generated those recruits (also referred to as escapement). The parameter 𝛼𝛼  
(also referred to as productivity) is recruits-per-spawner at low spawner abundances, and 𝛽𝛽 is 
the reciprocal of the number of spawners that produce maximum recruits (𝑆𝑆𝑀𝑀𝑎𝑎𝑥𝑥 ). We linearized 
the equation and incorporated normally distributed process error, where 𝜏𝜏𝑣𝑣 represents precision 
of process error and precision is the reciprocal of variance. 

(2) log�𝑅𝑅𝑖𝑖,𝑦𝑦� = log(𝛼𝛼𝑖𝑖) + log�𝑆𝑆𝑖𝑖,𝑦𝑦� − 𝛽𝛽𝑖𝑖𝑆𝑆𝑖𝑖,𝑦𝑦 + 𝜈𝜈𝑖𝑖, 𝜈𝜈𝑖𝑖~𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�0,  1/𝜏𝜏𝜈𝜈𝑖𝑖�. 

We put a weakly informative prior on 𝛼𝛼 to ensure values greater than zero and within the 
bounds of observed productivity values for Chum Salmon (Dorner et al. 2008) (See Appendix B 
for plots of priors and posteriors of 𝛼𝛼 parameter). 

(3) log (𝛼𝛼𝑖𝑖)~𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(1,1). 

The prior for 𝛽𝛽 was set indirectly by applying a prior on its reciprocal, 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀. We had no 
independent prior information on 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 for these CUs, so we applied a uniform distribution 
bounded by 1 and twice the maximum observed spawner value (Eqn. 4). In a sensitivity 
analyses, we also considered a diffuse log-normal distribution for the prior (see Appendix C). 

(4)  𝑆𝑆max
𝑖𝑖

  ~ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢�1,𝑚𝑚𝑚𝑚𝑚𝑚�𝑆𝑆𝑜𝑜𝑜𝑜𝑠𝑠𝑖𝑖� ∙ 2� 

Uninformative gamma priors were used for 𝜏𝜏 parameters, 
(5) 𝜏𝜏𝑣𝑣𝑖𝑖   ~ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(0.01, 0.001). 

Although other forms of the Ricker model with environmental co-variates have been evaluated 
for Chum Salmon (Godbout et al. 2006; Malick et al. 2017), they have not yet been used to 
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develop WSP benchmarks. A full evaluation of data-rich benchmarks was beyond the scope of 
the analyses, and those models were not considered here. 

2.2.2 Hierarchical Ricker Model 
We also estimated Ricker parameters using a hierarchical version of the standard Ricker model 
(Eqns. 1 and 2), where parameters from CU’s within the two groupings (ISC and WCVI) were 
estimated simultaneously. CU-specific 𝛼𝛼𝑖𝑖 values were drawn from a common, normal 
distribution (Figure 3a, right side),  

(6) 𝑅𝑅𝑖𝑖,𝑦𝑦 = 𝛼𝛼𝑖𝑖𝑆𝑆𝑖𝑖,𝑦𝑦𝑒𝑒−𝛽𝛽𝑖𝑖𝑆𝑆𝑖𝑖,𝑦𝑦𝑒𝑒𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑖𝑖~𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�0,1/𝜏𝜏𝑣𝑣𝑖𝑖�, 𝛼𝛼𝑖𝑖~𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝜇𝜇𝛼𝛼,  1/𝜏𝜏𝛼𝛼), 

where  𝜇𝜇𝛼𝛼 is the mean of the normal distribution and 𝜏𝜏𝛼𝛼 is precision (the reciprocal of variance).  

The same prior distributions were used as for the standard Ricker model (Eqns. 3-5), with the 
addition of a prior on the global mean and variance of alpha, 𝜇𝜇𝛼𝛼. 

(7) log(𝜇𝜇𝛼𝛼) ~𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(1,1) 

We put an uninformative prior on the variance, 𝜎𝜎𝛼𝛼2, where 𝜎𝜎𝛼𝛼2 = 1/𝜏𝜏𝛼𝛼, 

(8) 𝜎𝜎𝛼𝛼2 ~ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(0, 100). 

Models were fit using MCMC runs using JAGS (Plummer 2003) interfaced through R version 
3.2.0  (R Development Core Team 2017) using package “R2jags” (Su and Yajima 2012). Model 
convergence was assessed using Gelman-Rubin and visual inspection of trace plots. Each 
model run included three independent MCMC chains of length 500,000, with a burn in of 
200,000 and thinning rate of 300. Gelman-Rubin statistics compare within-chain to between-
chain variance, to ensure that all chains are converging on the same solution. Chains are 
generally considered converged when Gelman-Rubin statistics are below 1.1 (though final year 
models were below 1.05).Trace plots have not been included here due to the large number of 
models considered in the retrospective analysis. 

2.2.3 Benchmarks 
For Ricker-based benchmarks, the lower benchmark, 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔, was calculated numerically, 
according to the following equation (Holt et al. 2009), 

(9) 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔 𝛼𝛼 𝑒𝑒−𝛽𝛽𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔. 

The upper benchmark was calculated using an approximation developed by Hilborn and Walters 
(1992), 

(10) 0.8 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 =  0.8 log(𝛼𝛼)
𝛽𝛽

(0.5 − 0.07 log(𝛼𝛼)). 

Percentile benchmarks were calculated as the 25th and 75th percentile of observed spawner 
abundances (escapement) ranked from lowest to highest, for the lower and upper benchmarks 
respectively (𝑆𝑆25𝑡𝑡ℎ,𝑆𝑆75𝑡𝑡ℎ). We used these percentiles as they have been used for Chum Salmon 
in BC (Hilborn et al. 2013). Holt and Ogden (2013) recommended against using stock-
recruitment benchmarks when Ricker 𝛼𝛼 falls below 1.5 because at low productivity the lower 
benchmark, Sgen tends to be higher than 80% of SMSY, the upper benchmark. We have removed 
years when 𝛼𝛼 <1.5 from our retrospective analysis. 
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2.2.4 Retrospective Analyses 
Retrospective analyses were implemented by annually estimating benchmarks and assessing 
status using all available data up until that year. This approach mimics the benchmarks and 
statuses that would have been generated historically. We derived bootstrapped confidence 
intervals for percentile-based benchmarks by resampling the time-series with replacement to 
generate a distribution of lower and upper benchmarks. We used simple non-parametric 
bootstrapping which may over-estimate confidence intervals if time-series are autocorrelated. 
Methods that account for temporal autocorrelation should be considered when applying this 
method in the future. The current analyses are for illustrative purposes only. Similarly, we 
derived Bayesian credible intervals for stock-recruitment based benchmarks by estimating lower 
and upper benchmarks for each MCMC sample of the posterior distribution of Ricker 
parameters. We expressed uncertainty in benchmarks as the 95% credible intervals, estimated 
as the 2.5th and 97.5th posterior densities of each benchmark.  

We used two approaches to characterize the uncertainty in the resulting status assessments 
(i.e., assigning red, amber, or green). First we assessed status using the lower and upper 
credible intervals of benchmarks to capture the maximum range of statuses (as shown in 
transparent bars in Fig. 6). Second, to account for the correlation between upper and lower 
benchmarks (e.g., due to the correlation between Ricker parameters), we also assessed status 
using the individual sets of lower and upper benchmarks from each bootstrapped time-series for 
the percentile-based benchmarks, and for each MCMC trial of the Bayesian analysis for the 
stock-recruitment benchmarks. From the resulting distribution of statuses, we generated a 
probability associated with each status (red, amber, or green) for both types of benchmarks (as 
shown by vertical bars in Fig. 7). 

2.2.5 Changes in Productivity 
Finally, to identify changes in productivity over time for Chum Salmon CUs and assess how 
those changes affect benchmark performance, we fit a recursive Bayes model to each stock-
recruitment time-series, which allowed 𝛼𝛼 to vary over time for each CU individually (Grant et al. 
2011). We fit this model using all available data for each site. The model is similar to the 
standard Ricker form, but with a time-varying 𝛼𝛼 parameter, 

(11)  𝑅𝑅𝑖𝑖,𝑦𝑦 = 𝛼𝛼𝑖𝑖,𝑦𝑦𝑆𝑆𝑖𝑖,𝑦𝑦𝑒𝑒−𝛽𝛽𝑖𝑖𝑆𝑆𝑖𝑖,𝑦𝑦𝑒𝑒𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑖𝑖~𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(0,1/𝜏𝜏𝑣𝑣𝑖𝑖), 

where 𝛼𝛼𝑖𝑖,𝑦𝑦 is productivity in brood year 𝑦𝑦, for CU 𝑖𝑖. The model assumes that 𝛼𝛼 changes over 
time following a Gaussian random walk, 

(12)  log (𝛼𝛼𝑖𝑖,𝑦𝑦) = log (𝛼𝛼𝑖𝑖,𝑦𝑦−1) + 𝑤𝑤, 𝑤𝑤~𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(0,  1/𝜏𝜏𝑤𝑤𝑖𝑖). 

The same prior distributions were applied as for the standard Ricker model (Eqns. 3-5), with the 
addition of a normally distributed prior on 𝛼𝛼 in year 1, and a uniform prior on the variance 
associated with the Gaussian random walk 𝜎𝜎𝑤𝑤𝑖𝑖

2 , where 𝜎𝜎𝑤𝑤𝑖𝑖
2 = 1/𝜏𝜏𝑤𝑤𝑖𝑖, 

(13) log (𝛼𝛼𝑖𝑖,1)~𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(1,1), and   𝜎𝜎𝑤𝑤𝑖𝑖
2  ~ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(0, 100). 

Convergence was assessed as described above, with no parameters having Gelman-Rubin 
statistics above 1.05. 
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2.3 RESULTS 

2.3.1 Current Benchmarks and Status 
Model fit for standard and hierarchical Ricker models varied by CU, ranging from moderate to 
very poor (r2 between predicted and observed 0.41-0, Appendix D). We used all CUs regardless 
of model fit in our initial retrospectives analysis, but then considered only those CUs with 
relatively high correlations (r2 values >0.25), Southern Coastal Streams and Northeast 
Vancouver Island in a subsequent analysis. 

The relationship between the lower percentile benchmark, 𝑆𝑆25𝑡𝑡ℎ, and Ricker-based benchmark, 
𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔, in the most recent year depended on the CU. The lower percentile benchmark was lower 
than 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔 for 4 CUs (Southern Coastal Streams, Upper Knight, Bute Inlet, and Howe Sound to 
Burrard Inlet), higher than 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔  for 4 CUs (Loughborough, Georgia Strait, Northwest Vancouver 
Island, and Southwest Vancouver Island) and similar to 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔  for 1 CU (Northeast Vancouver 
Island) (Table 1). In contrast, upper percentile benchmarks (𝑆𝑆75𝑡𝑡ℎ) were generally much higher 
than the Ricker-based upper benchmarks (80%𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀) (Figure 4 for an example CU and 
Appendix D for remaining CUs, Table 1). The Ricker-based benchmark, Sgen, has the 
characteristic of being relatively high when productivity is low (i.e., is precautionary when 
conditions are poor) and being low when productivity is high (Holt and Folkes 2015). Our results 
support this finding. In particular, we found that the S25th benchmark tended to be much higher 
than Sgen when productivity was high, and this difference was reduced when productivity was 
low (see Appendix E).  
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Figure 4. Observed spawner-recruit data with fitted Ricker curves and associated benchmarks for (i) the 
standard Bayesian Ricker model, and (ii) the Bayesian hierarchical Ricker model for selected CUs. 
Shaded regions indicate 95% credible intervals (CIs), delineated by 2.5th and 97.5th posterior densities. 
Red and green circles on x-axis identify percentile-based benchmarks with 95% CIs (S25th and S75th, 
respectively). Cross indicates most recent data point, for brood year 2006 for ISC CUs, 2010 for WCVI 
CUs. Points range from light grey (beginning of time-series) to black (end of the time-series).)Plots for all 
CUs can be found in Appendix D. 

Stock-recruitment benchmarks varied slightly between the standard and hierarchical Ricker 
models (Tables 1 & 2, Figure 4, Appendix D), but these differences were small compared with 
the large uncertainties in benchmark estimates (Table 2). The posterior distributions of the 
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upper and lower benchmarks, Sgen and 80% SMSY, overlapped, and in some cases were nearly 
indistinguishable, e.g., Northeast Vancouver Island (Figure 4a).  

Statuses for the most recent generation (ending in 2012 for ISC CUs, 2015 for WCVI CUs) were 
determined from benchmarks using all data available up to, but not including the most recent 
generation (Table 3). Both Ricker benchmarks yielded green status for all CUs, except for South 
Coast Streams; which was estimated to be in the red zone. Percentile-based statuses were the 
same or more precautionary for all CUs; only assessing green status for three out of nine CUs.   

2.3.2 Retrospective Analyses 
In retrospective analyses, percentile benchmarks tended to vary more over time than Ricker-
based benchmarks for ISC CUs due to high contrast in time-series (Figure 5, bottom row 
compared to first two rows of panels). For WCVI CUs, which did not exhibit large contrast, 
percentile benchmarks were fairly consistent over time (Figure 5h and i).  

