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ABSTRACT

Beazley, L., Guijarro, J., Lirette, C., Wang, Z., and Kenchington, E. 2017. Characteristics of
Environmental Data Layers for Use in Species Distribution Modelling in the Maritimes Region.
Can. Tech. Rep. Fish. Aquat. Sci. 3212: vii + 327p.

Species distribution models (SDMs) are tools that combine species observations of occurrence,
abundance, or biomass with environmental variables to predict the distribution of a species in
unsampled locations. To produce accurate predictions of occurrence, abundance or biomass
distribution, a wide range of physical and/or biological variables is desirable. Such data is often
collected over limited or irregular spatial scales, and require the application of geospatial
techniques to produce continuous environmental surfaces that can be used for modelling at all
spatial scales. Here we provide a review of 102 environmental data layers that were compiled for
the entire spatial extent of Fisheries and Oceans Canada’s (DFO) Maritimes Region. Variables
were obtained from a broad range of physical and biological data sources and spatially
interpolated using geostatistical methods. For each variable we document the underlying data
distribution, provide relevant diagnostics of the interpolation models and an assessment of model
performance, and present the final standard error and interpolation surfaces. These layers have
been archived in a common (raster) format at the Bedford Institute of Oceanography to facilitate
future use. Based on the diagnostic summaries in this report, a subset of these variables has
subsequently been used in species distribution models to predict the distribution of deep-water
corals, sponges, and other significant benthic taxa in the Maritimes Region.
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RESUME

Beazley, L., Guijarro, J., Lirette, C., Wang, Z., et Kenchington, E. 2017. Characteristics of
Environmental Data Layers for Use in Species Distribution Modelling in the Maritimes Region.
Rapp. tech. can. sci. halieut. aquat. 3212 : vii + 327p.

Les modeéles de répartition des espéces sont des outils qui rassemblent des observations
d’especes (occurrence, abondance ou biomasse) avec des variables environnementales pour
prédire I’aire de répartition d’une espéce dans des emplacements non échantillonnés. Afin de
produire des prévisions exactes de 1’occurrence, de I’abondance ou de la répartition de la
biomasse, il est souhaitable d’obtenir une vaste gamme de variables physiques ou biologiques
(ou les deux). Ces données sont souvent recueillies sur des échelles spatiales limitées ou
irrégulieéres et nécessitent 1’application de techniques géospatiales pour produire des surfaces
environnementales continues qui peuvent étre utilisées pour la modélisation a toutes les échelles
spatiales. Dans le présent document, nous offrons un examen de 102 couches de données
environnementales qui ont été compilées pour I’ensemble de 1’étendue spatiale de la région des
Maritimes de Péches et Océans Canada (MPO). Des variables ont été obtenues a partir d’une
vaste gamme de sources de données physiques et biologiques interpolées sur le plan spatial a
I’aide de méthodes géostatistiques. Pour chaque variable, nous documentons la répartition des
données sous-jacentes, fournissons des analyses pertinentes des modéles de répartition et une
¢valuation du rendement des modeles. Nous présentons ’erreur type et les surfaces interpolées
définitives. Ces couches de données ont été archivées dans un format commun (trame) a I’ Institut
océanographique de Bedford afin de simplifier leur utilisation future. En se fondant sur les
résumés analytiques du présent rapport, un sous-ensemble de ces variables a par la suite été
utilisé dans des modéles de répartition des especes pour prévoir la répartition, en eau profonde,
des coraux, des éponges et d’autres taxons benthiques importants dans la région des Maritimes.
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INTRODUCTION

Species distribution modelling (SDM) is a tool that utilizes the relationship between a species
and its environment in known (sampled) locations to predict the species’ distribution in
unsampled areas. SDM applications require continuous surfaces of each environmental predictor
variable in order to predict across the spatial domain of the study extent to areas where
environmental data do not exist. These variables are typically collected at different spatial and
temporal resolutions, and are often spatially interpolated to provide continuous surfaces that can
be used for predictive modelling at all spatial scales. Predictor variables may themselves be from
direct measurements, modelled outputs, temporal averages, and derivations.

Continuous interpolated surfaces produced at high resolution often show very detailed spatial
variation, implying that the surfaces are very precise. However, spatial interpolation methods are
affected by sample size, sampling design and data quality properties, and variation within the
data has very large impacts on the performance of the spatial interpolators (Li and Heap, 2008).
There are over 60 methods to choose from, including geostatistical interpolators (e.g., kriging),
non-geostatistical interpolators (e.g., inverse distance weighting, natural neighbours, nearest
neighbours), and methods that combine both (Li and Heap, 2008).

The Scotian Shelf is a 700 km section of continental shelf off Nova Scotia that is bounded by the
Laurentian Channel and Cabot Strait in the east and northeast, and the Gulf of Maine in the west.
The shelf itself is broad, varying in width from 120 to 240 km, and is characterized by shallow
offshore banks and deep basins, troughs, channels, and has a mean depth of ~116 m. Its steep
slope is excised by a number of deep canyons and gullies. The oceanographic conditions on the
Scotian Shelf and in Bay of Fundy are dynamic and vary seasonally and inter-annual, making
broad characterization of this region difficult. Temperature and salinity conditions on the Scotian
Shelf varies spatially due to its complex bottom topography, heat transfer between the ocean and
atmosphere, inflow from the Gulf of St. Lawrence and Newfoundland Shelf, exchange with
offshore slope waters, local mixing, freshwater runoff, direct precipitation, and melting of sea ice
in the spring (Drinkwater et al., 2003; Hebert et al., 2013). The dynamicity of this region
highlights the importance of including frequent and long-term time series data to describe mean
oceanographic climate.

Here, we provide detailed information on 102 environmental data layers collected over different
spatial and temporal resolutions and spatially interpolated using the ordinary kriging method to
provide continuous surfaces across the entire domain of Fisheries and Oceans Canada’s (DFO)
Maritimes Region. For each variable, we show the distributional properties of the raw data prior
to spatial interpolation, model performance indicators and assessment of model performance, and
finally, maps of the prediction standard error and interpolation prediction surfaces. Our intention
is that these variables are used in species distribution modelling or other ecosystem-based
management applications. A subset of these variables have already been used in random forest
and generalized additive models to predict the probability of occurrence and biomass distribution
of deep-water corals, sponges, and other significant benthic taxa (see Beazley et al., 2016a;
2017), the results of which are currently being used to identify important areas in conservation
planning applications.



MATERIALS AND METHODS

Study Area

Fisheries and Oceans Canada’s (DFO) Maritimes Region, one of DFO’s six administrative
regions across Canada, was used as the spatial boundary for the construction of environmental
variables in this report (Figure 1). This study area encompasses the Bay of Fundy, part of the
Laurentian Channel and Cabot Strait, and the entire Scotian Shelf, Slope, Rise, and Abyssal
Plain. The extent is delimited by the Canadian Maritime Boundary to the west in Gulf of Maine,
the 200 nautical mile Exclusive Economic Zone (EEZ) in the south, the Placentia Bay-Grand
Bank Large Ocean Management Area in the east, and the Gulf Region MPA Network Planning
Boundary in the north. A 5 kilometre buffer was added around all land points.
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Fig. 1. Extent of the DFO Maritimes Region boundary used for creating interpolated surfaces of
environmental variables.



Data Sources

Global Ocean Reanalyses and Simulations (GLORY'S)

Data for surface and bottom temperature, salinity, current speed, bottom shear, and mixed layer
depth were extracted from the Global Ocean Reanalyses and Simulations (GLORYS2V1).
GLORYS2V1 is a numerical ocean general circulation model reanalysis product with ¥4°
horizontal resolution (approximately 20.4 km in the Maritimes Region; Fig. 2) that aims to
provide the mean and time-varying state of the oceanic states with a focus on capturing variation
of meso-scale eddies (http://www.mercator-ocean.fr/eng/science/GLORYS). Details on this
model and its caveats can be found in Beazley et al. (2016b).

For each variable, two different sets of statistics were created from the GLORYS2V1 monthly
data. First, the absolute minima, maxima, and range were calculated for each variable by taking
the minimum and maximum values across all months and years at each location. Range was
calculated as the difference between these values at each location. In this report these variables
are denoted as Minimum/Maximum/Range. These ‘absolute’ variables are likely reflective of
anomalous events over the time period. The second dataset was created by calculating the
average minima, maximum and range by taking the minimum and maximum values at each
location across all months within a year, and averaging across years. These variables are denoted
as Average Minimum/Maximum/Range in this report, and are likely more representative of long-
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Fig. 2. Distribution of point data extracted from the GLORYS2V1 model from 1993 to 2011 for
the Maritimes Region. Point data have a native resolution of ¥2° (~20.4 km).
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term oceanographic conditions in the region. Finally, the mean of each variable was calculated
by averaging the values at each location across all months and years, and is denoted as the Mean
in this report. For mixed layer depth, statistics were compiled quarterly to derive spring (April -
June), summer (July - September), fall (October - December) and winter (January - March)
variables. Zero values in the current and shear data, which were falsely generated from a model
topography issue, were removed prior to calculating the statistics.

Sea Surface Chlorophyll a

Sea surface chlorophyll a data were derived from Aqua-MODIS (Moderate Resolution Imaging
Spectroradiometer) Case | was processed by the Remote Sensing Unit at the Bedford Institute of
Oceanography (RSU-BIO). In deep oceanic waters, optical properties are dominated by
phytoplankton and the observed spectral features in the reflected light can be directly related to
chlorophyll a concentration (Moses et al., 2009). These waters are referred to as Case | waters. In
Case | waters, spectral algorithms that use reflectances in the blue green regions of the spectrum
have shown to accurately estimate chl-a concentration. In contrast, most inland, estuarine, and
coastal waters that are rich in suspended solids and dissolved organic matter are referred to as
Case Il waters. The optical properties of Case Il waters are therefore not dominated by
phytoplankton, and spectral algorithms based on reflectance in the red and near-infrared spectral
regions are typically used to estimate chl-a concentration (Moses et al., 2009). Generally, Case |
chlorophyll calculations should not be used for Case Il waters. In the Maritimes Region, the Bay
of Fundy is considered Case Il waters due to its strong tidally-induced vertical mixing and
resuspension of organic material (Harrison et al., 2007). A comparison of satellite-derived
chlorophyll a to in situ measurements in Bay of Fundy revealed significant over-estimation of
chlorophyll concentration by both MODIS Case | and MERIS Case Il algorithms, although Case
Il was closer than Case I. Coastal waters less than 30 m deep are also considered Case I,
however, these waters are generally excluded in our study due to the 5-km land buffer applied to
land values. Given that the majority of the Maritimes Region is considered Case |, we therefore
opted to include only MODIS Case | chlorophyll a data layers in this report but acknowledge
that this algorithm does not adequately represent chlorophyll a concentration in Bay of Fundy.

Daily MODIS (Aqua Level-2) data from 2002 to 2012 were downloaded from NASA’s
OceanColor Web (http://oceandata.sci.gsfc.nasa.gov/]). Composite images were displayed in
raster format with a resolution of 2 km. Data from 2003 to 2011 were used. Individual passes
were filtered to eliminate extreme outliers using the median of a 3 x 3 pixel matrix (ENVI-IDL).
The native resolution of the point data for MODIS Case | chlorophyll a data is shown in Fig. 3.

Annual and seasonal averages were computed for the MODIS Case | dataset. Seasons were
delimited by the following ‘day of year’ ranges: days 91 — 181 (spring), 182 — 273 (summer),
and 274 — 365 (fall). These seasonal delimitations capture the peak of the spring and fall
phytoplankton blooms over most of the Scotian Shelf. Alternate seasonal ranges could be
considered that would fully capture the spring phytoplankton bloom in all areas of the study
extent. The minimum, maximum and range values for each season (except winter) and annually
were derived from these using the ‘Cell Statistics’ tool in ArcMap’s Spatial Analyst toolbox.
Zero and N/A values in the chlorophyll data were removed prior to calculating the statistics.
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Fig. 3. Distribution of sea surface chlorophyll a (MODIS Case I) point data (spring, summer, fall
and annual) for the Maritimes Region. Point data have a native resolution of 2 km.

Sea Surface Primary Production

Primary production was calculated following the method of Platt et al. (2008) using software
developed by the RSU-BIO and the Department of Oceanography at Dalhousie University. The
calculation of primary production requires input from multiple sources. Monthly mean surface
chlorophyll a and photosynthetically active radiation (PAR) was obtained from NASA’s Sea-
viewing Field-of-view Sensor (SeaWiFS) Level 3, 9-km global coverage (reprocessing R2010.0;
Feldman and McClain, 2012). Sea surface temperature (SST) was obtained from NOAA
PathFinder version 5.2 data and was reprocessed from its native resolution of 4000 m? pixel™ to
match the spatial and temporal resolution of chlorophyll data. Monthly images of total cloud
fraction data used in the model were obtained in November 2014 from MYDO08_M3, a monthly
aggregation of MYD35, collection 51 (ftp://ladsweb.nascom.nasa.gov/allData/51/MYD08_M3/).
The in situ parameters, such as photosynthetic performance, chlorophyll a, sea surface
temperature, and water depth originate from ship-based observations made by DFO’s Atlantic
Zone Monitoring Program (AZMP; http://www.bio.gc.ca/science/monitoring-monitorage/azmp-
pmza-en.php). Reliability of the resulting primary production data is therefore unknown for areas
outside the AZMP region. The model described in Platt et al. (2008) results in pixel-by-pixel
depth-integrated net primary production (mg C m? day™) calculated for the 15 day of each
month from September 2006 to September 2010. Like the GLORYS2V1-derived variables,
monthly values for primary production allowed for the calculation of both ‘absolute’ and
‘average’ minima, maxima, and range quantifications. However, for some months and years no
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data was available (see Table 1), therefore only spring (April — June), summer (July — Sept.), fall
(October to December) and annual layers were created. For the creation of these variables, we
ensured that each point location across the study extent had at least two months of data in each of
the five years contributing to the quantifications. Spring, summer and annual surfaces showed
nearly full coverage across the Maritimes Region, whereas large areas off Cape Breton,
southwest Nova Scotia and Bay of Fundy are not covered in the fall as these are locations with
less than one month of data contributing across the 5-year data period.

Table 1. Contributing months to each of the 5 years of data for the primary production dataset.
The V indicates that data exists for this month. Note however that even though data exists for a
particular month, each point location across the Maritimes Region study extent may not have
observation data.

Season Month 2006 2007 2008 2009 2010 Total number of

years
January N N N 4
February \ v v 4
March \ v \ \ 4
April \ \ \ v v 5
Spring  May \ v v \ 4
June \ \ \ v v 5
July \ v \ \ 4
Summer August \ \ \ \ \ 5
September \ \ \ 4
October \ v \ 4
Fall November < \ \ 4
December \ \ 3
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to 2010 for the Maritimes Region. Point data have a native resolution of 9 km.

World Ocean Database 2013 (WOD13)

Dissolved oxygen and nutrients (nitrate, phosphate, and silicate) were extracted from the World
Ocean Database 2013 (WOD13) (https://www.nodc.noaa.gov/OC5/WOD13/; Boyer et al., 2013)
produced by the US National Oceanographic Data Center (NODC) Ocean Climate Laboratory
(OCL). WOD13 houses ocean profile and plankton measurement data submitted by individual
scientists and institutional, national, and regional data centres with the goal of providing a
centralized source for large-scale oceanographic data and metadata that has been formatted in a
similar way. Data in WOD13 are organized under four different operational definitions: profile,
cast, station, and cruise. Each data value and profile in WOD13 are associated with their own
quality control flag. Data collected in a similar manner are further grouped together into 11
different datasets.

The data were queried from the WODselect retrieval system
(https://www.nodc.noaa.gov/OC5/SELECT/dbsearch/dbsearch.html) using user-specified search



https://www.nodc.noaa.gov/OC5/WOD13/
https://www.nodc.noaa.gov/OC5/SELECT/dbsearch/dbsearch.html

criteria under the following four categories: geographic coordinates, observation dates, dataset,
and measured variables. Nutrient data were queried from the Ocean Station Data (OSD) dataset
from the period of 2006 to 2011, which corresponded to the start of when the highest quality
control indicators accompanied the data, and end period of the GLORY'S data layers. In the event
where more than one value was measured at a single location, the data values were averaged.
The OSD dataset groups together bottle (Nansen and Niskin) and bucket data, plankton data, and
low resolution CTD and expendable CTD (XCTD) data, and is the only dataset in WOD13 that
contains nutrient data. Only data collected within the top 10 metres of water and with the highest
quality control flag ('Accepted’) were used. Only dissolved oxygen showed good enough
coverage over the Maritimes Region to spatially interpolate the data (see Fig. 5).
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Fig. 5. Distribution of dissolved oxygen, nitrate, phosphate, and silicate point data from 2006 to
2011 extracted from WOD13 for the Maritimes Region. The spatial distribution of the data is not
uniform across the study extent.



Spatial Interpolation Methods

Data Exploration and Model Fitting (adapted from Beazley et al., 2016b)

Kriging is a family of geostatistical estimators used to interpolate spatial data. It is a generalized
least-square regression technique that allows for spatial prediction in unsampled locations by
accounting for the spatial dependence between observed data (Goovaerts, 2000). Spatial
dependence is captured by constructing an empirical semivariogram that shows the average
semivariance between points by the distance between them. A semivariogram model is then fit to
the points forming the empirical semivariogram, and predictions are generated for unmeasured
locations based on a weighted average of neighbouring data and their spatial arrangement
(Johnston et al., 2001).

Within the kriging family a number of different methods exist including but not limited to,
ordinary kriging, universal kriging, and simple kriging. For this report, we chose ordinary
kriging as the method of spatial interpolation as it assumes that the mean is unknown prior to
modelling and approximately constant (stationary) only in the local neighbourhood of each
estimation point and not over the entire data domain (Li and Heap, 2008; Krivoruchko, 2011).
Thus ordinary kriging with a local search neighbourhood already accounts for trends in the data
(Li and Heap, 2008). When compared against the Inverse Distance Weighting (IDW)
interpolation method, ordinary kriging produced better overall mean prediction and root-mean-
square errors and smoother prediction surfaces for the same variables interpolated in the Gulf
Region (see Beazley et al., 2016b).