Comparing the hierarchical model with the standard Ricker model, we found that uncertainties in 
estimates of 𝛼𝛼 and Smax (Ricker parameters) were reduced slightly for the hierarchal model in 
some CUs on the Inner South Coast (Table 2, Figure 3b). The hierarchical Ricker model tended 
to reduce uncertainties for those CUs where productivity estimates were similar between the 
two models (comparing length of black and grey lines and location of black and grey points in 
Figure 3b, top row, e.g., Upper Knight). Alternatively, when productivity estimates from a CU 
differed from neighbouring CUs (and hence between standard and hierarchical Ricker models), 
uncertainty bounds stayed the same or increased (e.g., Northeast Vancouver Island, Figure 3b, 
top row).  
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Figure 5. Raw (black lines) and generational average (grey lines) escapement over time for CUs, with retrospective estimates of upper (green line) 
and lower (red line) benchmarks, derived from (i) the standard Ricker model; (ii) a hierarchical Ricker model; and (iii) 25th and 75th percentiles. 
Shaded regions indicate 95% credible intervals. Retrospective benchmarks use all available data up to that generation. 
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Figure 5 continued. 
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Stock-recruitment benchmarks tended to remain relatively consistent over time for four CUs 
(Upper Knight, Loughborough, Southwest Vancouver Island, Northwest Vancouver Island), 
exhibited divergent trends between upper and lower benchmarks (Southern Coastal Streams), 
or increased over time (Northeast Vancouver Island, Bute Inlet, Georgia Strait, and Howe 
Sound to Burrard Inlet). The standard Ricker and hierarchical Ricker benchmarks were nearly 
indistinguishable from each other over time (comparing first and second row of panels Figure 5).  
Uncertainties in stock-recruitment benchmarks declined over time for some CUs as longer time 
series improved precision, while others showed variable patterns over time possibly due to 
temporal variability in underlying stock-recruitment parameters. 

Large uncertainties in stock-recruitment benchmarks resulted in uncertainties in status 
assessments, which we present in two ways. Status based on the lower and upper credible 
intervals of Ricker benchmarks are shown as light bars below and above the assessments from 
the median benchmark estimates in Figure 6. For example, for Northeast Vancouver Island, in 
the early 2000’s, the assessed status was amber based on best estimate of the standard Ricker 
benchmarks, but green based on the upper credible interval and red based on the lower 
credible interval of those benchmarks (Figure 6b).  The probability of a CU having each status, 
in each year, is depicted in Figure 7a). 

2.3.3 Comparing Status across Benchmarks 
The proportion of years where the percentile and Ricker-based benchmarks gave the same 
status varied across CUs, but averaged 43 and 44% for the standard Ricker and hierarchical 
Ricker models, respectively for ISC CUs (Table 4). Alternatively, for WCVI CUs, percentile and 
Ricker-based benchmarks rarely matched (never for Southwest Vancouver Island, 14-15% of 
years for Northwest Vancouver Island). On average, the percentile benchmark provided the 
same or lower status than Ricker-based benchmarks in 95% of years for both model types 
across CUs (i.e., being more precautionary because the application of relatively large percentile 
benchmarks sometimes indicated poor status when relatively small Ricker benchmarks 
indicated moderate to healthy status) (Table 4), despite percentile-based benchmarks 
occasionally dropping below Ricker-based benchmarks (Table 1 and Figure 5). The relatively 
few years when status from percentile benchmarks was higher than that from Ricker-based 
benchmarks (i.e., indicating healthier status and being less precautionary) were associated with 
long periods of both high and low abundances with abrupt transitions between them, resulting in 
relatively high Ricker benchmarks, but low percentile benchmarks (e.g., Upper Knight from 
1999-2001, Figure 6c and 7c, and Bute Inlet in the early 2000s, Figure 6e and 7e).  

The two Ricker-based benchmarks (standard and hierarchical Ricker) gave the same status 
99% of years when averaging across CUs. 

When we considered only CUs where models fits were relatively good (r2>0.25, Southern 
Coastal Streams and Northeast Vancouver Island), we found that percentile-based benchmarks 
always matched or provided more precautionary status than Ricker-based benchmarks 
(Table 4)
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Figure 6. Standardized raw (grey) and generational geometric average (black) escapements across CUs, with status calculated from three 
methods indicated by coloured bars below. Transparent bars above and below the solid coloured bars for each benchmark indicate status at upper 
and lower 95% credible/confidence interval (CI) bounds for each benchmark  and year.  For Bayesian Ricker models, credible intervals were 
calculated as the 2.5th and 97.5th posterior densities for each Ricker-based benchmark. For percentile benchmarks, confidence intervals were 
calculated from a standard non-parametric bootstrap of the time-series. Gaps exist where data are missing, or when Ricker 𝛼𝛼 drops below 1.5, at 
which point Ricker benchmarks are not recommended. 
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Figure 7. Standardized raw (grey) and generational geometric average (black) escapements across CUs, with status probabilities as assessed 
using hierarchical Ricker and percentile benchmarks, indicated by vertical coloured bars. The coloured proportions of each vertical bar represent 
the probability that status falls within each colour zone, red, amber and green. The vertical placement of the bars is centered around the amber 
zone; an upward shift represents a higher probability of green status, and a downward shift representing a higher probability of red status. Grey 
status bars (as in NEVI in the 1980’s) represent years where Ricker 𝛼𝛼 fell below 1.5, and Ricker benchmarks are not recommended. 
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2.3.4 Productivity over Time 
Temporal patterns in productivity varied across CUs (Figure 8). Declines in productivity over 
time were observed in three CUs (Southern Coastal Streams, Loughborough, and Southwest 
Vancouver Island, Figure 8a,d, and h), increases followed by declines in three CUs (Northeast 
Vancouver Island, Bute Inlet, and Georgia Strait, Figure 8b, e, and f) and consistent levels 
followed by a small increase in Howe Sound to Burrard Inlet and Northwest Vancouver Island 
(Figure 8g and i). Estimates of productivity for Upper Knight (Figure 8c), were highly variable 
and uncertain. There was considerable uncertainty in productivity for all CUs, indicated by wide 
error bounds. Using data to estimate stock-recruitment parameters and benchmarks that spans 
decades where 𝛼𝛼 has changed considerably may increase uncertainty in parameter estimates in 
the standard and hierarchical Ricker models.   
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Figure 8. Estimated Ricker 𝛼𝛼values for CUs using a recursive Bayes model, which allows 𝛼𝛼 to vary over time within a given CU. Grey shaded 
polygons indicate 95% credible intervals based on posterior distribution of estimated 𝛼𝛼values.  
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2.4 DISCUSSION 
Our retrospective analyses indicate that the relationship between percentile-based lower 
benchmarks and Ricker-based lower benchmarks varies by CU and over time. Assessments 
from percentile-based lower benchmarks tended to be the same or lower than those from 
Ricker-based benchmarks. Upper 75th percentile benchmarks tended to be much higher than 
Ricker-based upper benchmarks. Percentile benchmarks yielded green status in only 18% of 
years across CUs, and 75% of years for Ricker benchmarks. Upper percentile benchmarks 
likely lie far above SMSY levels. Overall, statuses based on percentile benchmarks were 
generally the same or lower than Ricker-based benchmarks adopted under the WSP. The few 
exceptions in our analyses were for Inner South Coast CUs, did not occur in the most recent 
year (i.e., occurred in retrospective assessments that used shorter time-series), and were 
associated with relatively long-periods of low abundances with abrupt transitions to and from 
periods of high abundances. 

For the CUs analyzed here, benchmarks derived from hierarchical Ricker models were virtually 
indistinguishable from those estimated using standard Ricker models. In the retrospective 
analysis, the standard Ricker model and hierarchical Ricker model gave the same status for 
99% of CU-year combinations. The CU-specific time-series were equally informative for the 
most part, so parameters changed little when combined in the hierarchical analyses. However, 
benchmarks derived from the hierarchical Ricker model were more certain than those from the 
standard model in cases where productivity was similar across CUs. Given large uncertainties in 
stock-recruitment data and inconsistent time-series for Chum Salmon in BC, a hierarchical 
approach is recommended over the standard Ricker model when there is support for the 
assumption of similar productivities among CUs. 

3 EVALUATION OF PERCENTILE-BASED BENCHMARKS AGAINST RICKER 
BENCHMARKS USING SIMULATION MODELLING 

3.1 METHODS 

3.1.1 Model Description 
The simulation model to evaluate benchmarks was structured in a similar way as the 
retrospective analysis described in Section 2 and Figure 1, except the underlying data were 
simulated instead of empirical, and analyses were repeated over numerous random iterations 
and scenarios. We adapted the simulation model of Holt and Folkes (2015) to compare 
estimates of data-limited and data-rich, lower and upper benchmarks against “true” underlying 
benchmarks, defined here as the “true” Sgen and 80% of SMSY, respectively, derived using 
underlying known stock-recruitment parameters. As in Holt and Folkes (2015), the model 
included five components representing population dynamics, observations of abundances, 
assessment (including the derivation of benchmarks), harvest, and performance evaluation 
(Figure 9, Appendix F for model equations). The model emulated a single, generic CU of Chum 
Salmon with multiple sub-populations, where CU-level benchmarks were estimated by 
aggregating data across individual sub-populations.  
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Observation sub-
model

Assessment sub-model

Harvest 
sub-model

Performance 
module

Population dynamics 
sub-model

……

Site1 2 3 4 5

Year1 300 250 410  -  - 
2 120 800 360  -  - 
3 510 369 481  -  - 

50 years
5000 MC trials

Figure 9. Schematic of simulation model used to evaluate benchmark performance. 

In particular, the population sub-model included natural variability in adult recruitment based on 
a Ricker spawner-recruitment relationship, covariation in recruitment residuals among sub-
populations, straying from the natal sub-population to neighbouring sub-populations when adults 
return to spawn, and variable age at maturity. Because data used to estimate benchmarks are 
often of poor quality, we included errors in observations of spawners, catch, and age-at-maturity 
in the observation sub-model. Benchmarks were estimated in the assessment sub-model from 
time-series of observed spawner abundances, estimated adult returns (observed catch plus 
observed spawner abundances), and derived recruitment aligned by brood year given observed 
ages at maturity. We also evaluated scenarios where only a portion of sub-populations were 
sampled within a CU and a constant expansion factor was applied to derive escapement 
estimates for the entire CU. The expansion factor was estimated from observed complete 
sampling in a 3-year initialization period. We further considered scenarios where no sub-
populations were sampled in a given year, resulting in gaps in the observed time-series at 
various frequencies and a reduced length of the time-series. 

The assessment sub-model model included the derivation of percentile-based benchmarks and 
stock-recruitment benchmarks applied under the WSP. Stock-recruitment benchmarks were 
estimated using a simple linear regression on the natural logarithm of the Ricker model (see 
Appendix F, Eqn. F16), a simplification of the Bayesian models executed in the retrospective 
analysis, required for computational efficiency. When prior distributions are uninformative, the 
parameters estimated with Bayesian methods approach those estimated using a linear 
regression. In preliminary analyses, we evaluated the performance of benchmarks derived from 
a hierarchical Bayesian model, an alternative data-rich benchmark, as described in more detail 
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in Section 2.2.2. We found that estimates of benchmarks from the hierarchical model were more 
accurate than from the standard model, but differences were very small (within 1%). Due to 
similarities in results and additional computational requirements of the hierarchical model, we 
focus on the standard Ricker model here. 

The harvest sub-model included a target harvest rate with uncertainty in the outcomes from 
implementing the target due to, for example, non-compliance and variability in catchability (Holt 
et al. 2006). 

In the performance module, benchmarks were evaluated based on the deviations between 
benchmark estimates and the “true” underlying values. For percentile benchmarks, we 
evaluated deviations between the 25th percentile (lower benchmark) and the “true” Sgen value, 
and between the 75th percentile (upper benchmark) and the “true” 80% of SMSY value. 
Specifically, we evaluated, mean percent error, MPE, because we were interested in the 
direction of bias (i.e., if the estimated benchmark was above or below the “true” benchmark) 
which are reflected in this metric. In addition, this metric is scale independent facilitating 
comparisons across benchmarks and CUs. Preliminary results on mean raw error suggested 
patterns of results were similar across performance metrics. 

The model was run over 50 years (plus 5 years pre-initialization and 20 years of initialization) 
and 5000 MC trials, the number of trials required to stabilize output metrics at (standard error 
≤3% in performance metrics). The model was initialized for 20 years after a 5-year pre-
initialization period necessary to generate the first year of recruitment. The model was 
developed in R version 3.2.2 (R Development Core Team 2017). 

3.1.2 Model Parameterization 
The population dynamics sub-model was parameterized based on previous empirical studies in 
the primary literature and governmental reports on Chum Salmon, or other species of Pacific 
salmon where data on Chum Salmon were not available. The productivity parameter of the 
spawner-recruitment relationship, 𝛼𝛼, defined as recruits/spawner at low spawner abundance 
and referred to simply as productivity here, and the range considered in sensitivity analyses 
(Appendix F, Table 5) were chosen to bound productivities observed for six Chum salmon 
stocks from across BC (Dorner et al. 2008; ranging from 2.69-6.96), three stocks in the Skeena 
watershed, BC (Korman and English 2013; ranging from 2.01-2.86), and 9 CUs of Chum 
Salmon examined here (Figure 9).  In preliminary analyses, we also considered temporal 
variability in productivity on benchmark performance, in the form of a step-like regime shift from 
moderate to low (high) productivity. However, we found that benchmark performance was 
similar to the scenario of constant low (high) productivity but with reduced magnitude of effects. 
Therefore, we have limited our analyses here to constant productivity over a range of plausible 
values. Productivities and spawner abundances at equilibrium abundances, Seq (set at 10 000 
fish) were assumed to be equal among sub-populations.  

We assumed an autocorrelation coefficient of 0.6, based on coefficients estimated for three CUs 
of Chum salmon (ranging 0.54-0.68) from Skeena River, BC (Korman and English 2013), and 
considered a range of plausible autocorrelation coefficients (0 and 0.9) in sensitivity analyses. 
The standard deviation in recruitment residuals (in log-space) was set to 0.75, within the range 
of values estimated for the standard Ricker model (Section 2.3, 0.25-1.42), and previously for 
Chum Salmon on the Skeena River, BC (0.68-0.90) (Korman and English 2013), and within the 
range estimated for Sockeye Salmon in BC and Alaska (Korman et al. 1995, Peterman et al. 
2003).  The average proportions of mature adults at ages 3, 4, and 5 were estimated for 22 
Chum Salmon stocks in BC and Alaska (0.24, 0.67, and 0.09, respectively, Pyper et al. 2002). 
The variance in the proportions of ages at maturity was estimated from empirical time series of 
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age-specific returns of Chum Salmon in southern BC (1959-2012; Johnstone Strait test fishery 
and commercial harvest to Statistical Area 12; P. Van Will pers. comm. 2016).  The probability 
of straying of adult recruits among all sub-populations was set at 5% based on a review of 
published stray rates for Chum Salmon in British Columbia (McElhany et al. 2000).  

Chum Salmon abundance in Southern BC is largely estimated from visual surveys (by foot and 
air), which typically produce relatively imprecise estimates of abundances. In the observation 
sub-model, we assumed the standard deviation in observations of spawner abundances around 
the true values (observation errors) was equal to 0.5 in log-space, which corresponds to an 
upper estimate of the uncertainty in spawner abundance derived from various visual surveys of 
Pacific salmon (Cousens et al. 1982, Szerlong and Rundio 2008). We also considered a lower 
estimate of observation errors of 0.2 in a sensitivity analysis. In the absence of quantitative 
estimates of uncertainty in CU-specific catch estimates, we assumed the same standard 
deviation in observed catch (0.5 in log-space), and a sensitivity analysis with a lower estimate of 
0.2. Although errors in observations of commercial catch are likely less than observation errors 
in spawner abundance, uncertainties in reporting and estimation of recreational and subsistence 
harvest are relatively high (Collie et al. 2012, Fleischman et al. 2013).  

The standard deviation of outcome uncertainty was estimated at 0.3 using methods described in 
Collie et al. (2012) using catch and recruitment data from two DFO Fishery Statistical Areas of 
Chum Salmon on the west coast of Vancouver Island, BC (Dobson et al. 2009). Because 
outcome uncertainties likely vary among stocks and management approaches, we also 
considered an upper value of 0.5 in a sensitivity analysis. Here we assumed magnitude of 
outcome uncertainties did not vary with stock size. Alternative assumptions such as larger 
uncertainties at small stocks sizes could be considered in future analyses. 

3.1.3 Sensitivity Analyses 
3.1.3.1 Univariate, Global, and Bivariate Sensitivity Analyses of Benchmarks 

To assess the strength and direction of effects of input parameters on benchmark performance 
(measured as deviations between estimated benchmarks and “true” benchmarks), we 
performed a sensitivity analysis where each input parameter was varied individually while all 
others were held constant at “base-case” values (Table 5). However, this analysis did not 
assess sensitivity to interactions among input variables. To further consider interactions among 
all input variables, we performed a global sensitivity analysis using the Morris method (Morris et 
al. 2014). Similar to univariate analyses, the Morris method varies each input parameter one at 
a time, but in contrast to univariate analyses, this is done with different combinations of other 
variables. The sensitivity of benchmark performance to uncertainty in each parameter given 
uncertainty in other parameters is measured by a composite metric of the overall influence of a 
parameter on the output, labeled the mean ‘elemental effect’ (Morris et al. 2014). The standard 
deviation of the elemental effects is an index of sensitivity of benchmark performance to 
interactions of that variable with other variables. The Morris method was run using the R 
package, sensitivity, v.1.11.1 (Pujol et al. 2015).  

For the two parameters that had relatively large effects on performance, productivity and 
harvest rates, a bivariate (two-way) sensitivity analysis was performed to assess their combined 
effect on benchmark performance. In addition, given estimates of productivities for CUs from 
Section 2.3.1 and observed harvest rates (Appendix A), we evaluated CU-specific 
performances. We focused univariate and global sensitivity analyses on lower benchmarks (25th 
percentile and Sgen), but also considered sensitivities of upper benchmarks (75th percentile and 
80% SMSY) in the bivariate sensitivity analysis.  
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Based on results of the bivariate sensitivity analyses showing that the percentile-based 
benchmark, S25th was lower than “true” underlying data-rich stock-recruitment benchmark, Sgen 
in some situations, we evaluated additional percentile-based lower benchmarks based on 30th to 
50th percentiles in increments of 5%. We also evaluated the performance of additional upper 
benchmarks at the 50th-70th percentile of observed spawner abundances (increments of 5%) 
given results showing that the S75th percentile benchmark far exceeded the “true” upper 
benchmark, 80% SMSY, in some situations. Consequently, the 50th percentile of spawner 
abundances was evaluated as both an upper and lower benchmark. 

We further considered bivariate sensitivity on two components of observation errors, magnitude 
of errors in spawner abundances and biases in spawner abundances, due to for example, 
partial sampling. 
3.1.3.2 Sensitivity Analyses on Stock-Recruitment Parameters and Data Contrast 

Performance of data-rich benchmarks depends in part on the accuracy and precision of 
estimated stock-recruitment parameters. We further evaluated mean percent error between 
“true” and estimated stock-recruitment parameters (instead of benchmarks) along gradients in 
“true” productivity and harvest rates to assess how errors in these parameters influence 
performance of the data-rich benchmarks. 

Performance of both data-rich and data-limited benchmarks may also depend on the magnitude 
of contrast in historical spawners time-series as described by Clark et al. (2014). We evaluated 
the impact of variability in harvest rates and productivity on data contrast in our simulation 
model, to assess covariation in those variables and the value of considering data contrast when 
productivity and harvest rate information is not available. 

3.2 RESULTS 
Time-series of spawners and recruitment for an example Monte Carlo trial from the simulation 
are presented in Figure 10a. Percentile benchmarks tended to vary annually (as shown by red 
and green dashed lines for S25th and S75th, respectively, Fig. 10a), whereas stock-recruitment 
benchmarks were more consistent over time (red and green solid lines, Fig. 10a). To estimate 
stock-recruitment based benchmarks, Ricker curves were fit annually using only data up until 
the year being assessed (Fig. 10b for the last year of the simulation). 
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Figure 10. (a) Time-series of observed spawner abundances (black line) and “true” spawner abundances (grey line) and benchmarks for one 
Monte Carlo trial for a hypothetical CU. Vertical dashed line indicates the end of the 20-year initialization period of the simulation. Benchmarks are 
estimated annually based on all data up until that year: 80% SMSY (upper benchmark, green solid line), Sgen (lower benchmark, red solid line), S75th 
percentile benchmark (green dotted line), and the S25th percentile (red dotted line). (b) Observed spawner and recruitment data (solid black dots) 
and “true” data (grey hollow dots) for the final year of the Monte Carlo trial depicted in panel (a). The “true” underlying stock-recruitment 
relationship is shown with the grey curve. The estimated curve based on observed data is shown in black. (c) Mean percent error between 
estimated and “true” benchmark averaged over all years and Monte Carlo trials. Red bars are the mean percent error from the “true” Sgen (lower 
benchmark), and green bars the mean percent error from the “true” 80% of SMSY (upper benchmark), on next page. 
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Figure 10 continued. 

In this hypothetical example, percentile benchmarks, S25th and S75th, tended to be higher than 
the “true” benchmark values (MPEs were positive), whereas the estimated stock-recruitment 
benchmarks, Sgen and 80% of SMSY, tended be negatively biased (MPEs were negative) (Figure 
10c). Estimates of stock-recruitment benchmarks differed from the “true” values because they 
were based on observed data (black line in Figure 10b, solid dots in 10b) rather than “true” data 
(grey line in Figure 10a, hollow dots in Figure 10b). The assessed stock-recruitment model 
(black curve, Figure 10b) differed from the “true” underlying model (grey curve, Figure 10b) due 
to, for example, errors in spawner abundances and recruitment, and time-series biases (Walters 
and Martell 2004). 

3.2.1 Univariate and Global Sensitivity Analyses 
In univariate sensitivity analyses, performances of lower benchmarks (both estimates of Sgen 
and S25th) were more sensitive to uncertainty in productivity than to other input parameters 
(Figure 11). Low productivity was associated with estimates of benchmarks that fell below “true” 
values (Fig. 11, leftmost black bar), resulting in estimates status that were overly optimistic 
compared with the “true” status. In contrast, high productivity was associated with estimates of 
benchmarks that were above the “true” values (Fig. 11, leftmost white bar), resulting in more 
depleted estimates of status compared with the “true” status. For the lower percentile 
benchmark, S25th, harvest rates had a strong effect on benchmark performance, and the 
remaining input parameters had relatively weak effects on performance. For the lower 
benchmark, Sgen, the Ricker autocorrelation coefficient had moderate impacts on performance 
and the remaining input parameters had relatively weak effects on performance. 
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Figure 11. Difference in the mean percent error, MPE, between sensitivity analyses listed on the x-axis 
and the base case scenario for percentile lower benchmark, S25th (a) and estimated stock-recruit lower 
benchmark, Sgen, (b). Positive values indicate sensitivity analyses where MPE increased under that 
change in input parameter; negative values indicate analyses where the MPE declined under that change 
in input parameter. Black bars are analyses where the input parameter was increased relative to the base 
case (see Table 5); white bars are analyses where the input parameter was reduced relative to the base 
case. Asterisks denote values higher than the limit of the y-axis: 132% (a) and 586% (b). 

Results from global sensitivity analyses were similar to those of the univariate analyses. The 
effects on performance were greatest for productivity for both S25th and Sgen benchmarks (x-axis 
of mean elemental effect on Fig. 12). Harvest rates were secondarily important for the S25th 
benchmark (Fig. 12a). Parameters that ranked high on the standard deviation in the elemental 
effect (y-axis of Fig.12b, e.g., observation errors in spawner) were influential for benchmark 
performance only in combination with other input parameters. In other words, Sgen performance 
was only sensitive to variability in observation errors in spawner abundances under certain 
combinations of other variables (Fig. 12b, top).
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Figure 12. Sensitivity indices of the effects of individual variables (mean elemental effect, x-axis) and interactions among variables (standard 
deviation in elemental effects, y-axis). Indices were derived from the Morris method, a global sensitivity analyses for the mean percent error of 
estimated lower benchmarks, S25th (a), and Sgen (b), from “true” benchmarks. Input variables with values >100 on either axis are labelled.
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3.2.2 Bivariate Sensitivity Analyses: Lower Benchmark 
We further explored the effects of variability in productivity and harvest rates on benchmark 
MPEs in bivariate (two-way) sensitivity analyses. At moderate to high productivity and low initial 
harvest rates, estimates of both S25th and Sgen benchmarks were equal to or higher than the 
“true” Sgen lower benchmark and can be considered precautionary from a conservation 
perspective (Figure 13, top left portion of panels). However, at low productivity and high harvest 
rates, neither benchmark was above the “true” benchmark (Figure 13 bottom right portion of 
panels), and this was true for Sgen even at low harvest rates (Figure 13, bottom left corner).  

 
Figure 13. Mean percent error, MPE, of the estimated lower benchmark, S25th (a), and Sgen (b) from the 
“true” lower benchmark (“true” Sgen) depicted on isopleths, along a gradient in harvest rates and “true” 
productivities. MPEs were derived from a simulation model of a hypothetical Chum Salmon CU. Symbols 
indicate CU-specific harvest rates and productivities. Y-error bars represent the 95% credible intervals of 
the estimate of productivity. X-error bars are the standard deviation of historical harvest rates. SCS is 
Southern Coastal Streams, NEVI is Northeast Vancouver Island, UK is Upper Knight, LB is 
Loughborough, GS is Georgia Strait, and HSBI is Howe Sound/Burrard Inlet, NWVI is Northwest 
Vancouver Island, and SWVI is Southwest Vancouver Island. 

Given CU-specific estimates of productivities and average harvest rates, we identified variability 
in benchmark performance among CU (Figure 13a). The S25th benchmarks were near “true” Sgen 
(near the zero contour lines) for 1 CU, Loughborough, higher than “true” Sgen for 4 CUs, 
Northwest Vancouver Island, Southwest Vancouver Island, Bute Inlet, and Upper Knight, and 
below “true” Sgen for 4 CUs, Southern Coastal Streams, Northeast Vancouver Island, Georgia 
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Strait, and Howe Sound to Burrard Inlet. Estimates of Sgen fell below the “true” values for all CUs 
except Upper Knight (Figure 13b). 

We also evaluated CU-specific performance of alternative lower percentile benchmarks ranging 
from the 30th – 50th percentiles in increments of 5%. We found that the 50th percentile 
benchmark tended to be higher than the “true” estimate Sgen for all CUs, but uncertainty intervals 
for several CUs crossed the zero contour line (Figure 14a). Plots of the performance of 
remaining increments of percentile-based benchmarks are provided in Appendix G. 

 
Figure 14. Mean percent error, MPE, of the estimated lower benchmark based on the 50th percentile of 
observed abundances, S50th, (a), and Sgen (b), from the “true” lower benchmark, Sgen, depicted on 
isopleths, along a gradient in harvest rates and “true” productivities. MPEs were derived from a simulation 
model of a hypothetical Chum Salmon CU. See the caption for Fig. 13 for an explanation of symbols, 
lines, and abbreviations. Panel (b) is the same as in Fig. 13b, but is shown to facilitate comparison with 
alternative percentile-based benchmarks. 

To compare performance of percentile benchmarks across various percentiles (25th, 30th, 35th, 
40th, 45th, and 50th), we further categorized productivities and harvest rates into 3 groups each 
(productivity: ≤2.5, >2.5 and ≤4, and >4 recruits/spawner; harvest rates ≤20%, >20% and ≤40%, 
and >40% and ≤60%) and aggregated performance of percentile benchmarks within groups. 
Figure 15 depicts the aggregate performance of various lower percentile benchmarks 
represented by box and whiskers, over all combinations of productivities (rows) and harvest 
rates (columns). White boxes indicate percentile benchmarks where the lower bound of the 
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confidence range (bottom whisker) is greater than zero, but this difference is minimized. These 
reflect percentile benchmarks that are relatively close to the “true” Sgen, but have a high 
probability of being above it. Where the lower bound of the distributions of all percentile 
benchmarks fall below zero (i.e., are lower than “true” Sgen, Fig. 15f, h and i), further evaluation 
is required to assess if alternative percentile benchmarks can be used without risks of biased 
(particularly overly optimistic) status assessments. Alternative groupings for productivity were 
considered (≤2, >2 and ≤4, and >4 recruits/spawner) and the results were similar, with the 
exception of the combined moderate productivity and harvest rate category (Appendix G, Fig. 
G5e).  