Ordinary kriging as a geostatistical interpolator does not require the data to follow a normal
distribution (Krivoruchko, 2011). However, the generation of quantile and probability maps
using ordinary kriging does require the data to meet this assumption (Krivoruchko, 2011).
Transformation of highly skewed data prior to ordinary kriging may result in improved estimates
and prediction errors, particularly if the dataset is small and contains outliers (Kravchenko and
Bullock, 1999). If a variable shows positive skewness, the confidence limits on the variogram are
wider than normal resulting in higher variance (Robinson and Metternicht, 2006; Yamamoto,
2007). Thus, data are often transformed prior to spatial interpolation in order to improve the
calculation of statistics and weighted averages (Yamamoto, 2007). Transformation of the data
results in estimates on a different scale than the original data, and so it is necessary to back-
transform the kriging estimates to their original scale prior to creating the interpolation surface.
However, for logarithmic transformation, back-transformation through exponentiation results in
exaggerated interpolation-related errors, with extreme errors being the worst affected (Goovaerts,
1997; Robinson and Metternicht, 2006). In the Maritimes Region, variables that had been back-
transformed within the Geostatistical Analyst package had poorer prediction errors when
compared to variables that were log-transformed outside the ArcMap forum (and thus, were not
back-transformed in ArcMap). Therefore, to avoid biased prediction errors, we chose not to
transform our data prior to spatial interpolation.

Prior to interpolation we assessed the distributional properties of all variables by examining
histograms and summary statistics generated in the ‘Explore Data’ option in ArcMap’s



Geostatistical Analyst package. These were reviewed to detect anomalous data points and to
visually assess departures from a normal distribution (skewness, kurtosis) in advance of
conducting geostatistics. Data distributions were described in terms of their skew (right, or
positive, and left, or negative), and kurtosis. Kurtosis is a measure of the ‘tailedness’ of the
distribution, where values equal to 3 are considered mesokurtic (zero tailedness), values < 3
platykurtic (thin-tailed), and values > 3 are leptokurtic (heavy-tailed) (DeCarlo, 1997). Normal
Q-Q plots were then constructed to compare the distribution of the data against a standard
normal (Gaussian) distribution. The data values are ordered and cumulative distribution values
are calculated as (i— 0.5)/n for the i ordered value out of n total values. If the data values are
normally distributed they will form a perfect line at 45° to the origin. Data values that fell above
and below the reference line were mapped to identify any spatial trend in the departure from
normality.

Ordinary kriging models were created using all default settings in the Geostatistical Analyst
wizard. Default settings are a stable semivariogram model type and a circular search
neighbourhood with 4 sectors that capture a minimum of 2 and a maximum of 5 neighbours. The
optimization function was set for each model, which determines the optimal partial sill, nugget,
lag size, and number of lags based on the model range.

Caveat for Spatial Interpolation Using Ordinary Kriging

We noted that ordinary kriging of some GLORY'S and chlorophyll a ‘range’ variables resulted in
negative values in the prediction surfaces. This is in addition to some of the small negative
values produced by the GLORYS model itself (see Beazley et al., 2016b for description). In the
Maritimes Region this phenomenon occurred in the following variables:

Bottom Salinity Range

Bottom Salinity Average Range
Bottom Temperature Range

Bottom Temperature Average Range
Spring Chlorophyll a Range

Annual Chlorophyll a Range

oakrwdE

This issue has been previously described by Deutsch (1996) and Ly et al. (2011), who found that
negative weights were generated by ordinary kriging models when outlying data points occurred
close to the location being estimated. Ly et al. (2011) suggested two methods for dealing with
this issue: 1) apply an a posteriori correction as outlined in Deutsch (1996), or 2) to replace all
negative interpolated values with zero. To determine the influence of these variables with
negative values on a species distribution model, we ran several random forest models with these
variables as-is (i.e. with the negative interpolated values), and models with the negative values
changed to zero. We found very little difference in the resulting surfaces and accuracy measures
between models run with the negative values and those negative values changed to zero (see
Guijarro et al., 2016). We conclude that these negative values have a negligible impact on
species distribution modelling applications. The location of negative values in the prediction
surface of each variable are shown in Appendix 1.
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Assessment of Model Performance (extracted from Beazley et al., 2016b)

Model performance was examined by performing cross-validation, a process where each data
point is removed in turn from the model and predicted by the remaining data points.
Geostatistical Analyst provides several graphical summaries of the cross validation results,
including a scatterplot of the measured versus predicted values (called the Prediction plot), a
scatterplot of the residuals of the measured values versus the predicted values (Error plot), a
standardized error plot, which shows measured values subtracted from the predicted values and
divided by the estimated kriging standard errors, and finally a Q-Q plot, which shows the
quantiles of the difference between the predicted and measured values and the corresponding
quantiles from a standard normal distribution to assess the normality of the error distributions. Of
these, we show only the Prediction plot in the report, although all plots were visually assessed. In
the Prediction plot, a horizontal relationship indicates that the model has no information content.
With autocorrelation and a good geostatistical model, the relationship between the measured and
predicted values should be 1:1.

Also provided by cross validation are five prediction error statistics used for performance
evaluation (see Table 2). The overall mean error represents the difference between the measured
and predicted values, and should be near zero if the prediction errors are unbiased (i.e., centred
on the measured values). However, this value depends on the scale and units of the data,
therefore it is better to assess the standardized prediction errors, which are given as prediction
errors divided by their prediction standard errors. The mean (Standardized Mean) of these should
also be near zero. If the Average Standard Error is close to the Root-Mean-Square Prediction
Error, variability in the predictions has been correctly assessed. The Standardized Root-Mean-
Square error should be close to one. If the Average Standard Error is greater than the Root-
Mean-Square Prediction Error, or if the Standardized Root-Mean-Square Prediction Error is less
than one, then the variability of predictions has been overestimated. If the Average Standard
Rrror is less than the Root-Mean-Square Prediction Error or if the Standardized Root-Mean-
Square Prediction Error is greater than one, then the variability of predictions has been

Table 2. Prediction error statistics rules used to assess performance of ordinary kriging models.

Prediction error Rule
Overall Mean Error Closeto 0

Close to 0 and approximately equal

Root-Mean-Square Prediction Error to the average standard error

Standardized Mean Closeto 0

Standardized Root-Mean-Square Prediction Error Close to 1

Approximately equal to the root

Average Standard Error L
mean square prediction error

11



underestimated. In summary, a good geostatistical model has an Overall Mean Error and
Standardized Mean near zero, a small Root-Mean-Square Prediction Error that is approximately
equal to the Average Standard Error, an Average Standard Error approximately equal to the
Root-Mean-Square Prediction Error, and a Standardized Root-Mean-Square Prediction Error
close to one (Johnston et al., 2001). These five prediction error statistics are provided for each
variable and are assessed against the rules in Table 2 to provide an overall assessment of model
performance.

Finally, model performance was assessed through visual examination of a standard error map. A
standard error map quantifies the uncertainty of the prediction and is calculated by taking the
square root of the kriging variances. If the data comes from a normal distribution, the true value
will be within + 2 times the prediction standard errors about 95% of the time (Johnston et al.
2001). These maps were used to determine whether there was any spatial pattern in the error
distribution.

During the assessment of model performance, we noted that data with a poor underlying
distribution did not always result in poor cross validation statistics during the interpolation
process. For instance, ordinary kriging on some variables displaying a bimodal distribution (e.g.,
Bottom Temperature Mean in Beazley et al. 2016b) produced a good fit between measured and
predicted values and good to excellent cross validation statistics, suggesting the ordinary kriging
is robust to non-normality. Similarly, a model displaying a good fit between measured and
predicted values often showed poor cross validation statistics, particularly a higher-than-
expected Standardized Root-Mean-Square Prediction Error, indicating that variability in the
predictions has been underestimated.

12



RESULTS

Temperature

Both surface and bottom temperatures have biological relevance to benthic invertebrates.
Temperature directly influences the rates of activities associated with feeding such as pumping,
filtration and digestion, movement, and growth. Temperature can also influence larval duration
and timing of metamorphosis (Vance, 1973). Surface water temperature can influence primary
and secondary production and hence benthic food supply. Temperature, along with salinity, can
be used to indicate water mass structure.

Bottom Temperature Mean

This variable displayed a slightly right-skewed, platykurtic distribution prior to interpolation
(Table 3, Fig. 6). The data were greater than predicted by a normal distribution at the smallest
values and upper mid-values and less than predicted at the highest and mid-values (Fig. 7). These
areas of under- and over-prediction showed spatial pattern over the region (Fig. 7).

The semivariogram showed moderate autocorrelation present in the data (Fig. 8). The kriged
model showed a good fit between measured and predicted value and good cross-validation
statistics (Table 4), indicating it was good at prediction despite the distribution of the underlying
data. The error map showed high error along the edges of the study extent (Fig. 9). The kriged
surface is presented in Fig. 10.

Table 3. Distributional properties of Frequency 10

Bottom Temperature Mean (°C).
Property Value
Number of Observations 1160
Minimum 1.225
Maximum 11.179
Mean 3958
Median 3.106 82 o=  om  oe o= om o om  om 1w e
Standard Deviation 2.328  Fig. 6. Distribution of Bottom Temperature Mean
Skewness 0.984 (°C). Histogram was illustrated using 10 bins. X
Kurtosis 2.730 axis is shown at 10%; Y axis is shown at 107,
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Fig. 7. Normal Q-Q plot for data values of Bottom Temperature Mean (°C). Points falling under
(top right panel) and over (bottom right panel) the reference line are mapped.
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Fig. 8. Left panel: Semivariogram of Bottom Temperature Mean (°C). Binned values are shown
as red dots; average points are shown as blue crosses; the model fit to the averaged values is
shown as a blue line. Lag size: 0.106 degrees; number of lags: 12; Parameter: 2; Range: 0.849
degrees; Partial Sill: 1.837. Right panel: Scatterplot of predicted values versus observed values
for the model of Bottom Temperature Mean (°C).

Table 4. Results of cross-validation of the kriged model for Bottom Temperature Mean (°C).

Prediction error Value
Number of Observations 1160

Overall Mean Error -1.100 x 107
Root Mean Square Prediction Error 0.662
Standardized Mean -1.821 x 10
Standardized Root Mean Square Prediction Error 1.023
Average Standard Error 0.653
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Bottom Temperature Minimum

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 5,
Fig. 11). The data were greater than predicted by a normal distribution at the smallest and upper-
mid-values and less than predicted at the highest and mid values (Fig. 12). These data points
were somewhat spatially cohesive with specific areas of over- and under-prediction (Fig 12).

The semivariogram showed weak autocorrelation present in the data (Fig. 13). The kriged model
showed a good fit between measured and predicted values (Fig. 13) and good cross-validation
statistics (Table 6), indicating it was good at prediction. The error map showed high error along
the edges of the study extent (Fig. 14). The kriged surface is presented in Fig. 15.

Table 5. Distributional properties of
Bottom Temperature Minimum (°C).

Property Value
Number of Observations 1160
Minimum -2.167
Maximum 6.419
Mean 2.206
Median 1.862
Standard Deviation 1.546
Skewness 0.351
Kurtosis 3.750

642, W{ e

127 f

=217 UM/

o
333 287 2 133 087 0 087 133
Standard Normal Value

2

17,
333 -267 -2 -1.33 -067 0 0.67 133
Standard Normal Value

2

= | ] |
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Dataset

Fig. 11. Distribution of Bottom Temperature
Minimum (°C). Histogram was illustrated using
10 bins. Y axis is shown at 1072,

Fig. 12. Normal Q-Q plot for data values of Bottom Temperature Minimum (°C). Points falling
under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 13. Left panel: Semivariogram of Bottom Temperature Minimum (°C). Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.091 degrees; number of lags: 12; Parameter: 2; Range: 0.724
degrees; Partial Sill: 1.382. Right panel: Scatterplot of predicted values versus observed values
for the model of Bottom Temperature Minimum (°C).

Table 6. Results of cross-validation of the kriged model for Bottom Temperature Minimum (°C).

Prediction error Value
Number of Observations 1160
Overall Mean Error 5.544 x 107
Root Mean Square Prediction Error 0.529
Standardized Mean 5.821 x 10°®
Standardized Root Mean Square Prediction Error 0.949
Average Standard Error 0.566
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Fig. 14. Prediction standard error surface of Bottom Temperature Minimum (°C).
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Bottom Temperature Maximum

This variable displayed a right-skewed, platykurtic and bimodal distribution prior to interpolation
(Table 7, Fig. 16). The data were greater than predicted by a normal distribution at low and upper
mid-values while the mid-range values of the data were under-predicted (Fig. 17). These data
points were somewhat spatially cohesive with specific areas of over- and under-prediction (Fig.
17).

The semivariogram showed autocorrelation present in the data (Fig. 18). The model showed a
good fit between measured and predicted values (Fig. 18). Good performance of the model was
indicated by the cross-validation results (Table 8). The error map showed high error along the
edges of the study extent (Fig. 19). The kriged surface is presented in Fig. 20.

Table 7. Distributional properties of

Bottom Temperature Maximum (°C).

Property Value -

Number of Observations 1160

Minimum 1.909

Maximum 19.963

Mean 5.861

Median 4.022 S e em am es e o iw o e e E
Standard Deviation 4.022 Fig. 16. Distribution of Bottom Temperature
Skewness 0.773 Maximum (°C). Histogram was illustrated using
Kurtosis 2316 10 bins. X axis shown at 10™; Y axis is shown at

107,

o
=232 -2.67 -2 -1.32 -0.67
Standard Normal Value

-

0.19;
-333 -267 -2 -133 -067 0 067 133 2 267 333
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Fig. 17. Normal Q-Q plot for data values of Bottom Temperature Maximum (°C). Points falling
under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 18. Left panel: Semivariogram of Bottom Temperature Maximum (°C). Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.106 degrees; number of lags: 12; Parameter: 2; Range: 0.849
degrees; Partial Sill: 6.142. Right panel: Scatterplot of predicted values versus observed values
for the model of Bottom Temperature Maximum (°C).

Table 8. Results of cross-validation of the kriged model for Bottom Temperature Maximum (°C).

Prediction error Value
Number of Observations 1160
Overall Mean Error -0.010

Root Mean Square Prediction Error 1.126
Standardized Mean -4.913x 10
Standardized Root Mean Square Prediction Error 1.156
Average Standard Error 0.971
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Fig. 19. Prediction standard error surface of Bottom Temperature Maximum (°C).
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Fig. 20. Interpolated prediction surface of Bottom Temperature Maximum (°C).

21



Bottom Temperature Range

This variable displayed a right-skewed distribution prior to interpolation (Table 9, Fig. 21). At
both of the tails the actual data were greater than predicted by a normal distribution while there
was an area of under-prediction at mid-range values (Fig. 22). These areas of under- and over-
prediction showed spatial pattern over the region (Fig. 22).

The semivariogram showed moderate autocorrelation present in the data (Fig. 23). The kriged
model showed a good fit between measured and predicted values (Fig. 23) and good cross-
validation statistics (Table 10), indicating it was good at prediction. The error map showed high
error along the edges of the study extent (Fig. 24). The kriged surface is presented in Fig. 25.
Negative values resulted from the right-skewed nature of the raw data (Fig. 21). Of the 326,283
raster cells in the study extent, 1,970 contained negative values (see Table Al). These were
located in a long band along the lower slope (Fig. Al).

Table 9. Distributional properties of

Bottom Temperature Range (°C).
Property Value
Number of Observations 1160 27
Minimum 0.182
Maximum 18.376
Mean 3.655
MEdian 1'002 EIOIJZ 02 0.38 0.58 075 0.93 _‘1 11 129 1.47 1.66 1.84
Standard Deviation 3.930 Fig. 21. Distribution of Bottom Temperature
Skewness 0.942 Range (°C). Histogram was illustrated using 10
Kurtosis 2.846 bins. X axis shown at 10: Y axis is shown at 107
111 lj’yy‘
0.7 /
0.38| /
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0.38| /

0.02! ma
-3.33 -267 -2 -1.33 -067 0 0s7 133 2 267
Standard Normal Value

Fig. 22. Normal Q-Q plot for data values of Bottom Temperature Range (°C). Points falling
under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 23. Left panel: Semivariogram of Bottom Temperature Range (°C). Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.101 degrees; number of lags: 12; Parameter: 2; Range: 0.811
degrees; Partial Sill: 7.505. Right panel: Scatterplot of predicted values versus observed values
for the model of Bottom Temperature Range (°C).

Table 10. Results of cross-validation of the kriged model for Bottom Temperature Range (°C).

Prediction error Value
Number of Observations 1160
Overall Mean Error -0.014

Root Mean Square Prediction Error 1.204
Standardized Mean -5.932 x 10
Standardized Root Mean Square Prediction Error 1.122
Average Standard Error 1.067
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Fig. 24. Prediction standard error surface of Bottom Temperature Range (°C).
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Bottom Temperature Average Minimum

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 11,
Fig. 26). The data were lower than predicted by a standard normal distribution in the highest and
mid-range values and higher than predicted at low values and in the upper mid-data range (Fig.
27). These areas of under- and over-prediction showed some spatial pattern over the region (Fig.

27).

The semivariogram showed weak autocorrelation present in the data (Fig. 28). The model
showed a good fit between measured and predicted values (Fig. 28). Good performance of the
model was also indicated in the good cross-validation statistics (Table 12). The error map
showed high error along the edges of the study extent (Fig. 29). The kriged surface is presented

in Fig. 30.

Table 11. Distributional properties of
Bottom Temperature Average Minimum
(°C).