 
Figure 15 Distributions of mean percent error, MPE, of various percentile lower benchmarks (labelled on 
x-axis) from “true” Sgen along a gradient in harvest rates (columns, labelled at top) and productivities (rows 
labeled on right), derived from a simulation model of a hypothetical Chum Salmon CU. Distributions for 
each benchmark are derived from simulated outputs in Fig. 13, Fig. 14 and Appendix G, aggregated 
within productivity and harvest rate groupings. White boxes indicate percentile benchmarks where the 
lower confidence bound ≥0 and this difference is minimized. “Further evaluation required” signifies cases 
where all percentile benchmarks had lower confidence bounds <0. 

Note, by aggregating results within productivity and harvest rate categories, fine-scale variability 
in performance along gradients in those variables is lost. For example, Fig. 12 shows that for 
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the CU, Northwest Vancouver Island (NWVI), the S25th benchmark is greater than the “true” Sgen 
benchmark and hence would provide a precautionary estimate of status that is equal to or lower 
than the “true” status. However, this CU falls within the low productivity and low harvest rates 
group (though at the extreme edge, productivity = 2.5, harvest rate =8%), where S50th is 
suggested as a lower benchmark, not S25th (Fig. 15g).  

When information on productivity is not available, performance can be compiled across the 
three productivity zones (Fig. 16). In this case, further evaluation is warranted when harvest 
rates are ≥20%. 
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Figure 16. Distributions of mean percent error, MPE, of various percentile lower benchmarks (labelled on 
x-axis) from “true” Sgen along a gradient in harvest rates (columns, labelled at top), compiled over the 
range of productivities considered here, 1.5-5 recruits/spawner White boxes indicate percentile 
benchmarks where the lower confidence bound ≥0 and this difference is minimized. “Further evaluation 
required” signifies cases where all percentile benchmarks had lower confidence bounds <0. 

3.2.3 Bivariate Sensitivity Analyses: Upper Benchmark 
The S75th upper benchmark was often considerably higher than the “true” 80% of SMSY 
benchmark, especially at high productivity and low harvest rates (Figure 17a). However, at low 
productivity and high harvest rates, S75th tended to underestimate the “true” upper benchmark. In 
addition, estimates of 80% of SMSY tended to be below the “true” value except at high 
productivity (Figure 17b), but the magnitude of these errors was relatively small.  

For the CUs examined here, the S75th benchmarks were higher than the “true” 80% of SMSY, and 
sometimes exceeding them by >150% (symbols on Figure 17a). However, for 2 CUs, the 
uncertainty bounds of the S75th benchmark crossed the zero contour line. The estimates of 80% 
of SMSY were below the true benchmark values for all CUs (Figure 17b).  
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Figure 17. Mean percent error, MPE, of the estimated upper benchmarks, S75th (a), and 80% of SMSY (b), 
from the “true” 80% of SMSY depicted on isopleths, along a gradient in harvest rates and “true” 
productivities. MPEs were derived from a simulation model of a hypothetical Chum Salmon CU. See the 
caption for Fig. 13 for an explanation of symbols, lines, and abbreviations. 

Given that the S75th benchmark significantly overestimated the “true” upper benchmark in some 
situations, we also investigated performance of alternative upper benchmarks, S50th-S70th, in 
increments of 5%. The S50th benchmark is more closely aligned with benchmarks on long-term 
trends in spawner abundances currently used for WSP status assessment than S75th (Grant et 
al. 2011). The long-term trend metric under the WSP captures the ratio of the current spawner 
abundances (geometric mean over the current generation) to the historical geometric mean, 
with lower and upper benchmarks at 0.5 and 0.75, corresponding to values below the historical 
mean and likely less than then median, S50th. Metrics on long-term trends in spawner 
abundances under the WSP are not used to assess status on their own, but are combined with 
additional metrics to provide integrated status assessments (e.g., Grant and Pestal 2013).  

We found that the S50th upper benchmark tended to be closer in value to the “true” upper 
benchmark than S75th, but that the S50th underestimated the “true” upper benchmark when 
harvest rates were high (Figure 18). For 3 CUs, Northwest Vancouver Island, Southwest 
Vancouver Island, and Upper Knight, S50th benchmarks were >20% larger than “true” upper 
benchmarks. For the remaining CUs, S50th benchmarks were near or below “true” upper 
benchmarks.  
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Figure 18. Mean percent error, MPE, of the estimated upper benchmarks, S50th (a), and 80% of SMSY (b), 
from the “true” 80% of SMSY, depicted on isopleths, along a gradient in harvest rates and “true” 
productivities. MPEs were derived from a simulation model of a hypothetical Chum Salmon CU. See the 
caption for Fig. 13 for an explanation of symbols, lines, and abbreviations. 

Similar as for the lower benchmark, to compare performance of percentile upper benchmarks 
across various percentiles (50th, 55th, 60th, 65th, 70th, and 75th), we aggregated performance of 
percentile benchmarks over combinations of productivities and harvest rates, according to the 
groups described in Section 3.2.2. However, in contrast to the lower benchmarks, for upper 
benchmark performance, white boxes indicate percentile benchmarks where the median 
performance (solid horizontal lines at the mid-point of the boxes) is greater than zero and this 
difference is minimized. This choice reflects percentile benchmarks that are relatively close to 
the “true” 80% of SMSY, and have at least a 50% probability of being above it. In contrast to the 
lower benchmark which is set at a level to avoid listings of endangerment by COSEWIC, the 
upper benchmark is set at a level to achieve maximum annual catches on an average annual 
basis, allowing for years when abundances drop below this level. The choice of avoiding 
negative biases for lower benchmark but not upper benchmark was subjective, but reasonable 
in light of the benchmark definitions under the WSP. Different assumptions could be used to 
identify specific percentiles within the range identified here, based on results shown on Figs 15 
and 18. Highlighted percentiles are shown for illustrative purposes, and because they are 
aligned with the intent of the WSP. However, alternatives could be considered. “Further 
evaluation required” indicates those categories where either lower or upper benchmarks fall 
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below these values.  Alternative groupings for productivity provided similar results (Appendix G, 
Fig. G6).  

 

Figure 19 Distributions of mean percent error, MPE, of various percentile lower benchmarks (labelled on 
x-axis) from “true” Sgen along a gradient in harvest rates (columns, labelled at top) and productivities (rows 
labeled on right), derived from a simulation model of a hypothetical Chum Salmon CU. Distributions for 
each benchmark are derived from simulated outputs, aggregated within productivity and harvest rate 
groupings. White boxes indicate percentile benchmarks where the median performance value ≥0 and this 
difference is minimized. “Further evaluation required” indicates cases where lower benchmarks could not 
be selected (Fig. 15). 

When information on productivity is not available, performance can be compiled across the 3 
productivity zones (Fig. 20). Although the median performance of S50th is >0 at moderate harvest 
rates (≥20% and <40%, Fig. 20b) and the median performance of S75th is >0 at high harvest 
rates (≥40% and <60%, Fig. 20c), further evaluation is suggested for these categories because 
lower benchmarks are not identified in those cases (Fig. 16b and c) 
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Figure 20. Distributions of mean percent error, MPE, of various percentile upper benchmarks (labelled on 
x-axis) from “true” 80% SMSY along a gradient in harvest rates (columns, labelled at top), compiled over 
the range of productivities considered here, 1.5-5 recruits/spawner White boxes indicate percentile 
benchmarks where the lower confidence bound ≥0 and this difference is minimized. “Further evaluation 
required” signifies cases where all percentile benchmarks had lower confidence bounds <0. 

3.2.4 Bivariate Sensitivity Analyses: Ricker Parameters and Data Contrast 
To investigate the impacts of biases in underlying stock-recruitment parameters on the 
performance of data-rich benchmarks, Sgen and 80% of SMSY, we further evaluated deviations of 
estimated Ricker parameters from “true” values along gradients in “true” productivity and 
harvest rates. We found similar patterns in deviations in estimated Ricker productivity parameter 
from the “true” values, as for Sgen and 80% SMSY deviations, though the direction of effects 
differed (Figure 21).  At low productivity and high harvest rates, the estimated productivity 
(Ricker α) tended to be higher and estimated capacity (Smax) and equilibrium abundances (Seq) 
tended to be lower than the “true” values (Figure 21, bottom right corner of all panels). The 
opposite occurred at high productivity and low harvest rates. 
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Figure 21. Mean raw error, MRE, of estimated productivity (a), estimated carrying capacity, Smax (b), and 
spawner abundances at equilibrium, Seq (c), depicted on isopleths, along gradients in “true” productivity 
and harvest rates. MREs were derived from a simulation model of a hypothetical Chum Salmon CU. 

This overestimation of productivity and underestimation of capacity (especially at low 
productivity and high harvest rates) results in estimates of Sgen and SMSY benchmarks that fall 
below “true” values, as documented for an example stock-recruitment curve (Figure 22), and by 
Holt and Folkes (2015). Although the magnitude of the biases will vary among CUs, the 
direction of biases on stock-recruitment parameters and benchmarks will be consistent. 
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Figure 22. Stock-recruitment curves for a hypothetical CU under a base case of moderate productivity 
(=2.7) and capacity of 2000 (black curve), and a scenario where productivity is overestimated by 20% and 
capacity is underestimated by 20%, as is typical of time-series biases (red curve). Solid vertical lines 
represent Sgen benchmarks for the base case (black) and biased parameter estimates (red); dotted lines 
represent SMSY for the base case (black) and biased parameters (red). 

Our model assumed spawner abundances at equilibrium, Seq, remained constant as productivity 
varied in sensitivity analyses based on the Ricker stock-recruit model (Appendix F, Eqn. F15).  
We used this assumption to be consistent with previous models that evaluated benchmarks 
under the WSP (Holt 2009, Holt and Bradford 2011). In sensitivity analyses, we considered an 
alternate assumption where Smax remained constant, but Seq declined as productivity declined, 
which represents a variation of the Ricker model commonly used in the literature and applied in 
the retrospective analyses here (Eqn. 1). Under this assumption, we found similar patterns in 
the results (within ~10% mean percent error in benchmarks). Sensitivity analyses on alternative 
formulations of the Ricker model were also performed by Holt and Folkes (2015) for data-rich 
benchmarks. Similar to our results, they found that benchmark performance was robust to the 
formulation of the Ricker model.  

In addition, we found that contrast in observed time-series of spawner abundances (maximum 
escapement/minimum escapement) was minimized at low productivity and high harvest rates 
and maximized at high productivity and low harvest rates, ranging from 2-20 (Figure 23). 
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Figure 23. Contrast in spawner escapement data (maximum escapement/minimum escapement) over 
gradients in “true” productivity and harvest rates derived from a simulation model of a hypothetical Chum 
Salmon CU. 

3.2.5 Bivariate Sensitivity Analyses: Observation Errors 
The effects of the magnitude of observation errors in spawner abundances were small (+/- 5%) 
compared with the effects of biases in spawner abundances (+/- 35%) (Figure 24), but both 
were smaller than the effects of productivity and harvest rates (Figure 24 compared with Figure 
13). 
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Figure 24. Mean percent error, MPE, of the estimated lower benchmark, S25th (a), and Sgen (b), from the 
“true” Sgen value, depicted on isopleths, along a gradient in bias in estimated spawner abundance and 
observation errors in spawner abundances (SD). MPEs were derived from a simulation model of a 
hypothetical Chum Salmon CU. 

3.3 DISCUSSION 
Performance of percentile-based benchmarks was more sensitive to uncertainties in productivity 
and variability in harvest rates than to other model parameters, including observation errors in 
spawner abundances, catch, and age-at-maturity.  For highly productive CUs with low harvest 
pressure, time-series were dominated by high abundances pushing the S25th benchmark 
upwards above the “true” lower benchmark. For example, for 5 CUs (Northwest Vancouver 
Island, Southwest Vancouver Island, Loughborough, Bute Inlet, and Upper Knight), the S25th 
lower benchmarks were equal to or higher than “true” Sgen benchmarks, providing similar or 
more precautionary estimates of status.  

In contrast, S25th benchmarks tended to be below the “true” lower benchmarks when harvest on 
unproductive CUs was high. When CUs were depleted, the time-series of observed abundances 
were dominated by low values, ratcheting the S25th benchmark downward over time. We found 
that an alternative benchmark, S50th, derived from median of the spawner time series, was 
higher than “true” lower benchmarks for the remaining 4 CUs (Southern Coastal Streams, 
Northeast Vancouver Island, Howe Sound-Burrard Inlet, and Georgia Strait). 

However, under various combinations of moderate-high harvest rates and low-moderate 
productivities, even the lower benchmark, S50th, tended to be below the “true” Sgen benchmark 
(Figure 14, bottom right corner). This occurred when harvest rates were approximately ≥40% 
and productivities were approximately <4 recruits/spawner, or harvest rates were between 20-
40% and productivities were low (≤2.5 recruits/spawner). Under these scenarios, percentile-
based benchmarks may overestimate status, possibly generating relatively healthy status 
assessments when conservation concerns may exist. Further research into alternative 
percentiles or other types of benchmarks (e.g., derived from habitat capacity) are warranted in 
this case. 

Estimates of Sgen tended to be negatively biased when productivity was low due to time-series 
biases on stock-recruitment parameters. Time-series biases occur when spawner abundances, 
the independent variable in stock-recruitment relationship depends on the recruitment in the 
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previous generation, the dependent variable. These biases are well documented for salmon 
populations (Walters and Martell 2004). The lack of independence between spawners and 
recruitment results in overestimates of productivity and underestimates in capacity (as 
documented for Skeena River salmon in BC, Korman and English 2013), and these effects are 
accentuated for unproductive stocks (Korman et al. 1995). These parameter biases resulted in 
underestimates of Sgen and 80% of SMSY. Although state-space versions of stock-recruitment 
models that account for uncertainty in spawner abundances have been proposed as a way to 
address time-series biases, the performance of these methods against standard stock-
recruitment models has been equivocal (Su and Peterman 2012).  Alternatively, hierarchical 
models such as the models described in the retrospective analyses (Section 2) or models with 
environmental covariates have been suggested as a method to reduce these biases (Korman 
and English 2013). In addition, alternative formulations of the Ricker model with management-
relevant parameters (maximum sustainable catch and harvest rate) have been found to reduce 
these biases (Schnute and Kronlund 1996). However, a thorough evaluation of these methods 
under different scenarios of productivity and data quality is lacking. 

Our findings also suggest that estimates of data-rich benchmarks may not provide accurate 
measures of status when estimated from uncertain data, especially if time-series biases occur in 
the assessment procedure. A thorough investigation of data-rich benchmarks was outside the 
scope of this study. Further work investigating alternative stock-recruitment models, which may 
mitigate the impacts of time-series biases is warranted, especially if combined with a simulation 
evaluation of associated management procedures. 

To inform assessments for Alaskan Pacific salmon, Clark et al. (2014) identified sustainable 
escapement goals based on percentiles of observed spawner abundances using 4 tiers. Our 
evaluation differed from that of Clark et al. (2014) in that we evaluated percentile-based 
benchmarks as WSP benchmarks of biological status and not as sustainable escapement goals 
based on MSY. In addition, we analyzed performance along gradients in harvest rates and 
productivity because we found that benchmark performance was most sensitive to these 
variables, whereas Clark et al. (2014) analyzed tiers according to harvest rates, observed 
contrast in escapement time-series, and measurement errors in spawning abundances. We 
found that contrast in escapement was correlated with harvest rates and productivity. When 
harvest rates were low and productivity was high, contrast was high and percentile benchmarks 
tended to be higher than “true” value. When harvest rates were high and productivity was low, 
contrast was low and percentile benchmarks tended to be below “true” values. Where harvest 
rates and/or productivity are unknown, contrast in escapement time-series could be used as a 
proxy since low contrast may indicate conditions where percentile benchmarks perform poorly 
(i.e., fall below “true” benchmarks). 

In summary, we evaluated percentile-based benchmarks in retrospective analyses and 
simulation modelling by comparing their values against “true” underlying benchmark identified 
by the WSP (Holt et al. 2009), accounting for high uncertainties and possible biases in spawner 
abundances, and uncertainties in catches, recruitment estimates, and age-at-maturity. We 
identified conditions where percentile-based benchmarks were the same or higher in value than 
the “true” benchmarks. In particular, when productivities were moderate to high, the S25th 
benchmark tended to be higher than the “true” lower benchmark. An alternative lower 
benchmark, S50th tended to be higher than the “true” lower benchmark at low productivity and 
low harvest rates, though none of the percentile benchmarks was higher than “true” values at 
low productivity and moderate to high harvest rates. The upper benchmark, S75th, tended to 
significantly overestimate the “true” upper benchmark except at high harvest rates and 
moderate to low productivity. In general, the upper benchmark, S50th better matched the “true” 
upper benchmark. 
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4 SUMMARY OF UNCERTAINTIES (OBJECTIVE 2) 
Uncertainties in benchmark estimates can arise from uncertainties in underlying spawner 
abundances and catch data because of sampling methods with low precision (e.g., visual 
counts) and uncertainties in stock identification. Biases can occur when spawning surveys cover 
only a portion of the CU, and/or expansion factors are applied which over or underestimate the 
total abundances. Uncertainties related to sampling errors occur when monitoring of 
abundances is incomplete over time and/or over locations within CUs. Uncertainties in ages-at-
maturity due to incomplete (or lack of) sampling of ages of catch and spawners can result in 
uncertainties in estimates of recruitment aligned by brood year, which are required for stock-
recruitment based benchmarks. Also for stock-recruitment benchmarks, errors-in-variables and 
time-series biases in parameter estimation can result in biased benchmarks (Walters and 
Martell 2004, Korman and English 2013). These sources of uncertainty were included in our 
simulation model evaluating biological benchmarks. Sensitivity analyses covering realistic 
ranges for parameters revealed two parameters, productivity and harvest rates, had the most 
significant impacts on benchmark performance. Results from our simulation model were largely 
robust to the remaining sources of uncertainty. 

Status assessments can be generated to reflect underlying uncertainties in benchmarks by 
considering the probabilities of abundances falling within each status category (Figure 6). We 
demonstrated an approach for providing probabilistic status assessments using bootstrapped 
estimates of percentile benchmarks and the posterior distributions of stock-recruitment 
benchmarks. These probabilistic assessments can help inform a precautionary approach to 
decision making.  For example, a CU may be in the amber zone based on the median 
benchmark estimate, but given underlying uncertainties the probability of red status may be as 
high as 49%, warranting precautionary management to keep CUs out of the red zone. 

5 ADVICE ON APPLICABILTY OF PERCENTLE-BASED BENCHMARKS 
(OBJECTIVE 3) 

Our third objective was to provide advice on the applicability of percentile-based benchmarks for 
data-limited CUs of Chum Salmon in southern BC. We assessed applicability relative to stock-
recruitment benchmarks identified under the WSP. In general, we found that when productivity 
was moderate to high, lower and upper benchmarks at the 25th and 50th percentiles of observed 
spawner abundances tended to be higher than the “true” lower benchmark (Sgen) and 
approximately equivalent to or higher than the “true” upper benchmark (80% SMSY), respectively 
(Table 6). These percentile benchmarks provide statuses that would tend to be the same or 
lower than those from “true” underlying benchmarks. We selected these percentile benchmarks, 
S25th and S50th, for illustrative purposes, but they are aligned with the definitions of benchmarks 
identified in the WSP. Alternatives could be considered based on the results presented in Figs. 
15 and 18, given probabilities of falling below or being far above “true” WSP benchmarks. These 
results show that an alternative upper benchmark previously recommended for Chum Salmon in 
BC and applied by Hilborn et al. (2013), S75th, tend to be far higher than the “true” upper 
benchmark identified under the WSP. 

At high harvest rates and moderate productivity, and moderate-high harvest rates and low 
productivity, none of the lower percentile benchmarks were above the “true” lower benchmark, 
and in some cases, none of the upper percentile benchmarks were above the “true” upper 
benchmark. In these cases, percentile-based benchmarks tend to provide statuses that are 
unrealistically high or optimistic relative to “true” status. Further investigation is required in these 
cases to identify percentile benchmarks (or other benchmarks) with low risks of over-estimating 
“true” status. In addition, for the low productivity scenarios, the “true” lower and upper 
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benchmarks Sgen and 80% of SMSY, are close to one another (as documented previously in Holt 
and Ogden 2013), resulting in the selection of lower and upper percentile benchmarks that 
match (Table 6, bottom left corner). One consequence of coinciding lower and upper 
benchmarks is a high probability of dropping below the lower benchmark as CUs are depleted to 
the upper benchmark, creating conservation and management risks. This risk occurs for both 
stock-recruitment and percentile benchmarks at low productivity. To manage these risks, 
information on the probability of status categories (red, amber, green) can be used when 
making management decisions, since the probability of red status will increase as the CU is 
depleted near the coinciding lower and upper benchmarks, even if the CU remains in the green 
zone. Alternatively, the upper benchmark defined by the Wild Salmon Policy and further 
investigated by Holt et al. (2009) could be reconsidered and set to a higher value (e.g., Smax, 
Seq) that is better distinguished from the lower benchmark, Sgen. However, these alternative 
upper benchmarks, Smax and Seq, tend to be much higher than abundances observed in 
historical records suggesting that green status would rarely be achieved.  

Caution should be applied if using S25th and S50th as lower and upper benchmarks without 
information on productivity and harvest rates. In these cases, declining trends in abundances or 
low contrast in spawner time-series (<8) would warrant investigation into possible low 
productivity levels (< 2.5 recruits/spawner) or high harvest pressure (≥40%) where further 
evaluation of percentile-based benchmarks is warranted. These conditions can result in a 
shifting baseline whereby percentile benchmarks decline concurrently with abundances, as 
observed for Southern Coast Streams CU (Fig.5a,iii). Alternatively, if productivity can be 
estimated through hierarchical modelling or meta-analyses, then benchmarks can be applied 
accordingly. Where exploitation rates are estimated to be high on average over the time-series 
and productivity is unknown, then the risks of percentile-based benchmarks providing over-
estimates of status (i.e., being overly optimistic) are relatively high, and alternative percentile 
benchmarks should be evaluated. 

Further caution is required if CUs are severely depleted far below “true” benchmarks, possibly 
resulting in depensation due to increased predation or reduced mating success at very low 
abundances. While our simulations were initialized at 20% of capacity, the subsequent time-
series tended to cover a wide range of spawner abundances. Depensatory effects at low 
spawner abundances (not modelled here) may reduce productivity preventing abundances from 
rebounding to high levels. In addition, where spawner time-series are short and highly variable 
over time, percentile benchmarks may also be highly variable (e.g., Southern Coastal Streams, 
Figure 5a,iii, 1960-1980), though these benchmarks tend to stabilize as time-series exceed 30 
years. 

Here we assumed stock-recruitment benchmarks adequately captured “true” underlying 
benchmarks of status, defined by the WSP. The Ricker model underlying the stock-recruitment 
benchmarks assumes density dependence in recruitment at moderate to high spawner 
abundances within CUs. However, for Chum Salmon in BC, the spatial scale of density 
dependence is uncertain, and may differ from the scale of CUs (e.g., occurring at local 
spawning sites within CUs, or at a larger multi-CU level since Chum Salmon fry from numerous 
CUs can overlap in estuaries). Despite uncertainty in the underlying scale of density 
dependence, the Ricker model was found to adequately capture the empirical relationship 
between spawner and recruits for Chum Salmon in BC, Alaska, and Washington State (Dorner 
et al. 2008), and was used here.  

Alternative approaches for identifying benchmarks using habitat or watershed characteristics to 
estimate the capacity of the system to sustain spawners and juveniles could help validate 
percentile benchmarks given the caveats in percentile approaches described above. Where 
percentile benchmarks are deemed unreliable, habitat-based benchmarks of capacity could be 
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used as an alternative as applied to Chinook Salmon in BC (Parken et al. 2006), and to Fraser 
River Sockeye Salmon to inform prior probability distributions of Smax for stock-recruitment 
benchmarks (Grant et al. 2011).  

Integrated assessments under Strategy 1 of the WSP consider multiple metrics and 
benchmarks of status on abundances, trends in abundance, distribution, and fishing mortality 
relative to productivity, in part to account for the shortcomings and uncertainties in each 
individual metrics or benchmarks such as those identified here for percentile benchmarks. For 
example, metrics on the distribution of spawning across sub-populations can supplement those 
on abundances by indicating when widely distributed CUs have become more concentrated 
over time, possibly resulting in a loss of resilience not reflected in metrics on abundances (Holt 
et al. 2009). In addition, benchmarks on long-term trends in abundances over time have been 
identified at 25% and 50% of the long-term geometric median of observed spawner 
abundances. Those benchmarks are lower than the percentile benchmarks identified here, and 
were identified based on expert opinion not quantitative analyses (Holt et al. 2009). Our 
percentile benchmarks provide status assessments that are more consistent with stock-
recruitment based benchmarks on abundances, and could be considered in place of current 
benchmarks on long-term trends in integrated assessments.  

Furthermore, when applied to large-scale status assessments of CUs region-wide, percentile 
benchmarks may be valuable for providing preliminary snap-shots of status for prioritizing work 
on monitoring and assessment, in the absence of integrated status assessments. CUs or 
groups of CUs that are observed to be below lower percentile benchmarks may trigger further 
work into status assessments and/or monitoring.  

Our analyses evaluating sensitivity of benchmark performance to various levels of productivity 
were in the context of average, long-term values, and not interannual variability in productivity. 
We recommend that benchmarks be chosen to reflect long-term trends, instead of adjusting 
them annually in response to yearly changes in productivity. 

Finally, our analyses focus on Chum Salmon, though similar analyses could be applied to other 
species. Differences in data quality and quantity (e.g., of spawner time-series, catches or 
exploitation rates, and age-at-maturity), and life-history characteristics (e.g., variability in age-at-
maturity, recruitment autocorrelation, and productivity) may affect relative performance of 
benchmarks limiting our ability to provide recommendations on other species presently.  
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8 TABLES 

Table 1. Current benchmark values across three methods used: standard Ricker model, hierarchical 
Ricker model (𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔  and 80% 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀) and percentiles (25th and 75th). 