Frequency -10
228

a1

0
-0.87 0.08 1.05 20z 298 384 49 587 683 778 876
Dataset

Fig. 26. Distribution of Bottom Temperature
Average Minimum (°C). Histogram was illustrated
using 10 bins. Y axis is shown at 1072,

Property Value
Number of Observations 1160
Minimum -0.871
Maximum 8.756
Mean 3.158
Median 2.448
Standard Deviation 1.852
Skewness 1.143
Kurtosis 3.704

il

“ fi
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LT L]

w Va

7

=

1-0.87; :
-33 -267 -2 -1.33 -067 0 067 133 2
Standard Normal Value

Fig. 27. Normal Q-Q plot for data values of Bottom Temperature Average Minimum (°C). Points
falling under (top right panel) and over (bottom right panel) the reference line are mapped.
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Fig. 28. Left panel: Semivariogram of Bottom Temperature Average Minimum (°C). Binned
values are shown as red dots; average points are shown as blue crosses; the model fit to the
averaged values is shown as a blue line. Lag size: 0.096 degrees; number of lags: 12; Parameter:
2; Range: 0.769 degrees; Partial Sill: 1.398. Right panel: Scatterplot of predicted values versus
observed values for the model of Bottom Temperature Average Minimum (°C).

Table 12. Results of cross-validation of the kriged model for Bottom Temperature Average
Minimum (°C).

Prediction error Value
Number of Observations 1160
Overall Mean Error 6.758 x 107
Root Mean Square Prediction Error 0.552
Standardized Mean 5.018 x 10°®
Standardized Root Mean Square Prediction Error 0.943
Average Standard Error 0.587
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Fig. 29. Prediction standard error surface of Bottom Temperature Average Minimum (°C).
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Fig. 30. Interpolated prediction surface of Bottom Temperature Average Minimum (°C).

27

45°N

40°N

45°N

40°N



Bottom Temperature Average Maximum

This variable displayed a right-skewed, platykurtic distribution with outlying data in the upper
range (Table 13, Fig. 31). The data were higher than predicted by a normal distribution at the
tails of the distribution and under-predicted through the lower mid-range of the data (Fig. 32).
These data points were somewhat spatially cohesive with specific areas of over- and under-
prediction (Fig. 32).

The semivariogram showed moderate autocorrelation present in the data, and the model showed
a good fit between measured and predicted values (Fig. 33). Good performance of the model was
indicated by the good cross-validation statistics (Table 14). The error map showed high error
along the edges of the study extent (Fig. 34). The kriged surface is presented in Fig. 35.

Table 13. Distributional properties of

Bottom Temperature Average Maximum

(°C). .
Property Value 2
Number of Observations 1160 .
Minimum 1.852
Maximum 18.566
Mean 4'846 DU1B 035 052 0698 085 1.02 7'1 19 136 152 169 1.86
Median o 3.450 Fig. 31. Distribution of Bottom Temperature
Standard Deviation 3.145 Average Maximum (°C). Histogram was
Skewness 0.923 illustrated using 10 bins. X axis is shown at 107;
Kurtosis 2737 Y axis is shown at 107,

P

o
Eck ] -267 - -1.33 -0.67 0 067 132 2 287 333
standard Normal Value

0.13.
Eck ] -267 -2 -1.33 -0.67 0 067 132 2 287 333
standard Normal Value

Fig. 32. Normal Q-Q plot for data values of Bottom Temperature Average Maximum (°C).
Points falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 33. Left panel: Semivariogram of Bottom Temperature Average Maximum (°C). Binned
values are shown as red dots; average points are shown as blue crosses; the model fit to the
averaged values is shown as a blue line. Lag size: 0.098 degrees; number of lags: 12; Parameter:
2; Range: 0.784 degrees; Partial Sill: 3.273. Right panel: Scatterplot of predicted values versus
observed values for the model of Bottom Temperature Average Maximum (°C).

Table 14. Results of cross-validation of the kriged model for Bottom Temperature Average
Maximum (°C).

Prediction error Value
Number of Observations 1160

Overall Mean Error -7.201x 10
Root Mean Square Prediction Error 0.909
Standardized Mean -3.313x 10
Standardized Root Mean Square Prediction Error 1.113
Average Standard Error 0.803
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Fig. 34. Prediction standard error surface of Bottom Temperature Average Maximum (°C).
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Bottom Temperature Average Range

This variable displayed a right-skewed, leptokurtic distribution with outlying data in the upper
range (Table 15, Fig. 36). The data were higher than predicted by a normal distribution at the
tails and lower than predicted through the mid-range of the data (Fig. 37). These areas of under-
and over-prediction showed spatial pattern over the region (Fig. 37).

The semivariogram showed moderate autocorrelation present in the data, and the model showed
a good fit between measured and predicted values (Fig. 38). Good performance of the model was
indicated by the good cross-validation statistics (Table 16). The error map showed high error
along the edges of the study extent (Fig. 39). The kriged surface is presented in Fig. 40. Negative
values resulted from the right-skewed nature of the raw data (Fig. 36). Of the 326,283 raster cells
in the study extent, 5,470 contained negative values (see Table Al). These were located in a long

band along the lower slope (Fig

.A2).

Table 15. Distributional properties of
Bottom Temperature Average Range (°C).

Property Value
Number of Observations 1160
Minimum 0.048
Maximum 15.879
Mean 1.677
Median 0.367
Standard Deviation 2.139
Skewness 1.796
Kurtosis 7.508
: i
~
. P

0 -
33 -267 -2 133 067 0 0.
Standard Normal Value

&7 133 2

Frequency -10 7
711

569

0 0.16 0.3z 048 064 08 095 (K] 127 143 159
Dataset-10”

Fig. 36. Distribution of Bottom Temperature
Average Maximum (°C). Histogram was
illustrated using 10 bins. X axis is shown at 107;
Y axis is shown at 1072,

Fig. 37. Normal Q-Q plot for data values of Bottom Temperature Average Range (°C). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 38. Left panel: Semivariogram of Bottom Temperature Average Range (°C). Binned values
are shown as red dots; average points are shown as blue crosses; the model fit to the averaged
values is shown as a blue line. Lag size: 0.095 degrees; number of lags: 12; Parameter: 2; Range:
0.764 degrees; Partial Sill: 2.562. Right panel: Scatterplot of predicted values versus observed
values for the model of Bottom Temperature Average Range (°C).

Table 16. Results of cross-validation of the kriged model for Bottom Temperature Average
Range (°C).

Prediction error Value
Number of Observations 1160
Overall Mean Error -0.013

Root Mean Square Prediction Error 0.714
Standardized Mean -8.354 x 107
Standardized Root Mean Square Prediction Error 1.068
Average Standard Error 0.624
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Fig. 39. Prediction standard error surface of Bottom Temperature Average Range (°C).
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Fig. 40. Interpolated prediction surface of Bottom Temperature Average Range (°C).
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Surface Temperature Mean

This variable displayed a right-skewed, platykurtic distribution prior to interpolation (Table 17,
Fig. 41). The data were higher than predicted by a standard normal distribution at low and upper
mid-range values and lower than predicted at the highest and mid-values (Fig. 42). These areas
of under- and over-prediction showed strong spatial pattern over the region (Fig. 42).

The semivariogram showed weak autocorrelation present in the data but an excellent fit between
the predicted and measured values (Fig. 43). The kriged model showed poor cross-validation
statistics (Table 18). The Standardized Root-Mean-Square Prediction Error was much lower than
1 indicating that variability in the predictions was overestimated. The error map showed a
‘bullseye’ pattern with error increasing with distance from data points (Fig. 44). The kriged

surface is presented in Fig. 45.

Table 17. Distributional properties of
Surface Temperature Mean (°C).

Property Value
Number of Observations 1160
Minimum 6.234
Maximum 20.092
Mean 11.466
Median 10.104
Standard Deviation 3.819
Skewness 0.670
Kurtosis 2.178
e

0.6: o ool
333 267 2 133 067 0 087 133 2 287
Standard Normal Value

1.18 /
08

o

0.62;
-333 -267 -2 -1.33 -067 0 087 133 2 267
Standard Mormal Value

Frequency - 102
238

082 0.78 [R: ] 1.04 1.18 1.32 1.45 159 173 1.87 z0;m
Dataset 10"

Fig. 41. Distribution of Surface Temperature
Mean (°C). Histogram was illustrated using 10
bins. X axis is shown at 10™; Y axis is shown at
107,

Fig. 42. Normal Q-Q plot for data values of Surface Temperature Mean (°C). Points falling
under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 43. Left panel: Semivariogram of Surface Temperature Mean (°C). Binned values are shown
as red dots; average points are shown as blue crosses; the model fit to the averaged values is
shown as a blue line. Lag size: 0.632 degrees; number of lags: 12; Parameter: 1.972; Range:
5.056 degrees; Partial Sill: 21.197. Right panel: Scatterplot of predicted values versus observed
values for the model of Surface Temperature Mean (°C).

Table 18. Results of cross-validation of the kriged model for Surface Temperature Mean (°C).

Prediction error Value
Number of Observations 1160

Overall Mean Error -4.076 x 10°
Root Mean Square Prediction Error 0.034
Standardized Mean 6.080 x 10”
Standardized Root Mean Square Prediction Error 0.575
Average Standard Error 0.052
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Fig. 45. Interpolated prediction surface of Surface Temperature Mean (°C).
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Surface Temperature Minimum

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 19,
Fig. 46). The data were higher than predicted by a standard normal distribution at the tails and
were lower than predicted at mid-range values (Fig. 47). These data points were spatially
cohesive with big areas of over- and under-prediction (Fig. 47), with the former being more
prevalent.

The semivariogram showed weak autocorrelation present in the data but an excellent fit between
the predicted and measured values (Fig. 48). The kriged model showed fair cross-validation
statistics (Table 20). The error map showed a ‘bullseye’ pattern with error increasing with
distance from data points (Fig. 49). The kriged surface is presented in Fig. 50.

Table 19. Distributional properties of
Surface Temperature Minimum (°C).
Property Value
Number of Observations 1160
Minimum -1.606
Maximum 13.699
Mean 2.622
Median 1.660 -3.16 -0.01 0.15 0.3 0.45 Da::zer 107‘0.76 0.91 1.06 1.22 1 |37
Standard Deviation 3.732 Fig. 46. Distribution of Surface Temperature
Skewness 1.134 Minimum (°C). Histogram was illustrated using
Kurtosis 3.491 10 bins. X axis is shown at 10"; Y axis is shown
at 107,
D;at:?set‘lﬂ /Wnn -
1.08 ,

N

N

o-0od
333 -267 -2 -1.33 -067 0 0e7 133 2 267 33
Standard Normal Value

0.75| /
0.45

. //

-0.16
=333 -287 -2 -1.33 -067 0 087 1.33 2 287 333
Standard Normal Value

Fig. 47. Normal Q-Q plot for data values of Surface Temperature Minimum (°C). Points falling
under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 48. Left panel: Semivariogram of Surface Temperature Minimum (°C). Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.658 degrees; number of lags: 12; Parameter: 1.779; Range:
5.261 degrees; Partial Sill: 20.486. Right panel: Scatterplot of predicted values versus observed
values for the model of Surface Temperature Minimum (°C).

Table 20. Results of cross-validation of the kriged model for Surface Temperature Minimum
(°C).

Prediction error Value
Number of Observations 1160
Overall Mean Error 8.336 x 10™
Root Mean Square Prediction Error 0.229
Standardized Mean 1.175 x 10°®
Standardized Root Mean Square Prediction Error 1.219
Average Standard Error 0.190
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Surface Temperature Maximum

This variable displayed a platykurtic, bimodal distribution prior the modeling (Table 21, Fig. 51).
The data were higher than predicted by a standard normal distribution at low and upper mid-
values and lower than predicted at high and mid-values (Fig. 52). These data points were
spatially cohesive across the region (Fig. 52).

The semivariogram showed fair autocorrelation present in the data but an excellent fit between
measured and predicted values (Fig. 53). The kriged model showed fair cross-validation statistics
(Table 22). The Standardized Root-Mean-Square Prediction Error was higher than 1 indicating
that variability in the predictions has been underestimated. The error map showed high error
along the edges of the study extent (Fig. 54). The kriged surface is presented in Fig. 55.

Table 21. Distributional properties of
Surface Temperature Maximum (°C).
Property Value .
Number of Observations 1160 128
Minimum 14.059
Maximum 27.009
Mean 21.512
Median 20-739 1041 154 1868 179 1.92 205 _‘213 231 244 257 27
Standard Deviation 3.127 Fig. 51. Distribution of Surface Temperature
Skewness 0.092 Maximum (°C). Histogram was illustrated using
Kurtosis 1.849 10 bins. X axis is shown at 10™; Y axis is shown
at 107,
D;t:set- 10" #--_.
1.66] /
. mmﬂ““"’!
D;t:set BLl /_ﬂw
2.18] /

1 H
333 267 2 133 067 0 067 133 2 267 333
Standard Normal Value

Fig. 52. Normal Q-Q plot for data values of Surface Temperature Maximum (°C). Points falling
under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 53. Left panel: Semivariogram of Surface Temperature Maximum (°C). Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.159 degrees; number of lags: 12; Parameter: 2; Range: 1.273
degrees; Partial Sill: 2.851. Right panel: Scatterplot of predicted values versus observed values
for the model of Surface Temperature Maximum (°C).

Table 22. Results of cross-validation of the kriged model for Surface Temperature Maximum
(°C).

Prediction error Value
Number of Observations 1160

Overall Mean Error -9.786 x 10
Root Mean Square Prediction Error 0.141
Standardized Mean -9.983 x 10
Standardized Root Mean Square Prediction Error 1.828
Average Standard Error 0.088
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Surface Temperature Range

This variable displayed a left-skewed, leptokurtic distribution prior to interpolation (Table 23,
Fig. 56). The data were greater than predicted by a standard normal distribution at mid-values
and lower than predicted at both tails (Fig. 57). These areas of under- and over-prediction
showed no strong spatial pattern over the region (Fig. 57).

The semivariogram showed moderate autocorrelation present in the data and good predictive fit
(Fig. 58). The kriged model showed good cross-validation statistics indicating that it was good at
prediction (Table 24). The error map showed a ‘bullseye’ pattern with error increasing with
distance from data points (Fig. 59). The kriged surface is presented in Fig. 60.

Table 23. Distributional properties of
Surface Temperature Range (°C).

0
1z 131 141 181 162 172 183 193 202 214 224
Dataset-10”™"

Fig. 56. Distribution of Surface Temperature
Range (°C). Histogram was illustrated using 10
bins. X axis shown at 107%; Y axis is shown at 107,

Property Value
Number of Observations 1160
Minimum 12.013
Maximum 222.409
Mean 18.890
Median 19.492
Standard Deviation 1.992
Skewness -1.041
Kurtosis 3.300
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Fig. 57. Normal Q-Q plot for data values of Surface Temperature Range (°C). Points falling
under (upper panel) and over (bottom panel) the reference line are mapped.

43



vt
1,089 -
o

0968
0847 : -. . = * : £
0726
0605
0484
0363
0242

0121

] 0452 0383 1475 1967 2458 295 31441
== Model * Binned < Averaged
Mode! : 0.00020446 Nugget+4 2241 Stable(3.6053.1.4234)

3933 4425 4916 5408
Distance (Degree), h

Fredicted 1071
2241

2128

20
1.894
1779
1663
1548
1432

1317

1201 1305 1409 1513 1617 1721 1826 1828 2033 2137 2241
Measured 10"

Fig. 58. Left panel: Semivariogram of Surface Temperature Range (°C). Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.451 degrees; number of lags: 12; Parameter: 1.423; Range:
3.605 degrees; Partial Sill: 4.224. Right panel: Scatterplot of predicted values versus observed
values for the model of Surface Temperature Range (°C).

Table 24. Results of cross-validation of the kriged model for Surface Temperature Range (°C).

Prediction error Value
Number of Observations 1160
Overall Mean Error -1.376 x 10
Root Mean Square Prediction Error 0.271
Standardized Mean -1.967 x 10°®
Standardized Root Mean Square Prediction Error 0.827
Average Standard Error 0.326
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Surface Temperature Average Minimum

This variable displayed a right-skewed, platykurtic distribution prior to interpolation (Table 25,
Fig. 61). The data were greater than predicted by a standard normal distribution at upper mid-
range and low values, and lower than predicted at lower mid-range and highest values (Fig. 62).
These data points were spatially cohesive with specific areas of over- and under-prediction (Fig.
62).

The semivariogram showed weak autocorrelation present in the data but an excellent predictive
fit (Fig. 63). However, the model showed poor cross-validation statistics (Table 26). The
Standardized Root-Mean-Square Prediction Error was lower than 1 indicating that variability in
the predictions has been overestimated. The error map showed a ‘bullseye’ pattern with error
increasing with distance from data points (Fig. 64). The kriged surface is presented in Fig. 65.

Table 25. Distributional properties of
Surface Temperature Average Minimum
(OC). P —
Property Value
Number of Observations 1160 o
Minimum -1.277
Maximum 15,518
Mean 4.785 —813 0.04 021 038 0.54 a7 ‘ ,10 as 1.05 122 138 1.55
Median o 3.4r1 Fig. 61. Distribution of Surface Temperature
Standard Deviation 4.333 Average Minimum (°C). Histogram was
Skewness 0.756 illustrated using 10 bins. X axis is shown at 107
Kurtosis 2512 Y axis is shown at 10-2.
155 W Gu 9
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Fig. 62. Normal Q-Q plot for data values of Surface Temperature Average Minimum (°C). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 63. Left panel: Semivariogram of Surface Temperature Average Minimum (°C). Binned
values are shown as red dots; average points are shown as blue crosses; the model fit to the
averaged values is shown as a blue line. Lag size: 0.653 degrees; number of lags: 12; Parameter:
1.910; Range: 5.227 degrees; Partial Sill: 28.053. Right panel: Scatterplot of predicted values
versus observed values for the model of Surface Temperature Average Minimum (°C).

Table 26. Results of cross-validation of the kriged model for Surface Temperature Average
Minimum (°C).

Prediction error Value
Number of Observations 1160
Overall Mean Error 1.050 x 107
Root Mean Square Prediction Error 0.067
Standardized Mean 1.623 x 10°°
Standardized Root Mean Square Prediction Error 0.501
Average Standard Error 0.115
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Surface Temperature Average Maximum

This variable displayed a platykurtic, right-skewed distribution prior to interpolation (Table 27,
Fig. 66). The data showed deviations from a standard normal distribution with the lower tail and
the upper mid-range values being higher than predicted and the upper tail and mid-values being
lower than predicted by a normal distribution (Fig. 67). These data points were spatially cohesive
with specific areas of over-and under-prediction (Fig. 67).

The semivariogram showed weak autocorrelation present in the data but excellent predictive fit
(Fig. 68). The model showed good cross-validation statistics (Table 28) indicating that it was
good at prediction. The error map showed high error along the edges of the study extent (Fig.
69). The kriged surface is presented in Fig. 70.

Table 27. Distributional properties of
Surface Temperature Average Maximum (°C).
Property Value
Number of Observations 1160
Minimum 12.602
Maximum 25.660
Mean 19.678
Median 18.887 1025 139 152 165 178 D;t::Etlm_‘zna 217 23 2.44 257
Standard Deviation 2.855 Fig. 66. Distribution of Surface Temperature
Skewness 0.312 Average Maximum (°C). Histogram was
Kurtosis 2230 illustrated using 10 bins. X axis is shown at 107
Y axis is shown at 10
22,: //’,“, rr—t
2.04 //ﬂ
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QWM
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Standard Normal Value
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EXTIEY ] 2 EETINT] 0 067 13 z 267 EES)
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Fig 67. Normal Q-Q plot for data values of Surface Temperature Average Maximum (°C). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 68. Left panel: Semivariogram of Surface Temperature Average Maximum (°C). Binned
values are shown as red dots; average points are shown as blue crosses; the model fit to the
averaged values is shown as a blue line. Lag size: 0.149 degrees; number of lags: 12; Parameter:
2; Range: 1.191 degrees; Partial Sill: 1.890. Right panel: Scatterplot of predicted values versus
observed values for the model of Surface Temperature Average Maximum (°C).

Table 28. Results of cross-validation of the kriged model for Surface Temperature Average
Maximum (°C).

Prediction error Value
Number of Observations 1160
Overall Mean Error -8.547 x 10
Root Mean Square Prediction Error 0.067
Standardized Mean -6.215x 10
Standardized Root Mean Square Prediction Error 0.864
Average Standard Error 0.076
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Surface Temperature Average Range

This variable displayed platykurtic, left-skewed distribution prior to interpolation (Table 29, Fig.
71). The data were greater than predicted by a standard normal distribution at mid-range and
lowest values, and lower than predicted at lower mid-range and the highest values (Fig. 72).
These areas of under- and over-prediction showed little spatial pattern over the region (Fig. 72).

The semivariogram showed weak autocorrelation present in the data and a poor fit between
measured and predicted values (Fig. 73). However, the model showed good cross-validation
statistics (Table 30). The error map showed high error along the edges of the study extent (Fig.
74). The kriged surface is presented in Fig. 75.

Table 29. Distributional properties of
Surface Temperature Average Range (°C).
Property Value
Number of Observations 1160
Minimum 0.801 o5
Maximum 23.915
Mean 14.790 ]
Median 15.795 i 031 05 077 1 D;t:;t-lu"1 a7 17 193 216 235
Standard Deviation 5.231 Fig. 71. Distribution of Surface Temperature
Skewness -0.623 Average Range (°C). Histogram was illustrated
Kurtosis 2 697 using 10 bins. X axis is shown at 10™; Y axis is
shown at 107.
12.39, //’" .
: ///
054 F//‘
239, //‘IW
1 //
054 ﬁ/‘

0.03.
333 287 2 133 087 0 067 133 2 267 333
Standard Normal Value

Fig. 72. Normal Q-Q plot for data values of Surface Temperature Average Range (°C). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 73. Left panel: Semivariogram of Surface Temperature Average Range (°C). Binned values
are shown as red dots; average points are shown as blue crosses; the model fit to the averaged
values is shown as a blue line. Lag size: 0.632 degrees; number of lags: 12; Parameter: 1.300;
Range: 5.056 degrees; Partial Sill: 18.897. Right panel: Scatterplot of predicted values versus
observed values for the model of Surface Temperature Average Range (°C).

Table 30. Results of cross-validation of the kriged model for Surface Temperature Average
Range (°C).

Prediction error Value
Number of Observations 1160

Overall Mean Error -2.792 x 107
Root Mean Square Prediction Error 3.717
Standardized Mean -3.349 x 10™
Standardized Root Mean Square Prediction Error 0.984
Average Standard Error 3.777
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Salinity

Salinity influences osmoregulation (control of osmosis and diffusion) and is a very important
determinant of species distribution. Salinity also strongly influences the rate at which inorganic
particles settle in response to changes in flocculation of the clay mineral kaolinite (Sutherland et.
al., 2014). This is particularly important in estuaries and deltas where clay minerals mix with
marine waters. Salinity and temperature together are diagnostics of water masses which maintain
characteristic T/S signatures.

Bottom Salinity Mean

This variable displayed a left-skewed, leptokurtic distribution with outlying data in the lower
range prior to interpolation (Table 31, Fig. 76). The data deviated from a standard normal
distribution with lower and upper values falling under the reference line (Fig. 77), and mid-
values falling over the reference line. These data points were spatially cohesive across the region
(Fig. 77).

The semivariogram showed very weak autocorrelation present in the data. Aside from a few
outliers there was a good fit between measured and predicted values (Fig. 78). The kriged model
showed good cross-validation statistics (Table 32). The error map showed high error along the
edges of the study extent (Fig. 79). The kriged surface is presented in Fig. 80.

uency -102

Table 31. Distributional properties of

N
Nm
g

Bottom Salinity Mean.

Property Value -

Number of Observations 1160 e

Minimum 27.415

Maximum 35.234

Mean 34.300

Median 34.892 S Em zs zer Im D;jﬁm T aa naE s
Standard Deviation 0.941 Fig. 76. Distribution of Bottom Salinity Mean.
Skewness -1.524 Histogram was illustrated using 10 bins. X axis
Kurtosis 5 653 shown at 10™; Y axis is shown at 10°2.
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Fig. 77. Normal Q-Q plot for data values of Bottom Salinity Mean. Points falling under (upper
panel) and over (bottom panel) the reference line are mapped.
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Fig. 78. Left panel: Semivariogram of Bottom Salinity Mean. Binned values are shown as red
dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a
blue line. Lag size: 0.090 degrees; number of lags: 12; Parameter: 2; Range: 0.720 degrees;
Partial Sill: 0.419. Right panel: Scatterplot of predicted values versus observed values for the
model of Bottom Salinity Mean.

Table 32. Results of cross-validation of the kriged model for Bottom Salinity Mean.

Prediction error Value
Number of Observations 1160
Overall Mean Error 9.528 x 10°®
Root Mean Square Prediction Error 0.267
Standardized Mean 0.018
Standardized Root Mean Square Prediction Error 1.088
Average Standard Error 0.211
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Bottom Salinity Minimum

This variable displayed a left-skewed, leptokurtic distribution with outlying data in the lower
range prior to interpolation (Table 33, Fig. 81). The data were lower than predicted by a normal
distribution at low and high values (Fig. 82). Mid-range values were higher than the reference
line. These data points showed some spatial cohesion across the region (Fig. 82).

The semivariogram showed very weak autocorrelation present in the data (Figure 83). Aside
from a few outliers there was a good fit between measured and predicted values (Fig. 83). The
kriged model showed good cross-validation statistics (Table 34). The error map showed high
error along the edges of the study extent (Fig. 84). The kriged surface is presented in Fig. 85.

Table 33. Distributional properties of

Bottom Salinity Minimum.

Property Value
Number of Observations 1160
Minimum 24.897
Maximum 34.908
Mean 33.843
Median 34.836
Standard Deviation 1.398
Skewness -1.270
Kurtosis 4.361
/,4/
M,a*/

2,480
=333 -267 -2 -1.33 -067 0 087 133 2

Standard Mormal Value

Frequency +10™

7.49

589

o
2.49 259 269 279 2.89 2.89 3.08 318 328 3.38 3.49
Dataset 10"

Fig. 81. Distribution of Bottom Salinity Minimum.
Histogram was illustrated using 10 bins. X axis
shown at 10°; Y axis is shown at 10°2.

Fig. 82. Normal Q-Q plot for data values of Bottom Salinity Minimum. Points falling under
(upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 83. Left panel: Semivariogram of Bottom Salinity Minimum. Binned values are shown as
red dots; average points are shown as blue crosses; the model fit to the averaged values is shown
as a blue line. Lag size: 0.096 degrees; number of lags: 12; Parameter: 2; Range: 0.769 degrees;
Partial Sill: 0.862. Right panel: Scatterplot of predicted values versus observed values for the

model of Bottom Salinity Minimum.

Table 34. Results of cross-validation of the kriged model for Bottom Salinity Minimum.

Prediction error Value
Number of Observations 1160
Overall Mean Error 9.915 x 10°®
Root Mean Square Prediction Error 0.359
Standardized Mean 0.013
Standardized Root Mean Square Prediction Error 1.079
Average Standard Error 0.294
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Bottom Salinity Maximum

This variable displayed a left-skewed, leptokurtic distribution with outlying data in the lower
range prior to interpolation (Table 35, Fig. 86). The data were lower than predicted by a normal
distribution at both tails (Fig. 87). Mid-range values were higher than the reference line. The
areas of over- and under-prediction showed a spatial pattern through the study extent with points
over the reference line located primarily in the deep water beyond the shelf (Fig. 87).

The semivariogram showed weak autocorrelation present in the data (Fig. 88). Aside from a
single outlier there was a good fit between measured and predicted values (Fig. 88). The kriged
model showed excellent cross-validation statistics (Table 36). The error map showed high error
along the edges of the study extent (Fig. 89). The kriged surface is presented in Fig. 90.

Table 35. Distributional properties of
Bottom Salinity Maximum.
Property Value
Number of Observations 1160 428
Minimum 30.790
Maximum 36.305
Mean 34.750
Median 34.916 SDOS 313 319 3.24 33 3.35 ) 7‘3.41 347 352 358 363
Standard Deviation 0.655 Fig. 86. Distribution of Bottom Salinity
Skewness -1.326 Maximum. Histogram was illustrated using 10
Kurtosis 5.410 bins. X axis shown at 10%; Y axis is shown at 102
. I/./"'-.
3.41 7}
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Fig. 87. Normal Q-Q plot for data values of Bottom Salinity Maximum. Points falling under
(upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 88. Left panel: Semivariogram of Bottom Salinity Maximum. Binned values are shown as
red dots; average points are shown as blue crosses; the model fit to the averaged values is shown
as a blue line. Lag size: 0.083 degrees; number of lags: 12; Parameter: 2; Range: 0.665 degrees;
Partial Sill: 0.229. Right panel: Scatterplot of predicted values versus observed values for the
model of Bottom Salinity Maximum.

Table 36. Results of cross-validation of the kriged model for Bottom Salinity Maximum.

Prediction error Value
Number of Observations 1160
Overall Mean Error 6.814 x 107
Root Mean Square Prediction Error 0.254
Standardized Mean 0.013
Standardized Root Mean Square Prediction Error 0.980
Average Standard Error 0.248
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Bottom Salinity Range

This variable displayed a right-skewed, leptokurtic distribution with outlying data in the upper
range (Table 37, Fig. 91). The data were higher than predicted by a normal distribution at low
and upper mid-range values and lower than predicted at mid-range and high values (Fig. 92).
Values under and over the reference line showed a spatial pattern in the region (Fig. 92).

The semivariogram showed moderate autocorrelation present in the data (Fig. 93). Aside from a
single outlier there was a fair fit between measured and predicted values (Fig. 93). The kriged
model showed good cross-validation statistics (Table 38). The error map showed high error
along the edges of the study extent (Fig. 94). The kriged surface is presented in Fig. 95. Negative
values resulted from the right-skewed nature of the raw data (Fig. 91). Of the 326,283 raster cells
in the study extent, 4,032 contained negative values (see Table Al). These were located in a long
band along the lower slope (Fig. A3).

Table 37. Distributional properties of fepenor 0

Bottom Salinity Range.

Property Value

Number of Observations 1160 -

Minimum 0.024

Maximum 5.893

Mean 0.907

Median 0.178 T R CETa——
Standard Deviation 1.014 Fig. 91. Distribution of Bottom Salinity Range.
Skewness 0.802 Histogram was illustrated using 10 bins. Y axis is
Kurtosis 2.514 shown at 10™
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Fig. 92. Normal Q-Q plot for data values of Bottom Salinity Range. Points falling under (upper
panel) and over (bottom panel) the reference line are mapped.
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Fig. 93. Left panel: Semivariogram of Bottom Salinity Range. Binned values are shown as red
dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a
blue line. Lag size: 0.098 degrees; number of lags: 12; Parameter: 2; Range: 0.784 degrees;
Partial Sill: 0.372. Right panel: Scatterplot of predicted values versus observed values for the
model of Bottom Salinity Range.

Table 38. Results of cross-validation of the kriged model for Bottom Salinity Range.

Prediction error Value
Number of Observations 1160

Overall Mean Error -3.224 x 103
Root Mean Square Prediction Error 0.306
Standardized Mean -4.835 x 10
Standardized Root Mean Square Prediction Error 1.089
Average Standard Error 0.270
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Fig. 95. Interpolated prediction surface of Bottom Salinity Range.

66

45°N

40°N

45N

40°N



Bottom Salinity Average Minimum

This variable displayed a left-skewed, leptokurtic distribution with outlying data in the lower
range prior to interpolation (Table 39, Fig. 96). The data were lower than predicted by a normal
distribution at low and high values (Fig. 97). Mid-range values were higher than the reference
line. The areas of over- and under-prediction a spatial pattern with over-predicted points located
mainly in the deep waters beyond the shelf (Fig. 97).

The semivariogram showed very weak autocorrelation present in the data (Fig. 98). Aside from a
single outlier there was a good fit between measured and predicted values (Fig. 98). The kriged
model showed good cross-validation statistics (Table 40). The error map showed high error
along the edges of the study extent (Fig. 99). The kriged surface is presented in Fig. 100.

Table 39. Distributional properties of
Bottom Salinity Average Minimum.
Property Value -
Number of Observations 1160 ss0
Minimum 25.542
Maximum 34.946
Mean 34.101 N
M ed i an 34 . 887 ZB.E-E 2865 274 2.84 292 5 3;;!?2 .21 33 3.4 3.49
Standard Deviation 1.162 Fig. 96. Distribution of Bottom Salinity Average
Skewness -1.507 Minimum. Histogram was illustrated using 10
Kurtosis 5.867 bins. X axis is shown at 10*; Y axis is shown at
107,
3.31 /
3.12 /
3.31 /
3.12 /

255,
ek ] 267 -2 -1.33 -0.67 0 067 133 2 267 333
Standard Normal Value

Fig. 97. Normal Q-Q plot for data values of Bottom Salinity Average Minimum (°C). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.

67



101 Predicted -10°1

1448 e 1545
1267 3421
1.086 3297
0508 3173
0.724 305
0.543
25826
0.362
2.802
0.181 k2 . g
o - 2678
0 012 0.24 036 0.48 06 072 0.84 0.95% 1.079 [
= Model * Binned = Averaged Distance (Degree), h 2564 2664 2774 2884 23555 3108 3215 3325 3435 3545
Model : 0.027421°Nugget+0.62449°Stable(D. 71958,2) Measured 1071

Fig. 98. Left panel: Semivariogram of Bottom Salinity Average Minimum. Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.090 degrees; number of lags: 12; Parameter: 2; Range: 0.720
degrees; Partial Sill: 0.624. Right panel: Scatterplot of predicted values versus observed values
for the model of Bottom Salinity Average Minimum.

Table 40. Results of cross-validation of the kriged model for Bottom Salinity Average Minimum.

Prediction error Value
Number of Observations 1160

Overall Mean Error 0.011
Root Mean Square Prediction Error 0.325
Standardized Mean 0.017
Standardized Root Mean Square Prediction Error 1.120
Average Standard Error 0.246
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Bottom Salinity Average Maximum

This variable displayed a left-skewed, leptokurtic distribution with outlying data in the lower
range prior to interpolation (Table 41, Fig. 101). The data were lower than predicted by a normal
distribution at low and high values (Fig. 102). Mid-range values were higher than the reference
line. The areas of over- and under-prediction a spatial pattern with over-predicted points located
mainly in the deep waters beyond the shelf (Fig. 102).

The semivariogram showed weak autocorrelation present in the data (Fig. 103). Aside from a
single outlier there was a good fit between measured and predicted values (Fig. 103). The kriged
model showed good cross-validation statistics (Table 42). The error map showed high error
along the edges of the study extent (Fig. 104). The kriged surface is presented in Fig. 105.

Table 41. Distributional properties of
Bottom Salinity Average Maximum.

Property Value

Number of Observations 1160
Minimum 29.382
Maximum 35.948
Mean 34.491
Median 34.899
Standard Deviation 0.762
Skewness -1.559
Kurtosis 5.222

p—Ty
343 /
331 ,'4
318 *
.
306
294,
33 26 2 A3 467 0 067 133 2 267
Standard Normal Value
Dataset 10
355 0
—

3.43
331 f‘-‘/
318 «

os
308

2945
333 287 2 133 067 0 067 133 2
Standard Normal Value

ol —
294 3 306 31z 318 324 331 337 343 349 385
Dataset-10”

Fig. 101. Distribution of Bottom Salinity
Average Maximum. Histogram was illustrated
using 10 bins. X axis is shown at 10%; Y axis is
shown at 1072,

Fig. 102. Normal Q-Q plot for data values of Bottom Salinity Average Maximum. Points falling
under (upper panel) and over (bottom panel) the reference line are mapped.

70



v Predicted -10°1

123 . 3.565
1184 : 3486
0.338 . 3.408
0831 =g . i i 3
0.665 st g v ' : L 3251
0458 . SE ::' 9 f 3173
0.333 . SER _ R,

3.085

0.166

X1 3 S . 3017

0 0114 0227 0341 0455 0569 0682 079 091 1024 t
= Model * Binned o Averaged Distance (Degree), h 2838 3008 2077 2147 3217 3286 2356 3425 3435 3565
Mods - 0.022145 Nugget=0 27423°Stable(0.6824 2) Measured 10°1

Fig. 103. Left panel: Semivariogram of Bottom Salinity Average Maximum. Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.085 degrees; number of lags: 12; Parameter: 2; Range: 0.682
degrees; Partial Sill: 0.274. Right panel: Scatterplot of predicted values versus observed values
for the model of Bottom Salinity Average Maximum.