Southern Coastal Streams 
Method Standard Ricker Hierarchical Ricker Percentile 

Lower Benchmark 9,636 9,994 5,425 
Upper Benchmark 10,372 11,711 54,350 

Northeast Vancouver Island 
Method Standard Ricker Hierarchical Ricker Percentile 

Lower Benchmark 16,506 16,292 16,519 
Upper Benchmark 18,503 19,494 75,136 

Upper Knight 
Method Standard Ricker Hierarchical Ricker Percentile 

Lower Benchmark 2,991 3,086 2,006 

Upper Benchmark 4,600 4,572 11,191 
Loughborough 

Method Standard Ricker Hierarchical Ricker Percentile 

Lower Benchmark 12,002 12,316 17,313 

Upper Benchmark 18,219 18,301 46,303 
Bute Inlet 

Method Standard Ricker Hierarchical Ricker Percentile 

Lower Benchmark 20,528 21,155 11,275 

Upper Benchmark 33,752 33,247 85,517 
Georgia Strait 

Method Standard Ricker Hierarchical Ricker Percentile 

Lower Benchmark 91,724 113,305 202,269 

Upper Benchmark 187,546 201,020 445,139 
Howe Sound to Burrard Inlet 

Method Standard Ricker Hierarchical Ricker Percentile 

Lower Benchmark 97,554 107,571 85,394 

Upper Benchmark 171,126 177,421 303,280 
Northwest Vancouver Island 

Method Standard Ricker Hierarchical Ricker Percentile 

Lower Benchmark 11,995 11,997 24,811 

Upper Benchmark 19,871 19,921 73,650 
Southwest Vancouver Island 

Method Standard Ricker Hierarchical Ricker Percentile 

Lower Benchmark 65,109 66,202 204,065 

Upper Benchmark 120,726 121,273 433,640 
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Table 2. Parameter and benchmark estimates, lower credible limits (LCL)and  upper credible limits (UCL) 
delineated as 2.5th and 97.5th posterior densities for the most recent year. 

South Coast Streams 
Model   

   
       

       

       

       

   
   
       

       

       

       

   
   
       

       

       

       

   
   
       

       

       

       
 
  

Standard Hierarchical
Statistic Estimate LCL UCL Estimate LCL UCL 
Ricker α 1.39 0.92 2.23 1.60 1.02 2.43

Smax 80,275 43,303 218,015 67,219 41,050 183,913

Sgen 9,636 2,131 19,263 9,994 4,292 18,702

 80% SMSY 10,372 1,734 20,370 11,711 3,647 20,687

Northeast Vancouver Island 
Model Standard Hierarchical

Statistic Estimate LCL UCL Estimate LCL UCL 
Ricker α 1.53 1.05 2.23 1.70 1.14 2.43

Smax 115,696 68,614 313,299 101,040 63,165 284,140

Sgen 16,506 7,927 31,386 16,292 10,155 31,635

 80% SMSY 18,503 6,688 33,262 19,494 9,098 34,620

Upper Knight 
Model Standard Hierarchical

Statistic Estimate LCL UCL Estimate LCL UCL 
Ricker α 2.22 1.19 4.04 2.18 1.34 3.56

Smax 16,523 9,410 62,829 16,756 9,804 57,175

Sgen 2,944 1,485 9,167 3,089 1,736 9,365

 80% SMSY 4,581 1,980 11,619 4,578 2,429 12,270

Loughborough 
Model Standard Hierarchical

Statistic Estimate LCL UCL Estimate LCL UCL 
Ricker α 2.30 1.59 3.23 2.24 1.66 3.06

Smax 62,730 43,696 123,151 64,033 44,811 116,832

Sgen 11,992 8,095 21,103 12,227 8,440 20,857

 80% SMSY 18,401 13,671 27,404 18,194 13,628 27,109
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Bute Inlet 
Model   

   
       

       

       

       

   
   
 

Standard Hierarchical
Statistic Estimate LCL UCL Estimate LCL UCL 
Ricker α 2.46 1.62 3.77 2.32 1.64 3.44

Smax 106,264 69,179 246,135 111,430 73,740 278,742

Sgen 20,222 12,203 44,095 21,257 13,489 47,248

 80% SMSY 33,348 23,044 60,030 33,484 22,782 62,854

Georgia Strait 
Model Standard Hierarchical

Statistic Estimate LCL UCL Estimate LCL UCL 
Ricker α 3.08      

       

       

       

   
   
       

       

       

       

   
   
       

       

       

       

   
   
       

       

       

       

2.05 4.77 2.67 1.97 4.19
Smax 493,198 301,072 1,083,934 608,911 336,236 1,143,835

Sgen 90,983 44,872 206,206 116,883 53,905 216,737

 80% SMSY 186,802 141,661 303,619 203,327 146,895 313,297

Howe Sound to Burrard Inlet 
Model Standard Hierarchical

Statistic Estimate LCL UCL Estimate LCL UCL 
Ricker α 2.63 1.81 3.75 2.47 1.79 3.49

Smax 511,173 308,310 1,657,672 559,155 333,798 1,837,905

Sgen 97,554 54,892 310,845 107,571 60,229 344,097

 80% SMSY 171,126 119,131 410,187 177,421 120,094 453,338

North West Coast Vancouver Island 
Model Standard Hierarchical

Statistic Estimate LCL UCL Estimate LCL UCL 
Ricker α 2.50 1.66 3.75 2.51 1.65 3.76

Smax 62,398 44,590 108,771 62,597 44,742 110,640

Sgen 11,995 7,754 18,845 11,997 7,724 18,841

 80% SMSY 19,871 15,779 25,247 19,921 15,671 25,492

South West Coast Vancouver Island 
Model Standard Hierarchical

Statistic Estimate LCL UCL Estimate LCL UCL 
Ricker α 2.81 1.69 4.55 2.78 1.64 4.56

Smax 344,426 232,644 731,855 348,571 235,912 746,969

Sgen 65,109 35,981 124,899 66,202 36,558 125,382

 80% SMSY 120,726 99,282 161,752 121,273 99,754 160,359
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Table 3. Conservation status for each CU for the most recent year of analysis, 2012 for ISC, 2015 for 
WCVI. Statuses are calculated using all data available for the Ricker-based benchmarks, and use all 
escapement data for the percentile-based benchmark. Probability of each status is also given, which is 
estimated using the posterior densities for the Ricker models, and the bootstrapped status for percentile 
benchmarks. 

Conservation Unit Percentile Status Standard Ricker Status Hierarchical 
Ricker Status 

South Coast Streams Red (61%) Red (93%) Red (98%) 
Northeast Vancouver Island Amber (100%) Green (90%) Green (90%) 
Upper Knight Amber (96%) Green (82%) Green (81%) 
Loughborough Amber (89%) Green (67%) Green (69%) 
Bute Inlet Amber (95%) Green (95%) Green (96%) 
Georgia Strait Green (90%) Green (100%) Green (100%) 
Howe Sound to Burrard Inlet Green (100%) Green (100%) Green (100%) 
North West Coast Vancouver 
island Green (69%) Green (100%) Green (100%) 

South West Coast Vancouver 
Island Red (96%) Green (99%) Green (99%) 

Table 4. Proportion of years where percentile-based status and Ricker-based status match, by CU and 
Ricker Model (standard Ricker model in column 1 and hierarchical Ricker model in column 2). Columns 3 
and 4 show the proportion of years where the percentile-based status matched OR were more 
precautionary than Ricker-based status (i.e., had lower status). 

Conservation unit 
Percentile-based 

status match 
standard Ricker-

based status 

Percentile- based 
status match 
hierarchical 

Ricker-based 
status  

Percentile-based 
status match or 

more 
precautionary 
than standard 
Ricker-based 

status  

Percentile-based 
status match or 

more 
precautionary 

than hierarchical 
Ricker-based 

status 
South Coast 
Streams 0.35 0.47 1.00 1.00 

Northeast 
Vancouver Island 0.42 0.34 1.00 1.00 

Upper Knight 0.50 0.50 0.78 0.78 
Loughborough 0.23 0.23 1.00 1.00 
Bute Inlet 0.60 0.58 0.75 0.73 
Georgia Strait 0.35 0.35 1.00 1.00 
Howe Sound to 
Burrard Inlet 0.58 0.60 1.00 1.00 

North West Coast 
Vancouver island 0.14 0.15 1.00 1.00 

South West Coast 
Vancouver Island 0.00 0.00 1.00 1.00 
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Table 5. Parameters used in simulation model for the base case and sensitivity analyses. 

Sub-model Parameter Base-case 
Value 

Values 
considered 
in univariate 
sensitivity 
analyses 

Range 
considered 
in global 
sensitivity 
analyses 

Population 
dynamics sub-
model 

Ricker productivity parameter 
(recruits/spawner at low 
spawner abundances) 

2.72 (=1 
loge(α)) 

1.64 (low) 
and 7.39 
(high) 

1.64-7.39 
(=0.5-2.0 
loge(α)) 

Ricker autocorrelation coefficient 0.6 0 (low) and 
0.9 (high) 

0-0.9 

Standard deviation in Ricker 
residuals 

0.75 0.6 (low) and 
1.0 (high) 

0.6-1.0 

Average proportions at age-of-
maturity 

Age 3=24% 
Age 4=67% 
Age 5=9% 

  

Natural variability in age-at-
maturity,𝜛𝜛 , specified in a 
multivariate logistic distribution 

0.8 0.1 (low) and 
0.9 (high) 

0.1-0.9 

Correlation in recruitment 
residuals among subpopulations 
within a CU 

0.4 0 (low) and 
1.0 (high) 

0-1.0 

Initial spawner abundances 0.2×Seq, 
where Seq is 
spawner 
abundances 
at 
equilibrium 

0.1×Seq (low) 
and 0.3×Seq 
(high) 

0.1×Seq-
0.3×Seq 

Stray rate 0.05   
Observation sub-
model 

Variability in observed age-at-
maturity, 𝜛𝜛𝑝𝑝𝑝𝑝, specified in a 
multivariate logistic distribution 

0.1 0 (low) and 
0.9 (high) 

0.1-0.9 

Standard deviation in 
observation errors of spawners 

0.5 0.2 (low) 0-1.0 

Standard deviation in 
observation errors of catches 

0.5 0.2 (low) 0-1.0 

Multiplicative bias in observed 
spawner abundances not 
accounted for in assessment 

1 0.8 (neg. 
bias) and 1.2 
(positive 
bias) 

0.8-1.2 

Assessment sub-
model 

Proportion of subpopulations 
sampled within a CU 

100% 50% (low) 50%-100% 

Proportion of years that CU is 
sampled 

100% 60% (low) 60%-100% 

Harvest sub-
model 

Harvest rate  20% 10% (low) 
and 60% 
(high) 

10%-60% 

Outcome uncertainty (standard 
deviation in differences between 
target and realized harvest 
rates) 

0.3 0.5 (high) 0-0.9 
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Table 6. Selected percentile-based lower and upper benchmarks identified to be similar or higher in value 
than stock-recruitment based benchmarks under the WSP, along gradients in productivity 
(recruits/spawner) and average harvest rates. * denotes the low-productivity scenario where lower and 
upper Ricker-based benchmarks are very close to one another, resulting in lower and upper percentile-
based benchmarks that are the same.  

 Harvest rate 

<20% ≥20 and 
<40% 

≥40% and 
<60% 

Productivity >4 25th (lower) 

50th (upper) 

25th (lower) 

50th (upper) 

25th (lower) 

50th (upper) 

>2.5 and ≤4 25th (lower) 

50th (upper) 

25th (lower) 
50th (upper) 

Further 
evaluation 
required 

≤2.5 and >1.5 *50th (lower 
and upper) 
 

 

 

  

Further 
evaluation 
required 

Further 
evaluation 
required 



 

56 

APPENDIX A. EXPLOITATION RATES 

 

Figure A1. Estimated exploitation rates over time, across 9 Chum Salmon CUs on Inner South Coast of 
BC and West Coast of Vancouver Island. 
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APPENDIX B. PRODUCTIVITY PRIORS AND POSTERIORS 

 
Figure B1. Priors and posteriors for Ricker α parameters for both the standard and hierarchical Ricker 
models.   
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APPENDIX C. SENSITIVITY ANALYSIS ON PRIORS 
Two prior formulations on Ricker β, via its reciprocal: 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,  were used, as described in 
equations C1 and C2: 

(C1) 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 ~ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(1,𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜) ∙ 2) 

(C2) 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚~𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑙𝑙𝑙𝑙𝑙𝑙�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜)� ,  1/𝜏𝜏𝑆𝑆�,   𝜏𝜏𝑆𝑆 = 1/log (𝐶𝐶𝑉𝑉2 + 1) 

For the parameterization of the uniform prior we assumed that Smax was less than twice the 
maximum observed spawner value (𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜), which is likely given the observed low to moderate 
harvest rates on average for most Chum Salmon CUs in southern BC, with the possible 
exception of Georgia Strait. For parameterization of the log-normal prior, we set the width of 
lognormal prior by using a CV of 5, which we found to produce priors in which the highest 
probability values occurred in approximately the same range of Smax as the uniform 
distribution. The lognormal prior is weakly informative, as it pulls posterior distributions of Smax 
towards mean observed escapement. Although most of the weight of the prior distribution lies 
within the same range as the uniform distribution, it also includes values of Smax far greater 
than the observed spawner levels. Therefore, using a log-normal prior distribution, some 
posterior estimates of Smax may be far higher than the range of historically observed 
escapement, which may be the case if the CU had been long suppressed far below historical 
levels.  