Table 42. Results of cross-validation of the kriged model for Bottom Salinity Average
Maximum.

Prediction error Value
Number of Observations 1160
Overall Mean Error 8.377 x 10°®
Root Mean Square Prediction Error 0.235
Standardized Mean 0.018
Standardized Root Mean Square Prediction Error 1.012
Average Standard Error 0.213
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Fig. 104. Prediction standard error surface of Bottom Salinity Average Maximum.
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Bottom Salinity Average Range

This variable displayed a right-skewed, leptokurtic distribution with outlying data in the upper
range prior to interpolation (Table 43, Fig. 106). The data were higher than predicted by a
normal distribution at low and high values, and mid-range values were lower than the reference
line (Fig. 107). There was a pattern to the under- and over-prediction (Fig. 107).

The semivariogram showed weak autocorrelation present in the data, however there was a good
predictive fit (Fig. 108). The kriged model showed good cross-validation statistics (Table 44)
indicating that it was good at prediction. The error map showed high error along the edges of the
study extent (Fig. 109). The kriged surface is presented in Fig. 110. Negative values resulted
from the right-skewed nature of the raw data (Fig. 106). Of the 326,283 raster cells in the study
extent, 11,390 contained negative values (see Table Al). These were located in a long band

along the lower slope (Fig. A4).

Table 43. Distributional properties of
Bottom Salinity Average Range.

Frequency - 107
6.8

0 I
0.01 0.3% 077 116 1.54 182 23 269 3o7 346 384
Dataset

Fig. 106. Distribution of Bottom Salinity
Average Range. Histogram was illustrated using
10 bins. Y axis is shown at 102

Property Value
Number of Observations 1160
Minimum 0.005
Maximum 3.840
Mean 0.389
Median 0.049
Standard Deviation 0.489
Skewness 1.288
Kurtosis 5.106

0.01, -
=323 -267 -2 -1.23 067 0 067 133 2

Standard Normal Value

267

333

Fig. 107. Normal Q-Q plot for data values of Bottom Salinity Average Range. Points falling
under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 108. Left panel: Semivariogram of Bottom Salinity Average Range. Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.097 degrees; number of lags: 12; Parameter: 2; Range: 0.779
degrees; Partial Sill: 0.102. Right panel: Scatterplot of predicted values versus observed values
for the model of Bottom Salinity Average Range.

Table 44. Results of cross-validation of the kriged model for Bottom Salinity Average Range.

Prediction error Value
Number of Observations 1160

Overall Mean Error -2.485 x 10
Root Mean Square Prediction Error 0.179
Standardized Mean -5.670 x 107
Standardized Root Mean Square Prediction Error 1.052
Average Standard Error 0.156
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Fig. 109. Prediction standard error surface of Bottom Salinity Average Range.
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Surface Salinity Mean

This variable displayed a right-skewed, platykurtic distribution prior to interpolation (Table 45,
Fig. 111). The data were lower than predicted by a normal distribution at mid-range and high
values and higher than predicted at low and upper mid-range values (Fig. 112). There was a
strong spatial pattern to the under- and over-predicted data points (Fig. 112).

The semivariogram showed moderate autocorrelation present in the data (Fig. 113). There was
very good fit between the measured and predicted values (Fig. 113). However, the kriged model
showed poor cross-validation statistics (Table 46). The Standardized Root-Mean-Square
Prediction Error was less than 1 indicating that variability in the predictions has been
overestimated. The error map showed high error along the edges of the study extent (Fig. 114).
The kriged surface is presented in Fig. 115.

Table 45. Distributional properties of
Surface Salinity Mean.
Property Value ’
Number of Observations 1160
Minimum 26.805 .
Maximum 35.748
Mean 32.408 :
Median 32.098 2055 277 286 285 3.04 313 ) 4322 3 3.4 3.48 357
Standard Deviation 1.705 Fig. 111. Distribution of Surface Salinity Mean.
Skewness 0.245 Histogram was illustrated using 10 bins. X axis is
Kurtosis 2.209 shown at 10™; Y axis is shown at 1072,
) /
3.22) /
1286, DM
322 /

|2.64 !
=333 -267 -2 -1.33 -067 0 087 133 2 287 333
Standard Mormal Value

Fig. 112. Normal Q-Q plot for data values of Surface Salinity Mean. Points falling under (upper
panel) and over (bottom panel) the reference line are mapped.
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Fig. 113. Left panel: Semivariogram of Surface Salinity Mean. Binned values are shown as red
dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a
blue line. Lag size: 0.332 degrees; number of lags: 12; Parameter: 2; Range: 2.657 degrees;
Partial Sill: 2.473. Right panel: Scatterplot of predicted values versus observed values for the
model of Surface Salinity Mean.

Table 46. Results of cross-validation of the kriged model for Surface Salinity Mean.

Prediction error Value
Number of Observations 1160
Overall Mean Error 1.228 x 10°®
Root Mean Square Prediction Error 0.037
Standardized Mean 9.698 x 10
Standardized Root Mean Square Prediction Error 0.492
Average Standard Error 0.057
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Surface Salinity Minimum

This variable displayed a left-skewed, leptokurtic distribution prior to interpolation (Table 47,
Fig. 116). The data were lower than predicted by a normal distribution at both tails, while some
mid-range values were above the reference line (Fig. 117). There was spatial pattern to the
under- and over-prediction (Fig. 117).

The semivariogram showed weak autocorrelation present in the data (Fig. 118). The kriged
model showed excellent fit between predicted and measured values (Fig. 118) but poor cross-
validation statistics (Table 48). The Standardized Root-Mean-Square Prediction Error was
greater than 1 indicating that variability in the predictions has been underestimated. The error
map showed a ‘bullseye’ pattern with error increasing with distance from data points (Fig. 119).
The kriged surface is presented in Fig. 120.

Table 47. Distributional properties of
Surface Salinity Minimum.
Property Value
Number of Observations 1160 "
Minimum 23.869
Maximum 34.245 ]
Mean 30.538
Median 30.462 IS s e a7 2s 2o S s am sw e
Standard Deviation 1.483 Fig. 116. Distribution of Surface Salinity
Skewness -0.103 Minimum. Histogram was illustrated using 10
Kurtosis 3.413 bins. X axis is shown at 10™; Y axis is shown at
102,
; P
201 /’/
2 M'j
322 /‘/W
,,/
23 M’J -

235, 7
-333 -267 -2 -133 -0.67 0 0.67 133 2 287 333
Standard Normal Value

Fig. 117. Normal Q-Q plot for data values of Surface Salinity Minimum. Points falling under
(upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 118. Left panel: Semivariogram of Surface Salinity Minimum. Binned values are shown as
red dots; average points are shown as blue crosses; the model fit to the averaged values is shown
as a blue line. Lag size: 0.751 degrees; number of lags: 12; Parameter: 1.803; Range: 6.008
degrees; Partial Sill: 3.382. Right panel: Scatterplot of predicted values versus observed values
for the model of Surface Salinity Minimum.

Table 48. Results of cross-validation of the kriged model for Surface Salinity Minimum.

Prediction error Value
Number of Observations 1160
Overall Mean Error 1.895 x 107
Root Mean Square Prediction Error 0.115
Standardized Mean 0.010
Standardized Root Mean Square Prediction Error 1.567
Average Standard Error 0.067
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Surface Salinity Maximum

This variable displayed a left-skewed, platykurtic and bimodal distribution prior to interpolation
(Table 49, Fig. 121). The data were lower than predicted by a normal distribution at mid-range
and high values (Fig. 122). Low-and upper mid-range values were higher than the reference line.
There was spatial pattern to the under- and over-prediction (Fig. 122).

The semivariogram showed moderate autocorrelation present in the data and very good
predictive fit (Fig. 123). The model showed fair cross-validation statistics (Table 50). The
Standardized Root-Mean-Square Prediction Error was greater than 1 indicating that variability in
the predictions has been underestimated. The error map showed a ‘bullseye’ pattern with error
increasing with distance from data points (Fig. 124). The kriged surface is presented in Fig. 125.

Table 49. Distributional properties of
Surface Salinity Maximum.

Property Value
Number of Observations 1160
Minimum 30.416
Maximum 36.499
Mean 34.053
Median 33.787
Standard Deviation 1.730
Skewness -0.013
Kurtosis 1.540

Frequency - 10
297

o
3.04 31 316 322 3.28 3.35 3.41 3.47 353 3.58 365
Dataset- 10"

Fig. 121. Distribution of Surface Salinity
Maximum. Histogram was illustrated using 10
bins. X axis is shown at 10 Y axis is shown at
10
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Fig. 122. Normal Q-Q plot for data values of Surface Salinity Maximum. Points falling under
(upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 123. Left panel: Semivariogram of Surface Salinity Maximum. Binned values are shown as
red dots; average points are shown as blue crosses; the model fit to the averaged values is shown
as a blue line. Lag size: 0.636 degrees; number of lags: 12; Parameter: 1.889; Range: 5.090
degrees; Partial Sill: 4.353. Right panel: Scatterplot of predicted values versus observed values
for the model of Surface Salinity Maximum.

Table 50. Results of cross-validation of the kriged model for Surface Salinity Maximum.

Prediction error Value
Number of Observations 1160
Overall Mean Error 8.534 x 10™
Root Mean Square Prediction Error 0.109
Standardized Mean 4358 x 107
Standardized Root Mean Square Prediction Error 2.104
Average Standard Error 0.053
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Surface Salinity Range

This variable displayed a near-mesokurtic distribution with slight positive skew and outlying
data in the upper range (Table 51, Fig. 126). The data were higher than predicted by a normal
distribution at both tails, with mid-range values falling slightly below the reference line (Fig.
127). The areas of under- and over-prediction showed no strong spatial pattern over the study
extent (Fig. 127).

The semivariogram showed autocorrelation present in the data (Fig. 128). The model showed a
good fit between measured and predicted values (Fig. 128) and good cross-validation statistics
indicating that it was good at prediction (Table 52). The error map showed a ‘bullseye’ pattern
with error increasing with distance from data points (Fig. 129). The kriged surface is presented in
Fig. 130.

uency - 10 %

Table 51. Distributional properties of

Surface Salinity Range.

Property Value
Number of Observations 1160 22
Minimum 2.173
Maximum 7.211 :
Mean 3.516 -
Median 3.368 E25s 268 318 368 419 D:tf:at B 57 62 em 72
Standard Deviation 0.740 Fig. 126. Distribution of Surface Salinity Range.
Skewness 0.560 Histogram was illustrated using 10 bins. Y axis
Kurtosis 3.056 at 1072

. o
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Fig. 127. Normal Q-Q plot for data values of Surface Salinity Range. Points falling under (upper
panel) and over (bottom panel) the reference line are mapped.
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Fig. 128. Left panel: Semivariogram of Surface Salinity Range. Binned values are shown as red
dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a
blue line. Lag size: 0.357 degrees; number of lags: 12; Parameter: 1.446; Range: 2.859 degrees;
Partial Sill: 0.637. Right panel: Scatterplot of predicted values versus observed values for the
model of Surface Salinity Range.

Table 52. Results of cross-validation of the kriged model for Surface Salinity Range.

Prediction error Value
Number of Observations 1160

Overall Mean Error -1.305 x 10
Root Mean Square Prediction Error 0.154
Standardized Mean -3.789 x 10°®
Standardized Root Mean Square Prediction Error 1.057
Average Standard Error 0.143

86



65‘W

@ QUEBEC =C
W ‘—A‘L\,_/\

;,p

\

T

NEW BRUNSWICK ’%}

f*x

;u

"

‘%\

!
¥ \\\

e 2
wfdﬂ

NEWFOUNDLAND

-

55°W
1

/fﬁ;‘“’%‘%ﬂ% il i{»
ol o |
o W
e 1 1 2 :
- } i T 4 i i b
| n | ”; : 2’:l i
b ‘m}
ii ii e * iR
. E -‘ .
e
Surface Salinity Range -g
0.3249
=00960
0.0088 e ey RIS

Fig. 129. Prediction standard error surface of Surface Salinity Range.

GU"W

QUEBEC

<

55"W
1

NEWFOUNDLAND

45°N

40°N

o
Surface Salinity Range
7.6666
: 3.7138
2.1005 0 100 200 400
| Kilometers

Fig. 130. Interpolated prediction surface of Surface Salinity Range.

87



Surface Salinity Average Minimum

This variable displayed a near-mesokurtic distribution with slight positive skew (Table 53, Fig.
131). The data were lower than predicted by a normal distribution at both tails with some mid-
range values above the reference line (Fig. 132). There was a strong spatial pattern to the under-

and over-prediction (Fig. 132).

The semivariogram showed weak autocorrelation present in the data (Fig. 133). There was an
excellent fit between the measured and predicted values (Fig. 133), but the model showed poor
cross-validation statistics (Table 54). The Standardized Root-Mean-Square Prediction Error was
greater than 1 indicating that variability in the predictions has been underestimated. The error
map showed a ‘bullseye’ pattern with error increasing with distance from data points (Fig. 134).
The kriged surface is presented in Fig. 135.

Table 53. Distributional properties of
Surface Salinity Average Minimum.

Property Value
Number of Observations 1160
Minimum 24.653
Maximum 34.985
Mean 31.449
Median 31.310
Standard Deviation 1.590
Skewness 0.115
Kurtosis 2.972
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Fig. 131. Distribution of Surface Salinity Average
Minimum. Histogram was illustrated using 10
bins. X axis is shown at 10™; Y axis is shown at
1072,

Fig. 132. Normal Q-Q plot for data values of Surface Salinity Average Minimum. Points falling
under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 133. Left panel: Semivariogram of Surface Salinity Average Minimum. Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.666 degrees; number of lags: 12; Parameter: 1.988; Range:
5.331 degrees; Partial Sill: 3.773. Right panel: Scatterplot of predicted values versus observed
values for the model of Surface Salinity Average Minimum.

Table 54. Results of cross-validation of the kriged model for Surface Salinity Average
Minimum.

Prediction error Value
Number of Observations 1160
Overall Mean Error 1.193x 107
Root Mean Square Prediction Error 0.047
Standardized Mean 0.023
Standardized Root Mean Square Prediction Error 2.566
Average Standard Error 0.014
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Surface Salinity Average Maximum

This variable displayed a platykurtic, right-skewed distribution with bimodality prior to
interpolation (Table 55, Fig. 136). The data were higher than predicted by a normal distribution
at low and upper mid-range values and lower than predicted at mid-range and high values (Fig.
137). There was spatial pattern to the under- and over-prediction (Fig. 137).

The semivariogram showed weak to moderate autocorrelation present in the data (Fig. 138).
There was an excellent fit between measured and predicted values (Fig. 138) and the model
showed excellent cross-validation statistics (Table 56). The error map showed a ‘bullseye’
pattern with error increasing with distance from data points (Fig. 139). The kriged surface is
presented in Fig. 140.

Table 55. Distributional properties of
Surface Salinity Average Maximum.

Property Value
Number of Observations 1160
Minimum 29.221
Maximum 36.226
Mean 33.320
Median 32.867
Standard Deviation 1.761
Skewness 0.183
Kurtosis 1.756
Vi
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Fig. 136. Distribution of Surface Salinity
Average Maximum. Histogram was illustrated
using 10 bins. X axis is shown at 10™; Y axis is
shown at 1072,

Fig. 137. Normal Q-Q plot for data values of Surface Salinity Average Maximum. Points falling
under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 138. Left panel: Semivariogram of Surface Salinity Average Maximum. Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.632 degrees; number of lags: 12; Parameter: 1.958; Range:
5.056 degrees; Partial Sill: 4.546. Right panel: Scatterplot of predicted values versus observed
values for the model of Surface Salinity Average Maximum.

Table 56. Results of cross-validation of the kriged model for Surface Salinity Average
Maximum.

Prediction error Value
Number of Observations 1160
Overall Mean Error 6.543 x 10™
Root Mean Square Prediction Error 0.039
Standardized Mean 4172 x10°
Standardized Root Mean Square Prediction Error 0.981
Average Standard Error 0.030
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Surface Salinity Average Range

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 57,
Fig. 141). The data were higher than predicted by a normal distribution at low and high values
and slightly lower than predicted at mid-range values (Fig. 142). The areas of under- and over-
prediction showed some spatial cohesion over the study extent (Fig. 142).

The semivariogram showed autocorrelation present in the data (Fig. 143). There was an excellent
fit between measured and predicted values, particularly in the lower range (Fig. 143). However,
the model showed poor cross-validation statistics (Table 58) with a standardized root mean
square error greater than 1, indicating that variability in the predictions has been underestimated.
The error map showed high error along the edges of the study extent (Fig. 144). The kriged

surface is presented in Fig. 145.

Table 57. Distributional properties of
Surface Salinity Average Range.

Property Value
Number of Observations 1160
Minimum 1.031
Maximum 5.009
Mean 1.870
Median 1.730
Standard Deviation 0.484
Skewness 0.994
Kurtosis 4.776
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Fig. 141. Distribution of Surface Salinity
Average Range. Histogram was illustrated using
10 bins. Y axis is shown at 1072,

Fig. 142. Normal Q-Q plot for data values of Surface Salinity Average Range. Points falling
under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 143. Left panel: Semivariogram of Surface Salinity Average Range. Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.168 degrees; number of lags: 12; Parameter: 2; Range: 1.264
degrees; Partial Sill: 0.153. Right panel: Scatterplot of predicted values versus observed values
for the model of Surface Salinity Average Range.

Table 58. Results of cross-validation of the kriged model for Surface Salinity Average Range.

Prediction error Value
Number of Observations 1160
Overall Mean Error -7.544 x 10
Root Mean Square Prediction Error 0.048
Standardized Mean 7.539 x 107
Standardized Root Mean Square Prediction Error 2.108
Average Standard Error 0.020
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Fig. 144. Prediction standard error surface of Surface Salinity Average Range.
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Fig. 145. Interpolated prediction surface of Surface Salinity Average Range.
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Current Speed

Currents move water and heat around in the world’s oceans and influence the chemical
composition of the water column. Upwelling and downwelling currents strongly influence the
distribution and abundance of marine life. Similarly, current speed determines the rate at which
food particles reach benthic species through both vertical and horizontal transmission and
consequently influences the distribution of filter-feeding species. Upwelling currents enhance
productivity in the water column, while downwelling currents bring food and oxygen to the sea
floor. Organisms also use currents for active and passive transport for migration and dispersal.
Current speed can influence morphology, especially of marine macrophytes.

Bottom Current Mean

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 59,
Fig. 146). The data were higher than predicted by a normal distribution at both tails (Fig. 147).
Mid-range values were lower than the reference line. The areas of over- and under-prediction
showed little spatial pattern with both error types distributed throughout the study extent (Fig.
147).

The semivariogram showed moderate autocorrelation present in the data (Fig. 148). There was a
fair fit between measured and predicted values (Fig. 148), and the model showed good cross-
validation statistics (Table 60) indicating that it was good at prediction. The error map showed
high error along the edges of the study extent (Fig. 149). The kriged surface is presented in Fig.
150.

Table 59. Distributional properties of

Bottom Current Mean (m s™).
Property Value
Number of Observations 1143
Minimum 0.002
Maximum 0.135
Mean 0.026
Median 0.020 j T I ¥
Standard Deviation 0.021 Fig. 146. Distribution of Bottom Current Mean
Skewness 2.337 (m s™). Histogram was illustrated using 10 bins.
Kurtosis 9.179 X axis is shown at 10; Y axis is shown at 1072,
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Fig. 147. Normal Q-Q plot for data values of Bottom Current Mean (m s™). Points falling under
(upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 148. Left panel: Semivariogram of Bottom Current Mean (m s™). Binned values are shown
as red dots; average points are shown as blue crosses; the model fit to the averaged values is
shown as a blue line. Lag size: 0.341 degrees; number of lags: 12; Parameter: 2; Range: 2.729
degrees; Partial Sill: 3.948 x 10™. Right panel: Scatterplot of predicted values versus observed
values for the model of Bottom Current Mean (m s™).

Table 60. Results of cross-validation of the kriged model for Bottom Current Mean (m s™).

Prediction error Value
Number of Observations 1143
Overall Mean Error 9.819 x 10°
Root Mean Square Prediction Error 8.853 x 10°®
Standardized Mean 0.013
Standardized Root Mean Square Prediction Error 1.019
Average Standard Error 8.659 x 10
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Fig. 149. Prediction standard error surface of Bottom Current Mean (m s™%).
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Fig. 150. Interpolated prediction surface of Bottom Current Mean (m s™).
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Bottom Current Minimum

This variable displayed a right-skewed, highly leptokurtic distribution and outlying data in the
upper range (Table 61, Fig. 151). The data were higher than predicted by a normal distribution at
both tails and lower than predicted at mid-range values (Fig. 152). The areas of over- and under-
prediction did not show a strong spatial pattern with both error types distributed throughout the
study extent (Fig. 152).

The semivariogram showed weak autocorrelation present in the data (Fig. 153). The fit between
measured and predicted values was very poor (Fig. 153). Nevertheless, the model showed good
cross-validation statistics (Table 62) indicating that it was good at prediction. The error map
showed high error along the edges of the study extent (Fig. 154). The kriged surface is presented
in Fig. 155.

Table 61. Distributional properties of
Bottom Current Minimum (m s™).
Property Value
Number of Observations 1143
Minimum 1.000 x 10°°
Maximum 0.015 -
Mean 8.296 x 10™
Median 3073 X 10-4 0 0.15 0.31 0.46 051 D;t;lt.mau 8z 1.07 123 1.38 153
Standard Deviation 1.482 x 10 Fig. 151. Distribution of Bottom Current
Skewness 4.273 Minimum (m s%). Histogram was illustrated
Kurtosis 27 666 using 10 bins. X axis shown at 10% Y axis is
shown at 107,
0.92 JD
0.61 ﬁi//
EIS:lO /
0.61 ’/l//
0.31 ?/’,

0.
333 266 2 133 067 0 067 133 2 268 3.33)
Standard Normal Value

Fig. 152. Normal Q-Q plot for data values of Bottom Current Minimum (m s™). Points falling
under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 153. Left panel: Semivariogram of Bottom Current Minimum (m s™). Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.572 degrees; number of lags: 12; Parameter: 2; Range: 4.577
degrees; Partial Sill: 1.509 x 10°°. Right panel: Scatterplot of predicted values versus observed
values for the model of Bottom Current Minimum (m s™).

Table 62. Results of cross-validation of the kriged model for Bottom Current Minimum (m s™).

Prediction error Value
Number of Observations 1143

Overall Mean Error -7.284 x 10°®
Root Mean Square Prediction Error 1.170 x 10°®
Standardized Mean -6.106 x 10
Standardized Root Mean Square Prediction Error 1.027
Average Standard Error 1.135 x 10°°

101



65°W 60°W B5"W

W@{ QUEBEC NEWFOUNDLAND

NEW BRUNSWICK

,-rf*

PEI

45°N

40°N

Bottom Current Minimum (m s)

pr 0.0005
-0.0003
0.0002 0 100 200 400

| — Kilometers

Fig. 154. Prediction standard error surface of Bottom Current Minimum (m s%).
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Fig. 155. Interpolated prediction surface of Bottom Current Minimum (m s™).
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Bottom Current Maximum

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 63,
Fig. 156). The data were higher than predicted by a normal distribution at both tails, with mid-
range values located below the reference line (Fig. 157). The areas of over- and under-prediction
did not show a strong spatial pattern with both error types distributed through the study extent
(Fig. 157).

The semivariogram showed moderate autocorrelation present in the data (Fig. 158). There was a
poor fit between the measured and predicted values (Fig. 158). Nevertheless, the model showed
good cross-validation statistics (Table 64) indicating that it was good at prediction. The error
map showed high error along the edges of the study extent (Fig. 159). The kriged surface is
presented in Fig. 160.

Frequency -10 2
4.97

Table 63. Distributional properties of
Bottom Current Maximum (m s™).
Property Value
Number of Observations 1143
Minimum 0.006
Maximum 0.440
Mean 0.088
Median 0.066 0.08 05 093 1.368 1.8 Djé:Et‘ln 286 31 353 397 4.4
Standard Deviation 0.071 Flg 156. Distribution of Bottom Current
Maximum (m s?). Histogram was illustrated
Skewness 2.106 ; . o o
. using 10 bins. X axis is shown at 10; Y axis is
Kurtosis 7.480 shown at 1072,
fﬁ’”

0.08, o0&
333 266 -2 133 067 0 067 133 2 266 3.33)

Standard Normal Value

Dataset 10
44

0.08. ’ t
333 266 2 133 067 [\ 067 133 2 2568 3.33)
Standard Normal Value

Fig. 157. Normal Q-Q plot for data values of Bottom Current Maximum (m s™). Points falling
under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 158. Left panel: Semivariogram of Bottom Current Maximum (m s). Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.377 degrees; number of lags: 12; Parameter: 2; Range: 3.014
degrees; Partial Sill: 0.005. Right panel: Scatterplot of predicted values versus observed values
for the model of Bottom Current Maximum (m s™).

Table 64. Results of cross-validation of the kriged model for Bottom Current Maximum (m s™).

Prediction error Value
Number of Observations 1143
Overall Mean Error 3.073x 10™
Root Mean Square Prediction Error 0.030
Standardized Mean 0.012
Standardized Root Mean Square Prediction Error 1.032
Average Standard Error 0.029
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Fig. 159. Prediction standard error surface of Bottom Current Maximum (m s™).
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Fig. 160. Interpolated prediction surface of Bottom Current Maximum (m s2).
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Bottom Current Range

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 65,
Fig. 161). The data were higher than predicted by a normal distribution at both tails, with mid-
range values located below the reference line (Fig. 162). The areas of over- and under-prediction
did not show a strong spatial pattern with both error types distributed through the study extent
(Fig. 162).

The semivariogram showed little autocorrelation present in the data (Fig. 163). There was a poor
fit between the measured and predicted values. Nevertheless, the model showed good cross-
validation statistics (Table 66) indicating that it was good at prediction. The error map showed
high error along the edges of the study extent (Fig. 164). The kriged surface is presented in Fig.
165.

Table 65. Distributional properties of

Bottom Current Range (m s™).

Property Value

Number of Observations 1143

Minimum 0.006

Maximum 0.439

Mean 0.087

Median 0_065 I]DIJS 0.49 0.93 1.38 179 D:S:Etllo 2868 3.09 353 396 439
Standard Deviation 0.070 Fig. 161. Distribution of Bottom Current Range
Skewness 2.089 (m s™). Histogram was illustrated using 10 bins.
Kurtosis 7.400 X axis is shown at 10; Y axis is shown at 107.
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Fig. 162. Normal Q-Q plot for data values of Bottom Current Range (m s™). Points falling under
(upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 163. Left panel: Semivariogram of Bottom Current Range (m s). Binned values are shown
as red dots; average points are shown as blue crosses; the model fit to the averaged values is
shown as a blue line. Lag size: 0.377 degrees; number of lags: 12; Parameter: 2; Range: 3.014
degrees; Partial Sill: 0.005. Right panel: Scatterplot of predicted values versus observed values
for the model of Bottom Current Range (m s™).

Table 66. Results of cross-validation of the kriged model for Bottom Current Range (m s™).

Prediction error Value
Number of Observations 1143
Overall Mean Error 3.040 x 10™
Root Mean Square Prediction Error 0.030
Standardized Mean 0.012
Standardized Root Mean Square Prediction Error 1.033
Average Standard Error 0.029
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Fig. 164. Prediction standard error surface of Bottom Current Range (m s™).
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Fig. 165. Interpolated prediction surface of Bottom Current Range (m s2).
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Bottom Current Average Minimum

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 67,
Fig. 166). The data were higher than predicted by a normal distribution at both tails with mid-
range values located below the reference line (Fig. 167). The areas of over- and under-prediction
did not show a strong spatial pattern with both error types distributed across the study extent

(Fig. 167).

The semivariogram showed little autocorrelation present in the data and the model showed poor
fit between measured and predicted values (Fig. 168). Nevertheless, the model showed good
cross-validation statistics (Table 68) indicating that it was good at prediction. The error map
showed high error along the edges of the study extent (Fig. 169). The kriged surface is presented

in Fig. 170.

Table 67. Distributional properties of

Frequency - 10
5

0
002 0.45 087 13 172 215 257 3 343 385 428
Dataset-10°

Fig. 166. Distribution of Bottom Current
Average Minimum (m s?). Histogram was
illustrated using 10 bins. X axis is shown at 10%;
Y axis is shown at 107,

Bottom Current Average Minimum (m s™).
Property Value
Number of Observations 1143
Minimum 2.300 x 10™
Maximum 0.043
Mean 5.477 x 107
Median 3.841x 10°
Standard Deviation 5.319 x 10
Skewness 2.670
Kurtosis 12.276

: ﬁ
Ve
/,4'/

="

0.02
333 266 -2 -133 067 0 057 133 2
Standard Normal Value

Fig. 167. Normal Q-Q plot for data values of Bottom Current Average Minimum (m s). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 168. Left panel: Semivariogram of Bottom Current Average Minimum (m s™). Binned
values are shown as red dots; average points are shown as blue crosses; the model fit to the
averaged values is shown as a blue line. Lag size: 0.341 degrees; number of lags: 12; Parameter:
2; Range: 2.729 degrees; Partial Sill: 2.053 x 10®. Right panel: Scatterplot of predicted values
versus observed values for the model of Bottom Current Average Minimum (m s™%).

Table 68. Results of cross-validation of the kriged model for Bottom Current Average Minimum
(ms™.

Prediction error Value
Number of Observations 1143

Overall Mean Error -3.809 x 10°®
Root Mean Square Prediction Error 3.258 x 107
Standardized Mean -2.347 x 10™
Standardized Root Mean Square Prediction Error 1.014
Average Standard Error 3.198 x 10°®
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Fig. 169. Prediction standard error surface of Bottom Current Average Minimum (m s™).
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Fig. 170. Interpolated prediction surface of Bottom Current Average Minimum (m s™).
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Bottom Current Average Maximum

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 69,
Fig. 171). The data were higher than predicted by a normal distribution at both tails and lower at
mid-range values (Fig. 172). The areas of over- and under-prediction did not show a strong
spatial pattern with both error types distributed across the study extent (Fig. 172).

The semivariogram showed little autocorrelation present in the data and the model showed poor
fit between measured and predicted values (Fig. 173). Nevertheless, the model showed good
cross-validation statistics (Table 70) indicating that it was good at prediction. The error map
showed high error along the edges of the study extent (Fig. 174). The kriged surface is presented
in Fig. 175.

Table 69. Distributional properties of

Bottom Current Average Maximum

(ms™).

Property Value

Number of Observations 1143

Minimum 0.004 2

Maximum 0.267 '

Mean 0.056 N N R T T e ===
Median 0.042 e

Fig. 171. Distribution of Bottom Current

Standard Deviation 0.046 Average Maximum (m s?). Histogram was
Skewness 2.188 illustrated using 10 bins. X axis is shown at 10; Y
Kurtosis 7.983 axis is shown at 10,
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Fig. 172. Normal Q-Q plot for data values of Bottom Current Average Maximum (m s™). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 173. Left panel: Semivariogram of Bottom Current Average Maximum (m s™). Binned
values are shown as red dots; average points are shown as blue crosses; the model fit to the
averaged values is shown as a blue line. Lag size: 0.395 degrees; number of lags: 12; Parameter:
1.831; Range: 3.157 degrees; Partial Sill: 2.106 x 102, Right panel: Scatterplot of predicted
values versus observed values for the model of Bottom Current Average Maximum (m s™).

Table 70. Results of cross-validation of the kriged model for Bottom Current Average Maximum
(ms™.

Prediction error Value
Number of Observations 1143
Overall Mean Error 2.587 x 10
Root Mean Square Prediction Error 0.018
Standardized Mean 0.017
Standardized Root Mean Square Prediction Error 1.022
Average Standard Error 0.017
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Fig. 174. Prediction standard error surface of Bottom Current Average Maximum (m s™).
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Fig. 175. Interpolated prediction surface of Bottom Current Average Maximum (m s™).
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Bottom Current Average Range

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 71,
Fig. 176). The data were higher than predicted by a normal distribution at both tails, with mid-
range values located below the reference line (Fig. 177). The areas of over- and under-prediction
did not show a strong spatial pattern with both error types distributed across the study extent

(Fig. 177).

The semivariogram showed weak autocorrelation present in the data and the model showed poor
fit between measured and predicted values (Fig. 178). Nevertheless, the model showed good
cross-validation statistics (Table 72) indicating that it was good at prediction. The error map
showed high error along the edges of the study extent (Fig. 179). The kriged surface is presented

in Fig. 180.

Table 71. Distributional properties of
Bottom Current Average Range (m s™).

Frequency 10~
481

3.85

0 —
0.04 027 05 073 087 12 143 166 1.88 213 236

Dataset 10

Fig. 176. Distribution of Bottom Current
Average Range (m s%). Histogram was
illustrated using 10 bins. X axis is shown at 10;
Y axis is shown at 107,

Property Value
Number of Observations 1143
Minimum 0.004
Maximum 0.236
Mean 0.051
Median 0.037
Standard Deviation 0.041
Skewness 2.126
Kurtosis 7.629
j: Wﬁw
/
/f/
— ~T_

067 0 067 133 2
Standard Normal Value
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Fig. 177. Normal Q-Q plot for data values of Bottom Current Average Range (m s™). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 178. Left panel: Semivariogram of Bottom Current Average Range (m s™). Binned values
are shown as red dots; average points are shown as blue crosses; the model fit to the averaged
values is shown as a blue line. Lag size: 0.413 degrees; number of lags: 12; Parameter: 2; Range:
3.307 degrees; Partial Sill: 1.790 x 10°. Right panel: Scatterplot of predicted values versus
observed values for the model of Bottom Current Average Range (m s™).

Table 72. Results of cross-validation of the kriged model for Bottom Current Average Range (m
-1
s7).

Prediction error Value
Number of Observations 1143
Overall Mean Error 2.515x 10
Root Mean Square Prediction Error 0.016
Standardized Mean 0.018
Standardized Root Mean Square Prediction Error 1.023
Average Standard Error 0.015
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Fig. 179. Prediction standard error surface of Bottom Current Average Range (m s™).
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Fig. 180. Interpolated prediction surface of Bottom Current Average Range (m s™).
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Surface Current Mean

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 73,
Fig. 181). The data were higher than predicted by a normal distribution at both tails, with mid-
range values located below the reference line (Fig. 182). The areas of over- and under-prediction
showed spatial cohesion across the study extent (Fig. 182).

The semivariogram showed weak autocorrelation present in the data (Fig. 183). There was an
excellent fit between measured and predicted values (Fig. 183). The cross-validation statistics
were fair (Table 74). The error map showed a ‘bullseye’ pattern with error increasing with
distance from data points (Fig. 184). The kriged surface is presented in Fig. 185.

Table 73. Distributional properties of
Surface Current Mean (m s™).

Frequency 10
317

0
0.16 0.49 0.52 1186 1.49 1.82 2186 2.49 2.8z 3.16 3.49
Dataset- 10

Fig. 181. Distribution of Surface Current Mean
(m s%). Histogram was illustrated using 10 bins.
X axis is shown at 10; Y axis is shown at 107,

Property Value
Number of Observations 1152
Minimum 0.016
Maximum 0.349
Mean 0.118
Median 0.098
Standard Deviation 0.066
Skewness 1.123
Kurtosis 3.603

0.16.
-333 -266 -2 -1.33 -067 0 087 133 2 266
Standard Mormal Value

Fig. 182. Normal Q-Q plot for data values of Surface Current Mean (m s™). Points falling under
(upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 183. Left panel: Semivariogram of Surface Current Mean (m s™). Binned values are shown
as red dots; average points are shown as blue crosses; the model fit to the averaged values is
shown as a blue line. Lag size: 0.087 degrees; number of lags: 12; Parameter: 2; Range: 0.696
degrees; Partial Sill: 7.323 x 10™. Right panel: Scatterplot of predicted values versus observed
values for the model of Surface Current Mean (m s™).

Table 74. Results of cross-validation of the kriged model for Surface Current Mean (m s™).