For all CUs, using the standard Ricker model, estimates of Smax were slightly lower when a 
weakly informative lognormal prior was used for Smax compared with uniform prior. However, 
these differences were small and estimates consistently fell within the range of uncertainty 
under the alternate assumption (Fig. C1). Furthermore, when comparing statuses, models fit 
with either prior matched between 88-100% of years depending on CU, and therefore do not 
appear to make a significant difference in the assignment of status
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Figure. C1. Model estimates for Ricker 𝛼𝛼 (top row) and 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 (bottom row) across prior distributions (uniform and lognormal; see appendix B) for  
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 and standard and hierarchical Ricker model structures (solid and dotted lines, respectively) for each CU in the final year (2012 for ISC CUs, 
2016 for WCVI CUs). Circles indicate posterior medians, and lines indicate 95% credible intervals of estimates.  
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Figure C1 continued. 
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APPENDIX D. FINAL YEAR RICKER CURVES 

 
Figure. D1 Observed spawner-recruit data for 9 CUs, Southern Coastal Streams (a), North East 
Vancouver Island (b), Upper Knight (c), Loughborough (d), Bute Inlet (e), Georgia Strait (f), Howe Sound 
to Burrard Inlet (g), South West Vancouver Island (h), and North West Vancouver Island (i), with fitted 
Ricker curves and associated benchmarks for (i) the standard Ricker model, and (ii) the hierarchical 
Ricker model. Shaded regions indicate 95% credible intervals. Red and green circles on x-axis identify 
percentile-based benchmarks (S25th and S75th, respectively). Cross indicates most recent data point, for 
brood year 2006 for ISC CUs (a-g), 2010 for WCVI CUs (h,i). Colours of points increase in darkness as 
years progress towards the current year. 
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Figure D1 continued.   
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Figure D1 continued. 
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Table D1. Model fit (r2 between observed and predicted recruitment) for standard and hierarchical Ricker 
models. 

CU r2 

Standard 
Ricker 

Hierarchical 
Ricker 

South Coast Streams 0.47 0.47 

Northeast Vancouver Island 0.29 0.27 

Upper Knight 0.00 0.00 

Loughborough 0.07 0.07 

Bute Inlet 0.06 0.07 

Georgia Strait 0.00 0.00 

Howe Sound to Burrard 
Inlet 0.00 0.01 

North West Coast 
Vancouver island 0.03 0.02 

South West Coast 
Vancouver Island 0.00 0.00 
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APPENDIX E. RETROSPECTIVE PERFORMANCE AGAINST PRODUCTIVITY 
We explored an alternative way to compare Ricker-based and percentile-based benchmarks by 
comparing the ratio of the percentile-based benchmark to the Ricker benchmark. If this number 
is above one (dashed line in Fig. E1) the percentile benchmark is higher (and therefore more 
precautionary) than the Ricker-based benchmark. These figures show that the upper percentile 
benchmark is always higher than the Ricker-based upper benchmark (80% 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀), while at 
low/moderate productivities, percentile lower benchmarks can dip below 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔.  There is a 
curvilinear relationship between and the Ricker 𝛼𝛼 parameter and these ratios. For the lower 
benchmarks, higher productivity is associated with percentile benchmarks that are relatively 
high compared to Ricker based benchmarks. While for upper benchmarks, percentile and 
Ricker-based upper benchmarks tend to be most similar at intermediate productivity levels.  

 
Figure. E1. Ricker 𝛼𝛼 (productivity) parameters vs. ratios of percentile-based benchmarks to Ricker-based 
benchmarks for ISC and WCVI CUs. Left plot shows ratio for lower benchmarks (𝑆𝑆25 : 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔), right plot 
shows ratio for upper benchmarks (𝑆𝑆75: 0.8𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀). Points lying above the dashed line identify cases where 
the percentile benchmark is larger than the Ricker-based benchmark. The empty circles indicate points 
with 𝛼𝛼 < 1.5, which would not have been used to assess status (Holt and Ogden 2013).   
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APPENDIX F. MODEL EQUATIONS 
POPULATION DYNAMICS SUB-MODEL 
Our model simulated the dynamics of a single, hypothetical CU of Chum Salmon with 5 sub-
populations. Chum Salmon spawn as adults and rear as juveniles in freshwater. Juveniles then 
migrate as smolts from freshwater to the ocean where they mature before returning to their natal 
spawning grounds. In Southern BC, Chum Salmon usually return to freshwater as adults at age 
3, 4, or 5, and spawn only once before dying. The number of adult recruits that return to 
freshwater in year, t, in subpopulation j, , was calculated from the total number of adult 

recruits generated from spawners 3, 4, and 5 years prior,  and , and the 

proportion of fish that return at ages, g = 3, 4, and 5 ( , and , respectively) 
as: 

(F1)  

The proportion of the mature fish that return at each age, g, including multivariate logistic 
stochastic variation was calculated as: 

(F2) 𝑝𝑝𝑔𝑔,𝑦𝑦,𝑗𝑗 = 𝑝̅𝑝𝑔𝑔𝑒𝑒
𝜛𝜛∙𝜀𝜀𝑔𝑔,𝑦𝑦,𝑗𝑗

∑ 𝑝̅𝑝𝑔𝑔5
3 ∙𝑒𝑒𝜛𝜛∙𝜀𝜀𝑔𝑔,𝑦𝑦,𝑗𝑗, 

where y is the brood year and y= t-3, t-4, or t-5 in Eqn. F1, the summation in the denominator is 
over ages 3 to 5 (minimum and maximum ages at recruitment), is the mean proportion of 
adult fish that return at age g, is a parameter that controls interannual variability in 
proportions of fish returning at each age (set to 0.8), and are standard normal deviates 
(adapted form Holt and Bradford 2011).  

Chum Salmon are vulnerable to fishing only in their final year of life during their return migration 
to freshwater. The number of fish that escape the fishery (escapement, Et,j in return year t and 
subpopulation j) and spawn was calculated as: 

(F3) 𝐸𝐸𝑡𝑡,𝑗𝑗 = 𝑅𝑅𝑡𝑡,𝑗𝑗 ∙ (1 − ℎ𝑡𝑡), 

where ht is harvest rate in return year, t. The number of spawners in each subpopulation was 
calculated from the escapement multiplied by the dispersal matrix, D, which accounts for 
straying among subpopulations: 

(F4) [𝑆𝑆𝑡𝑡,𝑗𝑗=1 ⋯ 𝑆𝑆𝑡𝑡,𝑗𝑗=𝐽𝐽] = 𝑫𝑫 × �
𝐸𝐸𝑡𝑡,𝑗𝑗=1
⋮

𝐸𝐸𝑡𝑡,𝑗𝑗=𝐽𝐽

�,  

where D is a symmetric matrix with elements that represent the proportion of escapement that 
stray from subpopulation n (row n) to subpopulation m (column m), and J is the total number of 
subpopulations (Peacock and Holt 2012).  

(E5) 𝑫𝑫𝐽𝐽×𝐽𝐽 =

⎣
⎢
⎢
⎡

1 − 𝑑𝑑 𝑑𝑑𝜏𝜏𝑛𝑛=1,𝑚𝑚=2
𝑑𝑑𝜏𝜏𝑛𝑛=2,𝑚𝑚=1 1 − 𝑑𝑑

⋯ 𝑑𝑑𝜏𝜏𝑛𝑛=1,𝑚𝑚=𝐽𝐽
⋯ 𝑑𝑑𝜏𝜏𝑛𝑛=2,𝑚𝑚=𝐽𝐽

⋮ ⋮
𝑑𝑑𝜏𝜏𝑛𝑛=𝐽𝐽,𝑚𝑚=1 𝑑𝑑𝜏𝜏𝑛𝑛=𝐽𝐽,𝑚𝑚=2

⋱ ⋮
⋯ 1 − 𝑑𝑑 ⎦

⎥
⎥
⎤
, 

d is the stray rate, and 𝜏𝜏𝑛𝑛,𝑚𝑚 is the probability of dispersal from site n to site m, calculated as, 

jtR ,

jtjt RR ,4,3 , −− ′′ jtR ,5−′

jtjt pp ,4,4,3,3 , −− jtp ,5,5 −

jtjtjtjtjtjtjt pRpRpRR ,5,5,5,4,4,4,3,3,3, −−−−−− ⋅′+⋅′+⋅′=

gp
ϖ

ε
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(F6) 𝜏𝜏𝑛𝑛,𝑚𝑚 = 1
2𝜋𝜋𝜃𝜃2

𝑒𝑒𝑒𝑒𝑒𝑒 �−�𝑟𝑟𝑛𝑛,𝑚𝑚
𝜃𝜃
��. 

𝜃𝜃 is a dispersion parameter equal to the average dispersal distance, and r is the distance 
between subpopulation n and m, calculated as the distance between sites situated along a 
single river that are randomly selected from uniform distribution between 0 (ocean entry) and 
100km (head waters) (Peacock and Holt 2012). Values for 𝜏𝜏𝑛𝑛,𝑚𝑚 were normalized so that the row 
sum of probabilities for dispersal of salmon from site n in matrix D was equal to one (i.e., no fish 
strayed outside the CU). 

The abundance of recruits that spawned in brood year y, (where y=t-3, t-4, or t-5 in Eqn. F1),
, was calculated from a Ricker spawner-recruitment relationship for each subpopulation, j, 

including autocorrelated deviations and log-normal stochastic error: 

(F7) 𝑅𝑅𝑦𝑦,𝑗𝑗
′ = 𝑆𝑆𝑦𝑦,𝑗𝑗𝑒𝑒

�𝑎𝑎𝑗𝑗�1−
𝑆𝑆𝑦𝑦,𝑗𝑗
𝑏𝑏𝑗𝑗

�+𝜑𝜑𝑦𝑦,𝑗𝑗�
,𝜑𝜑𝑦𝑦,𝑗𝑗 = 𝜌𝜌𝜑𝜑𝑦𝑦−1,𝑗𝑗 + 𝑣𝑣𝑦𝑦,𝑗𝑗, 𝑣𝑣~𝑀𝑀𝑀𝑀𝑀𝑀�− 1

2
𝜎𝜎𝑣𝑣2,𝚺𝚺𝑗𝑗×𝑗𝑗�,  

𝚺𝚺𝑗𝑗×𝑗𝑗 =

⎣
⎢
⎢
⎡ 𝜎𝜎𝜈𝜈

2 𝜌𝜌𝜎𝜎𝜈𝜈2

𝜌𝜌𝜎𝜎𝜈𝜈2 𝜎𝜎𝜈𝜈2
⋯ 𝜌𝜌𝜎𝜎𝜈𝜈2

  𝜌𝜌𝜎𝜎𝜈𝜈2
⋮  

𝜌𝜌𝜎𝜎𝜈𝜈2 𝜌𝜌𝜎𝜎𝜈𝜈2
⋱ ⋮
⋯ 𝜎𝜎𝜈𝜈2 ⎦

⎥
⎥
⎤

𝑗𝑗×𝑗𝑗

 

where 𝑎𝑎𝑗𝑗 = log (𝛼𝛼𝑗𝑗) , and 𝛼𝛼𝑗𝑗 is recruits/spawner at low spawner abundances for subpopulation j 
(defined as productivity here), 𝑏𝑏𝑗𝑗 is the equilibrium abundance in the absence of fishing (Seq), 
Smax, spawner abundances that maximize recruitment, is equal to 𝑏𝑏/𝑎𝑎,  and are stochastic 
terms, is an autocorrelation coefficient, is drawn from a multivariate normal distribution with 
mean −1

2
𝜎𝜎𝑣𝑣2 to make the arithmetic mean of the lognormally distributed recruitment variation 

equal to 1 (as in Holt and Peterman 2008), Σ is a covariance matrix describing how recruitment 
residuals covary among subpopulations, and  is the standard deviation in residual error 

without autocorrelation (Ricker 1975; Holt and Bradford 2011). is related to the standard 
deviation in residual error that includes autocorrelated variability, 𝜎𝜎𝜖𝜖, through the relationship: 

(F8) 𝜎𝜎𝜖𝜖2 = 𝜎𝜎𝜈𝜈2/(1 − 𝜌𝜌2) 

Given parameters for the base case, =0.75, and =0.6 derived from the literature (as 
described in the text), 𝜎𝜎𝜖𝜖 was calculated as 0.94 from Eqn. F8. The value of 𝜎𝜎𝜖𝜖 was held 
constant (and  varied) under sensitivity analyses where  changed. Spawner abundances 
in brood years y=1 to 5 were initialized at 20% of Seq to seed Eqn. F7.  That initial abundance 
level is within the range of variability observed historically for Chum Salmon on the inner south 
coast of BC (Ryall et al. 1999; Hilborn et al. 2013), and preliminary analyses showed that 
performance metrics were insensitive to changes in initial abundances from 10%-30% of Seq.

was initialized at zero in year 1. , , and were then applied to Eqn. F1 
starting in year 6 to calculate abundance of adult recruits aligned by return year Rt,j.  

OBSERVATION SUB-MODEL 

Observed spawner abundances, , were estimated from “true” spawner abundances, 𝑆𝑆𝑦𝑦,𝑗𝑗, in 
brood year y, with log-normal error: 

jyR ,′

ϕ ν
ρ ν

νσ

νσ

νσ ρ

νσ ρ

jy ,1=ϕ jtyR ,3−=′ jtyR ,4−=′ jtyR ,5−=′

jyS ,
ˆ
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(F9) , 𝛿𝛿~𝑁𝑁�− 1
2
𝜎𝜎𝛿𝛿2,𝜎𝜎𝛿𝛿2�, 

where  is a stochastic term with mean equal to−1
2
𝜎𝜎𝛿𝛿2  to make the arithmetic mean of the 

lognormally distributed spawner abundances equal to 1, and is the standard deviation in 
residual observation error in spawner abundances. Aggregate observed spawner abundances 
in brood year y, 𝑆̂𝑆𝐴𝐴𝐴𝐴,𝑦𝑦, were calculated by summing over observed spawner abundances for 
each subpopulation: 

(F10) 𝑆̂𝑆𝐴𝐴𝐴𝐴,𝑦𝑦 = ∑ 𝑆̂𝑆𝑦𝑦,𝑗𝑗
𝐽𝐽
𝑗𝑗=1  

Observed total catch,𝐶̂𝐶𝑡𝑡, was estimated from the “true” catch in return year t, 𝐶𝐶𝑡𝑡, with log-normal 
error: 

(F11) 𝐶̂𝐶𝑡𝑡 = 𝐶𝐶𝑡𝑡𝑒𝑒𝜒𝜒𝑡𝑡, 𝜒𝜒~𝑁𝑁�− 1
2
𝜎𝜎𝜒𝜒2,𝜎𝜎𝜒𝜒2�, 

where 𝜒𝜒 is a stochastic term with mean equal to−1
2
𝜎𝜎𝜒𝜒2  to make the arithmetic mean of the 

lognormally distributed catches equal to 1, and 𝜎𝜎𝜒𝜒 is the standard deviation in residual 
observation error in catches. 

The observed number of returning adult fish in year t was calculated as catch plus spawning 
escapement in that year: 

(F12) 𝑅𝑅�𝑡𝑡 = 𝐶̂𝐶𝑡𝑡 + 𝑆̂𝑆𝐴𝐴𝐴𝐴,𝑦𝑦 

To estimate the recruitment aligned by brood year in year, y-6, from observed data (when the 
“true” underlying recruitment is unknown), estimates of the proportion of age-3 fish that returned 
in year t-3, 𝑝𝑝𝑝𝑝�𝑔𝑔=3,𝑡𝑡−3,  the proportion of age-4 fish that returned in year t-2, 𝑝𝑝𝑝𝑝�𝑔𝑔=4,𝑡𝑡−2, and the 
proportion of age-5 fish that returned in year t-1, 𝑝𝑝𝑝𝑝�𝑔𝑔=5,𝑡𝑡−1  are required. Estimated proportions 
at age were observed from the true proportions with multivariate logistically distributed error,  

(F13) 𝑝𝑝𝑝𝑝�𝑔𝑔,𝑡𝑡 = 𝑝𝑝𝑝𝑝����𝑔𝑔,𝑡𝑡𝑒𝑒
𝜛𝜛𝑝𝑝𝑝𝑝∙𝜀𝜀𝑔𝑔,𝑡𝑡

∑ 𝑝𝑝𝑝𝑝����𝑔𝑔,𝑡𝑡
5
3 ∙𝑒𝑒𝜛𝜛𝑝𝑝𝑝𝑝∙𝜀𝜀𝑔𝑔,𝑡𝑡 , 

where t is the return year, the summation in the denominator is over ages 3 to 5 (minimum and 
maximum ages at recruitment), 𝑝𝑝𝑝𝑝���𝑔𝑔,𝑡𝑡, is the actual proportion of age g fish in the returns, 𝜛𝜛𝑝𝑝𝑝𝑝 is a 
parameter that controls interannual variability in proportions of fish returning at each age (set to 
0.1, less than the natural variability in age-at-maturity in Eqn. F2), and are standard normal 
deviates. Note, the proportions at age among adult returns 𝑝𝑝𝑝𝑝𝑔𝑔,𝑡𝑡 (Eqn. F13) differ from the 
proportions of the spawning brood year that returned at each age, 𝑝𝑝𝑔𝑔,𝑦𝑦  (Eqn. F2). 

Observed recruitment 𝑅𝑅′� 𝑦𝑦−6 from brood year y-6 for each subpopulation j was calculated from 
observed returns in return years t=y-3, y-2, and y-1, and the observed proportions at age in 
those return years. 

(F14)  𝑅𝑅′� 𝑦𝑦−6 = 𝑅𝑅�𝑡𝑡=𝑦𝑦−3, ∙ 𝑝𝑝𝑝𝑝�𝑔𝑔=3,𝑡𝑡=𝑦𝑦−3 + 𝑅𝑅�𝑡𝑡=𝑦𝑦−2 ∙ 𝑝𝑝𝑝𝑝�𝑔𝑔=4,𝑡𝑡=𝑦𝑦−2 + 𝑅𝑅�𝑡𝑡=𝑦𝑦−1 ∙ 𝑝𝑝𝑝𝑝�𝑔𝑔=5,𝑡𝑡=𝑦𝑦−1 

MANAGEMENT SUB-MODEL 
Four benchmarks were estimated annually in the management sub-model, two lower 
benchmarks: Sgen, the spawner abundances that will generate the level of recruitment required 
to achieve SMSY in one generation in the absence of fishing and stochastic variation, and S25th, 
the 25th percentile of observed spawner abundances, and two upper benchmarks: 80% of SMSY, 
spawner abundances at maximum sustainable yield, and S75th, the 75th percentile of observed 

jyeSS jyjy
,

,,
ˆ δ⋅=

δ

δσ

ε
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spawner abundances. For the Ricker benchmarks, Sgen and 80% of SMSY, the parameters of the 
standard Ricker spawner-recruitment relationship, 𝑎𝑎� and 𝑏𝑏�, were estimated annually without 
autocorrelation, using observed spawner, , and recruitment, 𝑅𝑅′� 𝑦𝑦 data aligned by the year in 
which they spawned prior to the year of the assessment including initialization period, 
aggregated over subpopulations: 

 (F15) 𝑅𝑅′� 𝑦𝑦 = 𝑆̂𝑆𝐴𝐴𝐴𝐴,𝑦𝑦𝑒𝑒
�𝑎𝑎��1−

𝑆𝑆�𝐴𝐴𝐴𝐴,𝑦𝑦
𝑏𝑏� ��

 

Eqn. F15 was reformulated to: 

(F16) 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒 �
𝑅𝑅�′𝑦𝑦

𝑆̂𝑆𝐴𝐴𝐴𝐴,𝑦𝑦
� � = 𝑎𝑎� − 𝑎𝑎�

𝑏𝑏�
𝑆̂𝑆𝐴𝐴𝐴𝐴,𝑦𝑦 

and least squares regression was used to estimate parameters, 𝑎𝑎� and 𝑏𝑏� .  SMSY was calculated 
from the Ricker parameters using an approximation described by Hilborn and Walters (1992): 

 (F17) 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑏𝑏�(0.5− 0.07𝑎𝑎�) 

Sgen, was estimated by setting the spawner abundances, 𝑆̂𝑆𝐴𝐴𝐴𝐴, to Sgen and the recruitment value 
associated with Sgen , 𝑅𝑅′�  , to SMSY in Eqn. F17: 

(F18) ,  

In Eqn. F18, Sgen was solved numerically with constraints between 0 and Seq, and SMSY was 
calculated from Eqn. F17 above (Holt and Bradford 2011). The percentile benchmarks, S25th and 
S75th, were calculated from the 25th and 75th percentiles of observed aggregate spawner 
abundance when ordered from lowest to highest abundances, using all data prior to the year of 
assessment including the initialization period. In sensitivity analyses, alternative percentiles 
were considered. 

HARVEST SUB-MODEL 
To model outcome uncertainty, annual harvest rates were calculated from the target harvest 
rate, ℎ′𝑡𝑡, with normally distributed stochastic error, 𝜔𝜔𝑡𝑡, 

(F19)  ℎ𝑡𝑡 = ℎ′𝑡𝑡 +  𝜔𝜔𝑡𝑡, 𝜔𝜔𝑡𝑡~𝑁𝑁(0,𝜎𝜎𝜔𝜔2), 

where 𝜎𝜎𝜔𝜔 is the standard deviation in residual error (Holt and Bradford 2011). Harvest rates 
were constrained to be between 0 and 1, where values >1 and <0 were resampled. Catches 
were calculated from the realized harvest rate and total adult returns in that year, aggregated 
over sub-populations. 

(F20) 𝐶𝐶𝑡𝑡 = ℎ𝑡𝑡 ∙ ∑ 𝑅𝑅𝑡𝑡,𝑗𝑗
𝐽𝐽
𝑗𝑗=1 . 

COMPARISON WITH HOLT AND FOLKES (2015) 
Our simulation model was adapted from that described by Holt and Folkes (2015), but differed 
in several ways. Most importantly,  

• The population dynamics sub-model included covariance in Ricker residuals among 
subpopulations within a CU, instead of assuming sub-populations varied independently. 

• A back-transformation bias correction for log-normally distributed variables (e.g., residual 
variation from Ricker model, observation error in spawner abundances) was included to 
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make the arithmetic mean of the lognormally distributed recruitment variation equal to 1 (as 
in Holt and Peterman 2008). 

• The observation sub-model was more realistic in that catches were observed with 
observation errors, and recruitment by brood year was calculated using estimated ages-at-
maturity, instead of applying observation error directly to “true” recruits by brood year. 
Annual observation errors in age-at-maturity were simulated using a multivariate logistic 
distribution.. 

• In the observation sub-model, we evaluated scenarios where spawner abundances were 
observed with a consistent negative (or positive) bias that was not corrected for in the 
assessment. 

• The assessment sub-model model focused on percentile-based benchmarks and stock-
recruitment benchmarks applied under the Wild Salmon Policy (Sgen and 80% of SMSY for the 
lower and upper benchmarks, respectively).  

• In the harvest sub-model, a constant low harvest rate was applied instead of a harvest 
control rule with limit and/or target management reference points.  

• In the performance module, benchmarks were evaluated based on the deviations between 
benchmark estimates and the “true” underlying values.  

• The model was run over 50 years, instead of 100 to provide a more realistic time-series 
length for estimating benchmarks. 
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APPENDIX G. ALTERNATIVE PERCENTILE-BASED LOWER BENCHMARKS 

 

  

Figure G1. Mean percent error, MPE, of the estimated lower benchmark, S30th (a), and Sgen (b) from the 
“true” lower benchmark (“true” Sgen) along a gradient in harvest rates and “true” productivities derived 
from a simulation model of a hypothetical Chum Salmon CU. Symbols indicate CU-specific productivities 
and harvest rates. Y-error bars represent the 95% credible intervals of the estimate of productivity. X-error 
bars are the standard deviation of historical harvest rates. SCS is Southern Coastal Streams, NEVI is 
Northeast Vancouver Island, UK is Upper Knight, LB is Loughborough, GS is Georgia Strait, and HSBI is 
Howe Sound/Burrard Inlet, NWVI is Northwest Vancouver Island, and SWVI is Southwest Vancouver 
Island. 
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Figure G2. Mean percent error, MPE, of the estimated lower benchmark, S35th (a), and Sgen (b) from the 
“true” lower benchmark (“true” Sgen) along a gradient in harvest rates and “true” productivities derived from 
a simulation model of a hypothetical Chum Salmon CU. Symbols and lines are described in the caption to 
Fig. G1.Note (b) is the same as in Fig. G1, but is shown here to facilitate comparison with panel (a). 
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Figure G3. Mean percent error, MPE, of the estimated lower benchmark, S40th (a), and Sgen (b) from the 
“true” lower benchmark (“true” Sgen) along a gradient in harvest rates and “true” productivities derived from 
a simulation model of a hypothetical Chum Salmon CU. Symbols and lines are described in the caption to 
Fig. G1. Note (b) is the same as in Fig. G1, but is shown here to facilitate comparison with panel (a). 
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Figure G4. Mean percent error, MPE, of the estimated lower benchmark, S45th (a), and Sgen (b) from the 
“true” lower benchmark (“true” Sgen) along a gradient in harvest rates and “true” productivities derived from 
a simulation model of a hypothetical Chum Salmon CU. Symbols and lines are described in the caption to 
Fig. G1. Note (b) is the same as in Fig. G1, but is shown here to facilitate comparison with panel (a). 
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Figure G5. Distributions of mean percent error, MPE, of various percentile lower benchmarks (labelled on 
x-axis) from “true” Sgen along a gradient in harvest rates (columns, labelled at top) and productivities (rows 
labeled on right), derived from a simulation model of a hypothetical Chum Salmon CU. Distributions for 
each benchmark are derived from simulated outputs in Fig.13, Fig. 14 and Figs. G1-G4, aggregated 
within productivity and harvest rate groupings. Groupings for productivity differ from those in Fig.15.
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Figure G6. Distributions of mean percent error, MPE, of various percentile upper benchmarks (labelled on 
x-axis) from “true” 80% SMSY along a gradient in harvest rates (columns, labelled at top) and productivities 
(rows labeled on right), derived from a simulation model of a hypothetical Chum Salmon CU. Distributions 
for each benchmark are derived from simulated outputs aggregated within productivity and harvest rate 
groupings. Groupings for productivity differ from those in Fig.19. 
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APPENDIX H. GLOSSARY 
Biological Benchmark: Values of quantitative metric that delineate red, amber, and green zones 

of biological status under the Wild Salmon Policy, defined based on biological criteria 

Capacity: Spawner abundances that will maximize recruitment according to a Ricker stock-
recruitment model. 

Conservation Unit: The unit of conservation under Canada’s Wild Salmon Policy. It is defined as 
a group of wild salmon sufficiently isolated from other groups that, if extirpated is very 
unlikely to recolonize naturally within an acceptable timeframe, such as a human lifetime or 
a specified number of salmon generations. 

Data-deficient Conservation Unit: A Conservation Unit without time-series of spawning 
abundances or adult recruitment required to generate assessments under the Wild Salmon 
Policy. 

Data-limited Conservation Unit: a Conservation Unit with time-series of escapement (relative or 
absolute), but without time-series of adult recruitment required to estimate stock-recruitment 
based benchmarks on abundances. 

Data-rich Conservation Unit: a Conservation Unit with time-series of absolute spawning 
abundances and adult recruitment, for which stock-recruitment based benchmarks can be 
estimated under the Wild Salmon Policy. 

Hierarchical Model: models that contain more than one level of organization, such as multiple 
CUs within a region, for at least one parameter (e.g., the productivity parameter in the 
example in the current study). In this example, CU-specific productivity parameters are 
drawn from a distribution of regional distribution. 

Integrated Status Assessment: Status assessments under the Wild Salmon Policy that combine 
information across numerous metrics and benchmarks (e.g., relative abundances, short-
term trends, long-term trends). Examples include Grant and Pestal (2012) and DFO (2016) 
for Fraser River Sockeye Salmon and Southern BC Chinook Salmon, respectively. 

Management Reference Point: Quantitative states that characterize desirable biological and/or 
economic properties of fisheries 

Productivity: Recruits per spawner at low spawner abundances estimated from a stock-
recruitment model.  
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