Prediction error Value
Number of Observations 1152
Overall Mean Error -5.01x 10°
Root Mean Square Prediction Error 4128 x 107
Standardized Mean 4.624 x 10
Standardized Root Mean Square Prediction Error 1.435
Average Standard Error 3.097 x 10
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Fig. 184. Prediction standard error surface of Surface Current Mean (m s™).
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Surface Current Minimum

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 75,
Fig. 186). The data were higher than predicted by a normal distribution at both tails, with mid-
range values located below the reference line (Fig. 187). The areas of over- and under-prediction
showed little spatial pattern with both error types distributed randomly across the study extent
(Fig. 187).

The semivariogram showed weak autocorrelation present in the data, with a poor fit between
measured and predicted values (Fig. 188). Nevertheless, good performance of the model was
indicated by the good cross-validation statistics (Table 76). The error map showed a ‘bullseye’
pattern with error increasing with distance from data points (Fig. 189). The kriged surface is
presented in Fig. 190.

Table 75. Distributional properties of
Surface Current Minimum (m s™).
Property Value
Number of Observations 1152
Minimum 3.805 x 10°
Maximum 0.033
Mean 7.478 x 1073 -
Median 6-251 X 10-3 o 0.33 067 1 1.33 1.66 21 99 232 265 2988 331
. . -3 ataset - 10
Standard Deviation 5.326 x 10 Fig. 186. Distribution of Surface Current
Skewness 1.282 Minimum (m s™). Histogram was illustrated
Kurtosis 5.173 using 10 bins. X axis shown at 10% Y axis
shown at 107,
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e
0.67 /

0. z
333 266 2 133 067 0 067 133 2 268 3.33)
Standard Normal Value

Fig. 187. Normal Q-Q plot for data values of Surface Current Minimum (m s™). Points falling
under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 188. Left panel: Semivariogram of Surface Current Minimum (m s™). Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 1.219 degrees; number of lags: 12; Parameter: 0.822; Range:
9.749 degrees; Partial Sill: 2.141 x 10™. Right panel: Scatterplot of predicted values versus
observed values for the model of Surface Current Minimum (m s™).

Table 76. Results of cross-validation of the kriged model for Surface Current Minimum (m s™).

Prediction error Value
Number of Observations 1152
Overall Mean Error -3.170 x 10°®
Root Mean Square Prediction Error 4304 x 10°
Standardized Mean -8.852 x 10™
Standardized Root Mean Square Prediction Error 1.054
Average Standard Error 4080 x 10
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Fig. 189. Prediction standard error surface of Surface Current Minimum (m s™).
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Fig. 190. Interpolated prediction surface of Surface Current Minimum (m s™).
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Surface Current Maximum

This variable displayed a right-skewed, platykurtic distribution prior to interpolation (Table 77,
Fig. 191). The data were higher than predicted by a normal distribution at both tails, with mid-
range values located below the reference line (Fig. 192). The areas of over- and under-prediction

showed spatial pattern (Fig. 192).

The semivariogram showed weak autocorrelation present in the data and the model (Fig. 193).
However, there was a good fit between measured and predicted values, and the model showed
good cross-validation statistics (Table 78). The error map showed a ‘bullseye’ pattern with error
increasing with distance from data points (Fig. 194). The kriged surface is presented in Fig. 195.

Table 77. Distributional properties of
Surface Current Maximum (m s™%).

Property Value
Number of Observations 1152
Minimum 0.067
Maximum 1.248
Mean 0.419
Median 0.325
Standard Deviation 0.271
Skewness 0.872
Kurtosis 2.708

0
0.07 0.19 0.3 0.42 0.54 068 078 0.89 1.01 113 1.25
Dataset

Fig. 191. Distribution of Surface Current
Maximum (m s™). Histogram was illustrated using
10 bins. Y axis is shown at 102

0.07.

333 266 2 133 067 0 067 133 2
Standard Normal Value

Fig. 192. Normal Q-Q plot for data values of Surface Current Maximum (m s™). Points falling
under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 193. Left panel: Semivariogram of Surface Current Maximum (m s). Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.063 degrees; number of lags: 12; Parameter: 2; Range: 0.506
degrees; Partial Sill: 9.460 x 10°°. Right panel: Scatterplot of predicted values versus observed
values for the model of Surface Current Maximum (m s™).

Table 78. Results of cross-validation of the kriged model for Surface Current Maximum (m s™).

Prediction error Value
Number of Observations 1152
Overall Mean Error 4.032 x 10™
Root Mean Square Prediction Error 0.036
Standardized Mean 5.351 x 107
Standardized Root Mean Square Prediction Error 1.289
Average Standard Error 0.028
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Fig. 194. Prediction standard error surface of Surface Current Maximum (m s™).
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Fig. 195. Interpolated prediction surface of Surface Current Maximum (m s™).
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Surface Current Range

This variable displayed a right-skewed, platykurtic distribution prior to interpolation (Table 79,
Fig. 196). The data were higher than predicted by a normal distribution at both tails, with mid-
range values located below the reference line (Fig. 197). The areas of over- and under-prediction

showed spatial pattern (Fig. 197).

The semivariogram showed weak autocorrelation present in the data and the model (Fig. 198).
However, there was a good fit between measured and predicted values (Fig. 198), and the model
showed good cross-validation statistics (Table 80). The error map showed a ‘bullseye’ pattern
with error increasing with distance from data points (Fig. 199). The kriged surface is presented in

Fig. 200.

Table 79. Distributional properties of
Surface Current Range (m s™).

Frequency 10
267

2.14

0
0.07 0.18 0.3 0.42 0.53 0.65 077 0.88 1 1.11 1.23
Dataset

Fig. 196. Distribution of Surface Current Range
(m s™). Histogram was illustrated using 10 bins.
Y axis is shown at 1072,

Property Value
Number of Observations 1152
Minimum 0.067
Maximum 1.231
Mean 0.412
Median 0.137
Standard Deviation 0.268
Skewness 0.873
Kurtosis 2.703

Pt —
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Fig. 197. Normal Q-Q plot for data values of Surface Current Range (m s™). Points falling under
(upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 198. Left panel: Semivariogram of Surface Current Range (m s). Binned values are shown
as red dots; average points are shown as blue crosses; the model fit to the averaged values is
shown as a blue line. Lag size: 0.063 degrees; number of lags: 12; Parameter: 2; Range: 0.506
degrees; Partial Sill: 9.332 x 10 Right panel: Scatterplot of predicted values versus observed
values for the model of Surface Current Range (m s™).

Table 80. Results of cross-validation of the kriged model for Surface Current Range (m s™).

Prediction error Value
Number of Observations 1152
Overall Mean Error 4.181 x 10™
Root Mean Square Prediction Error 0.037
Standardized Mean 5.681 x 107
Standardized Root Mean Square Prediction Error 1.339
Average Standard Error 0.029
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Fig. 199. Prediction standard error surface of Surface Current Range (m s™).
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Fig. 200. Interpolated prediction surface of Surface Current Range (m s™).
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Surface Current Average Minimum

This variable displayed slight positive skew and leptokurtosis prior to interpolation (Table 81,
Fig. 201). The data were higher than predicted by a normal distribution at both tails, with mid-
range values located below the reference line (Fig. 202). The areas of over- and under-prediction

showed a slight spatial pattern (Fig. 202).

The semivariogram showed moderate autocorrelation present in the data and the model showed
fair fit between measured and predicted values (Fig. 203). Nevertheless, the model showed good
cross-validation statistics (Table 82) indicating that it was good at prediction. The error map
showed low error and no strong spatial pattern over the study extent although error was highest
along the coast and in deep waters (Fig. 204). The kriged surface is presented in Fig. 205.

Table 81. Distributional properties of

Surface Current Average Minimum (m s™).

Frequency - 10

0 |

017 1.04 1.21 2.78 365 252 39 626 712 7.98 385
Dataset 10°

Fig. 201. Distribution of Surface Current Average
Minimum (m s™). Histogram was illustrated using
10 bins. X axis shown at 10%; Y axis shown at 10°.

Property Value
Number of Observations 1152
Minimum 1.739x 103
Maximum 0.089
Mean 0.032
Median 0.030
Standard Deviation 0.015
Skewness 0.739
Kurtosis 3.327

7.12| M g :

3.65 ///

0.17,0 2° M’—/

;SE /1/

0.17.
333 286 2 133 067 0 067
Standard Normal Value

133 2

Fig. 202. Normal Q-Q plot for data values of Surface Current Average Minimum (m s™). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 203. Left panel: Semivariogram of Surface Current Average Minimum (m s™). Binned
values are shown as red dots; average points are shown as blue crosses; the model fit to the
averaged values is shown as a blue line. Lag size: 0.106 degrees; number of lags: 12; Parameter:
2; Range: 0.849 degrees; Partial Sill: 7.512 x 10®. Right panel: Scatterplot of predicted values
versus observed values for the model of Surface Current Average Minimum (m s™).

Tablci 82. Results of cross-validation of the kriged model for Surface Current Average Minimum
(ms™).

Prediction error Value
Number of Observations 1152
Overall Mean Error 3.537x 10°
Root Mean Square Prediction Error 3.949 x 10°®
Standardized Mean 4.886 x 107
Standardized Root Mean Square Prediction Error 1.102
Average Standard Error 3.531x 10°
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Fig. 204. Prediction standard error surface of Surface Current Average Minimum (m s™).

65°W 60°wW 85°W

NEWFOUNDLAND

.
) QUEBEC

@ ,

NEW BRUNSWICK - ‘

PEl

45°N

.

40°N

Surface Current Average Minimum (ms™")

e 0.0883
-0.0350
0.0007 0 100 200 400

| Kilometers

Fig. 205. Interpolated prediction surface of Surface Current Average Minimum (m s™).
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Surface Current Average Maximum

This variable displayed a slightly right-skewed distribution prior to interpolation (Table 83, Fig.
206). The data were higher than predicted by a normal distribution at both tails, with mid-range
values located below the reference line (Fig. 207). The areas of over- and under-prediction
showed a strong spatial pattern (Fig. 207).

The semivariogram showed weak autocorrelation present in the data (Fig. 208). The model
showed excellent fit between measured and predicted values (Fig. 208), but poor performance
was indicated by the cross-validation statistics (Table 84). The Standardized Root-Mean-Square
Prediction Error was less than 1, indicating that variability in the predictions has been
overestimated. The error map showed a ‘bullseye’ pattern with error increasing with distance
from data points (Fig. 209). The kriged surface is presented in Fig. 210.

Table 83. Distributional properties of
Surface Current Average Maximum

Frequency 10
25

(ms™.
Property Value :
Number of Observations 1152
Minimum 0.040 "
Maximum 0.718
Mean 0.255 E‘ljﬂﬂ 1.08 1.76 244 312 3.79 447 s15 5.82 6.5 718
Median 0.198 ' — bamsetio -
Standard Deviation 0.160 Fig. 206. Distribution of Surface Current
Average Maximum (m s™). Histogram was

Skewn_ess 1.061 illustrated using 10 bins. X axis shown at 10; Y
Kurtosis 3.068  axis shown at 1072
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Fig. 207. Normal Q-Q plot for data values of Surface Current Average Maximum (m s™). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 208. Left panel: Semivariogram of Surface Current Average Maximum (m s™). Binned
values are shown as red dots; average points are shown as blue crosses; the model fit to the
averaged values is shown as a blue line. Lag size: 0.065 degrees; number of lags: 12; Parameter:
2; Range: 0.517 degrees; Partial Sill: 2.768 x 10. Right panel: Scatterplot of predicted values
versus observed values for the model of Surface Current Average Maximum (m s™).

Table 84. Results of cross-validation of the kriged model for Surface Current Average Maximum

(ms™).

Prediction error Value
Number of Observations 1152
Overall Mean Error 5.851 x 10”
Root Mean Square Prediction Error 0.010
Standardized Mean -9.394 x 10™
Standardized Root Mean Square Prediction Error 0.672
Average Standard Error 0.014
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Surface Current Average Range

This variable displayed a slightly right-skewed distribution prior to interpolation (Table 85, Fig.
211). The data were higher than predicted by a normal distribution at both tails, with mid-range
values located below the reference line (Fig. 212). The areas of over- and under-prediction
showed a strong spatial pattern (Fig. 212).

The semivariogram showed weak autocorrelation present in the data (Fig. 213). The model
showed excellent fit between measured and predicted values (Fig. 213), and good performance
was indicated by the cross-validation statistics (Table 86). The error map showed a ‘bullseye’
pattern with error increasing with distance from data points (Fig. 214). The kriged surface is
presented in Fig. 215.

Table 85. Distributional properties of
Surface Current Average Range (m s™).
Property Value n
Number of Observations 1152
Minimum 0.039
Maximum 0.641
Mean 0.223
M ed i an O . 168 E?.SD 0.99 1.59 219 2.8 DaZ;ZEt " 4 48 52 581 541
Standard Deviation 0.147 Fig. 211. Distribution of Surface Current Average
Skewness 1.084 Range (m s). Histogram was illustrated using 10
Kurtosis 3071 bins. X axis shown at 10; Y axis shown at 107,
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Fig. 212. Normal Q-Q plot for data values of Surface Current Average Range (m s™). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 213. Left panel: Semivariogram of Surface Current Average Range (m s™). Binned values
are shown as red dots; average points are shown as blue crosses; the model fit to the averaged
values is shown as a blue line. Lag size: 0.063 degrees; number of lags: 12; Parameter: 2; Range:
0.506 degrees; Partial Sill: 2.232 x 10. Right panel: Scatterplot of predicted values versus
observed values for the model of Surface Current Average Range (m s™).

Table 86. Results of cross-validation of the kriged model for Surface Current Average Range (m

sh).

Prediction error Value
Number of Observations 1152
Overall Mean Error 1.244 x 10*
Root Mean Square Prediction Error 0.011
Standardized Mean 3.765 x 10°®
Standardized Root Mean Square Prediction Error 0.749
Average Standard Error 0.014
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Fig. 214. Prediction standard error surface of Surface Current Average Range (m s™).
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Maximum Seasonal Mixed Layer Depth

Maximum mixed layer depth, or, the depth at which surface vertical mixing dissipates, is a near-
universal feature of the open ocean (de Boyer Montégut et al., 2004). Within this mixed layer,
salinity, temperature, or density are nearly uniform, a phenomenon caused by surface forcing,
lateral advection, and internal wave processes that vary on diurnal, intra-seasonal, seasonal, and
inter-annual scales (de Boyer Montégut et al., 2004). The depth of this mixed zone can show
large spatial variability, ranging from less than 20 m in the summer hemisphere, to more than
500 m in the winter hemisphere at subpolar latitudes (de Boyer Montégut et al., 2004). The
mixed layer depth has a significant influence on primary production in the surface waters. As the
mixed layer depth increases it entrains nutrients from deeper waters below, supplying additional
nutrients for primary production (Polovina et al., 1995; Carstensen et al., 2002).

Maximum Spring Mixed Layer Depth

This variable displayed a right-skewed distribution prior to interpolation (Table 87, Fig. 216).
The data were higher than predicted by a normal distribution at both tails, with mid-range values
located below the reference line (Fig. 217). The areas of over- and under-prediction showed no
strong spatial pattern (Fig. 217).

The semivariogram showed weak autocorrelation present in the data (Fig. 218). The model
showed a good fit between measured and predicted values (Fig. 218), but only fair performance
as indicated by the cross validation statistics (Table 88). The error map showed a ‘bullseye’
pattern with error increasing with distance from data points (Fig. 219). The kriged surface is
presented in Fig. 220.

Table 87. Distributional properties of

Maximum Spring Mixed Layer Depth (m).
Property Value
Number of Observations 1160 ==
Minimum 11.762 ..
Maximum 282.250
Mean 61.667 |
Median 33.134 $iz  oss  oes ui‘:é;m_; |74 201 28 2 es2
Standard Deviation 55.948  Fig. 216. Distribution of Maximum Spring Mixed
Skewness 1.545 Layer Depth (m). Histogram was illustrated using
Kurtosis 4352 10 bins. X axis is shown at 10 Y axis is shown

at 1072
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Fig. 218. Left panel: Semivariogram of Maximum Spring Mixed Layer Depth (m). Binned
values are shown as red dots; average points are shown as blue crosses; the model fit to the
averaged values is shown as a blue line. Lag size: 0.603 degrees; number of lags: 12; Parameter:
1.494; Range: 4.827 degrees; Partial Sill: 4082.815. Right panel: Scatterplot of predicted values
versus observed values for the model of Maximum Spring Mixed Layer Depth (m).

Table 88. Results of cross-validation of the kriged model for Maximum Spring Mixed Layer

Depth (m).
Prediction error Value
Number of Observations 1160
Overall Mean Error 0.026
Root Mean Square Prediction Error 8.664
Standardized Mean 1.889 x 10°®
Standardized Root Mean Square Prediction Error 1.243
Average Standard Error 6.869
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Maximum Summer Mixed Layer Depth

This variable displayed a right-skewed distribution and slight bimodality prior to interpolation
(Table 89, Fig. 221). The data were higher than predicted by a normal distribution at both tails,
with mid-range values located below the reference line (Fig. 222). The areas of over- and under-
prediction showed a spatial pattern (Fig. 222).

The semivariogram showed weak autocorrelation present in the data (Fig. 223). The model
showed a good fit between measured and predicted values (Fig. 223), but only fair performance
as indicated by the cross validation statistics (Table 90). The error map showed a ‘bullseye’
pattern with error increasing with distance from data points (Fig. 224). The kriged surface is
presented in Fig. 225.

Table 89. Distributional properties of

Maximum Summer Mixed Layer Depth (m).

Property Value ==

Number of Observations 1160 |.

Minimum 10.794

Maximum 44340

Mean 21990 |

Median {220 I ) B A
Standard Deviation 7.857 e

Skewness 0057 Fig. 221. Distribution of Maximum Summer
Kurtosi 2.910 Mixed Layer Depth (m). Histogram was
e : illustrated using 10 bins. X axis is shown at 10™%;
Y axis is shown at 1072,

378, ijM

3.09 /

[2.42] //F

2.42 /)!/

333 267 2 133 -067 0 067 133 2 287 333
Standard Normal Value

Fig. 222. Normal Q-Q plot for data values of Maximum Summer Mixed Layer Depth (m). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 223. Left panel: Semivariogram of Maximum Summer Mixed Layer Depth (m). Binned
values are shown as red dots; average points are shown as blue crosses; the model fit to the
averaged values is shown as a blue line. Lag size: 1.219 degrees; number of lags: 12; Parameter:
1.054; Range: 9.749 degrees; Partial Sill: 95.022. Right panel: Scatterplot of predicted values
versus observed values for the model of Maximum Summer Mixed Layer Depth (m).

Table 90. Results of cross-validation of the kriged model for Maximum Summer Mixed Layer
Depth (m).

Prediction error Value
Number of Observations 1160

Overall Mean Error -6.465 x 10
Root Mean Square Prediction Error 1.183
Standardized Mean -1.250 x 10°®
Standardized Root Mean Square Prediction Error 0.618
Average Standard Error 1.916
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Maximum Fall Mixed Layer Depth

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 91,
Fig. 226). The data were higher than predicted by a normal distribution at both tails, with mid-
range values located below the reference line (Fig. 227). The areas of over- and under-prediction

showed spatial pattern (Fig. 227).

The semivariogram showed weak autocorrelation present in the data (Fig. 228). The model
showed a good fit between measured and predicted values (Fig. 228), and good performance as
indicated by the cross validation statistics (Table 92). The error map showed a ‘bullseye’ pattern
with error increasing with distance from data points (Fig. 229). The kriged surface is presented in

Fig. 230.
Table 91. Distributional properties of
Maximum Fall Mixed Layer Depth (m).
Property Value N
Number of Observations 1160 =
Minimum 11.985
Maximum 215.33
Mean 64.812
Median 51220 01z 022 053 073 0.83 D;;:Et.m_; 34 1.54 1.75 1.95 2‘15
Standard Deviation 35.349 Fig. 226. Distribution of Maximum Fall Mixed
Skewness 1.279 Layer Depth (m). Histogram was illustrated using
Kurtosis 4.415 10 bins. X and Y axes shown at 1072
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Fig. 227. Normal Q-Q plot for data values of Maximum Fall Mixed Layer Depth (m). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 228. Left panel: Semivariogram of Maximum Fall Mixed Layer Depth (m). Binned values
are shown as red dots; average points are shown as blue crosses; the model fit to the averaged
values is shown as a blue line. Lag size: 0.694 degrees; number of lags: 12; Parameter: 1.483,;
Range: 5.548 degrees; Partial Sill: 1742.209. Right panel: Scatterplot of predicted values versus
observed values for the model of Maximum Fall Mixed Layer Depth (m).

Table 92. Results of cross-validation of the kriged model for Maximum Fall Mixed Layer Depth

(m).

Prediction error Value
Number of Observations 1160
Overall Mean Error 0.030

Root Mean Square Prediction Error 4.671
Standardized Mean 3.257x 107
Standardized Root Mean Square Prediction Error 1.102
Average Standard Error 4.148
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Maximum Winter Mixed Layer Depth

This variable displayed a right-skewed distribution and kurtosis (Table 93, Fig. 231). The data
were higher than predicted by a normal distribution at both tails, with mid-range values located
below the reference line (Fig. 232). The areas of over- and under-prediction showed a strong
spatial pattern (Fig. 232).

The semivariogram showed little to no autocorrelation present in the data (Fig. 233). The model
showed a good fit between measured and predicted values (Fig. 233), and good performance was
indicated by the cross-validation statistics (Table 94). The error map showed a ‘bullseye’ pattern
with error increasing with distance from data points (Fig. 234). The kriged surface is presented in
Fig. 235.

Table 93. Distributional properties of

Maximum Winter Mixed Layer Depth (m).

Property Value 222

Number of Observations 1160

Minimum 11.982

Maximum 356520 |

Mean 99.387

Median 64.985 I T I T T B S T
Standard Deviation 75.870 e

Fig. 231. Distribution of Maximum Winter Mixed

Skewn_ess 1.165 Layer Depth (m). Histogram was illustrated using
Kurtosis 3.257 10 bins. X and Y axes are shown at 102,
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Fig. 232. Normal Q-Q plot for data values of Maximum Winter Mixed Layer Depth (m). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 233. Left panel: Semivariogram of Maximum Winter Mixed Layer Depth (m). Binned
values are shown as red dots; average points are shown as blue crosses; the model fit to the
averaged values is shown as a blue line. Lag size: 0.649 degrees; number of lags: 12; Parameter:
1.536; Range: 5.192 degrees; Partial Sill: 7905.802. Right panel: Scatterplot of predicted values
versus observed values for the model of Maximum Winter Mixed Layer Depth (m).

Table 94. Results of cross-validation of the kriged model for Maximum Winter Mixed Layer
Depth (m).

Prediction error Value
Number of Observations 1160
Overall Mean Error 0.075

Root Mean Square Prediction Error 10.383
Standardized Mean 4.062 x 107
Standardized Root Mean Square Prediction Error 1.256
Average Standard Error 8.092
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Maximum Average Spring Mixed Layer Depth

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 95,
Fig. 236). The data were higher than predicted by a normal distribution at both tails, with mid-
range values located below the reference line (Fig. 237). The areas of over- and under-prediction
showed spatial pattern (Fig. 237).

The semivariogram showed weak autocorrelation present in the data (Fig. 238). The model
showed a good fit between measured and predicted values (Fig. 238), but poor performance was
indicated by the poor cross-validation statistics (Table 96). The Standardized Root-Mean-Square
Prediction Error was greater than 1 indicating that variability in the predictions has been
underestimated. The error map showed high error along the edges of the study extent (Fig. 239).
The kriged surface is presented in Fig. 240.

Table 95. Distributional properties of
Maximum Average Spring Mixed Layer
Depth (m).
Property Value ==
Number of Observations 1160 .,
Minimum 11.022
Maximum 87.219 _
Mean 29.830 E|I1 1.86 263 338 415 491 ) 7'567 644 72 796 872
Median o 21428 Fig. 236. Distribution of Maximum Average
Standard Deviation 18.376  Spring Mixed Layer Depth (m). Histogram was
Skewness 1509 illustrated using 10 bins. X axis is shown at 10%;
Kurtosis 4043 Y axisisshown at 10
72 /Wn
5.67 j
12.63 /,
1263 /
e

333 28 2 133 087 0 087 133 2 267 333
Standard Normal Value

Fig. 237. Normal Q-Q plot for data values of Maximum Average Spring Mixed Layer Depth (m).
Points falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 238. Left panel: Semivariogram of Maximum Average Spring Mixed Layer Depth (m).
Binned values are shown as red dots; average points are shown as blue crosses; the model fit to
the averaged values is shown as a blue line. Lag size: 0.141 degrees; number of lags: 12;
Parameter: 2; Range: 1.130 degrees; Partial Sill: 131.982. Right panel: Scatterplot of predicted
values versus observed values for the model of Maximum Average Spring Mixed Layer Depth

(m).

Table 96. Results of cross-validation of the kriged model for Maximum Average Spring Mixed
Layer Depth (m).

Prediction error Value
Number of Observations 1160
Overall Mean Error 3.935x 107
Root Mean Square Prediction Error 2.000
Standardized Mean -1.155 x 10°®
Standardized Root Mean Square Prediction Error 3.524
Average Standard Error 0.671
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Maximum Average Summer Mixed Layer Depth

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 97,
Fig. 241). The data were higher than predicted by a normal distribution at both tails, with mid-
range values located below the reference line (Fig. 242). The areas of over- and under-prediction
showed spatial pattern (Fig. 242).

The semivariogram showed weak autocorrelation present in the data (Fig. 243). The model
showed an excellent fit between measured and predicted values (Fig. 243), with fair performance
indicated by the cross-validation statistics (Table 98). The error map showed a ‘bullseye’ pattern
with error increasing with distance from data points (Fig. 244). The kriged surface is presented in
Fig. 245.

Table 97. Distributional properties of

Maximum Average Summer Mixed Layer ‘

Depth (m). 260

Property Value A

Number of Observations 1160

Minimum 10.771 |

Maximum 28.408

Mean 15.879 ) SR S I I T e — —
Median 14.501

Fig. 241. Distribution of Maximum Average

Standard Deviation 4.1007 : .

K Summer Mixed Layer Depth (m). Histogram was
S EWness 1217 illustrated using 10 bins. X axis shown at 107%; Y
Kurtosis 3.528 axis is shown at 107,

249 /’&M
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1.43 ‘V

1.08
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Standard Normal Value

Fig. 242. Normal Q-Q plot for data values of Maximum Average Summer Mixed Layer Depth
(m). Points falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 243. Left panel: Semivariogram of Maximum Average Summer Mixed Layer Depth (m).
Binned values are shown as red dots; average points are shown as blue crosses; the model fit to
the averaged values is shown as a blue line. Lag size: 0.726 degrees; number of lags: 12;
Parameter: 1.599; Range: 5.812 degrees; Partial Sill: 24.448. Right panel: Scatterplot of
predicted values versus observed values for the model of Maximum Average Summer Mixed
Layer Depth (m).

Table 98. Results of cross-validation of the kriged model for Maximum Average Summer Mixed
Layer Depth (m).

Prediction error Value
Number of Observations 1160
Overall Mean Error -1.503 x 107
Root Mean Square Prediction Error 0.248
Standardized Mean -9.168 x 10™
Standardized Root Mean Square Prediction Error 0.714
Average Standard Error 0.345
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Maximum Average Fall Mixed Layer Depth

This variable displayed a right-skewed, slightly bimodal distribution prior to interpolation (Table
99, Fig. 246). The data were higher than predicted by a normal distribution at low and high
values, with mid-range and the highest values located below the reference line (Fig. 247). The
areas of over- and under-prediction showed spatial pattern (Fig. 247).

The semivariogram showed weak autocorrelation present in the data (Fig. 248). The model
showed an excellent fit between measured and predicted values (Fig. 248), but poor performance
was indicated by the cross-validation statistics (Table 100). The Standardized Root-Mean-Square
Prediction Error was greater than 1 indicating that variability in the predictions has been
underestimated. The error map showed a ‘bullseye’ pattern with error increasing with distance
from data points (Fig. 249). The kriged surface is presented in Fig. 250.

Table 99. Distributional properties of
Maximum Average Fall Mixed Layer
Depth (m).
Property Value
Number of Observations 1160
Minimum 11.907
Maximum 97.178
Mean 42'796 1U1B 204 ) 375 46 545 7631 716 8.01 8.87 872
Median o 36.894 Fig. 246. Distribution of Maximum Average
Standard Deviation 17.850 Fall Mixed Layer Depth (m). Histogram was
Skewness 0.977 illustrated using 10 bins. X axis is shown at 10°%;
Kurtosis 3.002 Y axis is shown at 10,
e
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6.3 /
46 ///
28 ) mw-/7—
Ea;zaset n! S
46 ///

1.19¢
-333 -287 -2 -1.33 -0.87 0 087 133 2 287 333
Standard Normal Valug

Fig. 247. Normal Q-Q plot for data values of Maximum Average Fall Mixed Layer Depth (m).
Points falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 248. Left panel: Semivariogram of Maximum Average Fall Mixed Layer Depth (m). Binned
values are shown as red dots; average points are shown as blue crosses; the model fit to the
averaged values is shown as a blue line. Lag size: 0.640 degrees; number of lags: 12; Parameter:
1.689; Range: 5.124 degrees; Partial Sill: 446.962. Right panel: Scatterplot of predicted values
versus observed values for the model of Maximum Average Fall Mixed Layer Depth (m).

Table 100. Results of cross-validation of the kriged model for Maximum Average Fall Mixed
Layer Depth (m).

Prediction error Value
Number of Observations 1160
Overall Mean Error 0.019

Root Mean Square Prediction Error 1.868
Standardized Mean 6.525 x 10
Standardized Root Mean Square Prediction Error 1.369
Average Standard Error 1.319

158



i A " NEWFOUNDLAND
, ,i’@t * Y ";.‘ o - | SRR T Las. “”"‘A‘—)f\’%‘—';‘\, Ly
| i
b
. ..
Maximum Average Fall Mixed Layer Depth (m) K
— 3.4312
- 0.8421
0.3337
0 100 200 400
Kilometers

Fig. 249. Prediction standard error surface of Maximum Average Fall Mixed Layer Depth (m).

NEWFOUNDLAND

45°N

40°N

Maximum Average Fall Mixed Layer Depth (m)
97.5505

-48.8188
- 10.2082

0 100 200 400
-_— Kilometers

Fig. 250. Interpolated prediction surface of Maximum Average Fall Mixed Layer Depth (m).

159



Maximum Average Winter Mixed Layer Depth

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 101,
Fig. 251). The data were higher than predicted by a normal distribution at low and high values,
with the highest and mid-range values located below the reference line (Fig. 252). The areas of
over- and under-prediction showed spatial pattern (Fig. 252).

The semivariogram showed weak autocorrelation present in the data (Fig. 253). The model
showed an excellent fit between measured and predicted values (Fig. 253), and good
performance was indicated by the cross-validation statistics (Table 102). The error map showed a
‘bullseye’ pattern with error increasing with distance from data points (Fig. 254). The kriged
surface is presented in Fig. 255.

Table 101. Distributional properties of

Maximum Average Winter Mixed Layer

Depth (m).

Property Value o

Number of Observations 1160 |

Minimum 11.848

Maximum 186.070

Mean 59.243 ST s ae e om *' =
Median 41.835

Fig. 251. Distribution of Maximum Average

Standard Deviation 40.216  winter Mixed Layer Depth (m). Histogram was
Skewness 1.439  illustrated using 10 bins. X and Y axes shown at
Kurtosis 3919 107
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Fig. 252. Normal Q-Q plot for data values of Maximum Average Winter Mixed Layer Depth
(m). Points falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 253. Left panel: Semivariogram of Maximum Average Winter Mixed Layer Depth (m).
Binned values are shown as red dots; average points are shown as blue crosses; the model fit to
the averaged values is shown as a blue line. Lag size: 0.576 degrees; number of lags: 12;
Parameter: 1.749; Range: 4.608 degrees; Partial Sill: 2233.046. Right panel: Scatterplot of
predicted values versus observed values for the model of Maximum Average Winter Mixed
Layer Depth (m).

Table 102. Results of cross-validation of the kriged model for Maximum Average Winter Mixed
Layer Depth (m).

Prediction error Value
Number of Observations 1160
Overall Mean Error 0.045

Root Mean Square Prediction Error 2.955
Standardized Mean 7.662 x 10°°
Standardized Root Mean Square Prediction Error 1.128
Average Standard Error 2.496

161



65°W
1

60:W 55:W
-~ QUEBEC il )
\'@; ’ iy - :

O .
s )

NEW BRUNSWICK

samaREE
e S
o‘nﬁ <
>

.
T
easaREEEEe.

Maximum Average Winter Mixed Layer Depth (m)

— 7.1559
-1.5714
— 0.0179
0 100 200 400
Kilometers

Fig. 254. Prediction standard error surface of Maximum Average Winter Mixed Layer Depth
(m).

Maximum Average Winter Mixed Layer Depth (m)
o 195.4230

851156
g 4140

40°N

0 100 200

Kilometers

Fig. 255. Interpolated prediction surface of Maximum Average Winter Mixed Layer Depth (m).

162



Bottom Shear

Bottom shear stress is a function of the maximum predicted tidal current and reflects friction
pressure on the seabed. Its unit is Pa or pascal, which is equivalent to one newton (1 N) of force
over one meter squared. Shear stress near the seabed causes sediment erosion and affects vertical
mixing and conditions conducive to sediment deposition (Cheng et al., 1999).

Bottom Shear Mean

This variable displayed a right-skewed distribution and extreme leptokurtosis prior to
interpolation (Table 103, Fig. 256). The data were higher than predicted by a normal distribution
at both tails, with mid-range values located below the reference line (Fig. 257). The areas of
over- and under-prediction showed a weak spatial pattern (Fig. 257).

The semivariogram showed weak autocorrelation present in the data (Fig. 258). The model
showed fair fit between measured and predicted values (Fig. 258), and good performance was
indicated by the cross-validation statistics (Table 104). The error map showed high error along
the edges of the study extent (Fig. 259). The kriged surface is presented in Fig. 260.

Table 103. Distributional properties of

Bottom Shear Mean (Pa).
Property Value B
Number of Observations 1143
Minimum 6.912 x 10™
Maximum 0.099
Mean 0.012
Median 7421 X 10-3 do7 1.05 2,04 3.02 4 D:t.:sit‘wes.w 6.96 7.54 8.92 5.91
Standard Deviation 0.013 Fig. 256. Distribution of Bottom Shear Mean
Skewness 3.317 (Pa). Histogram was illustrated using 10 bins. X
Kurtosis 15.592 and Y axes are shown at 10> and 1072

respectively.
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Fig. 257. Normal Q-Q plot for data values of Bottom Shear Mean (Pa). Points falling under
(upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 258. Left panel: Semivariogram of Bottom Shear Mean (Pa). Binned values are shown as
red dots; average points are shown as blue crosses; the model fit to the averaged values is shown
as a blue line. Lag size: 0.377 degrees; number of lags: 12; Parameter: 2; Range: 3.014 degrees;
Partial Sill: 1.780 x 10™. Right panel: Scatterplot of predicted values versus observed values for
the model of Bottom Shear Mean (Pa).

Table 104. Results of cross-validation of the kriged model for Bottom Shear Mean (Pa).

Prediction error Value
Number of Observations 1143
Overall Mean Error 9.675x 10
Root Mean Square Prediction Error 5.262 x 107
Standardized Mean 0.021

Standardized Root Mean Square Prediction Error 1.018
Average Standard Error

5.119 x 10
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Bottom Shear Minimum

This variable displayed a right-skewed distribution with extreme leptokurtosis and outlying data
in the upper range (Table 105, Fig. 261). The data were higher than predicted by a normal
distribution at both tails, with mid-range values located below the reference line (Fig. 262). The
areas of over- and under-prediction showed no spatial pattern (Fig. 262).

The semivariogram showed weak autocorrelation present in the data and the model showed very
poor fit between measured and predicted values (Fig. 263). Nevertheless, good performance was
indicated by the cross-validation statistics (Table 106). The error map showed high error along
the edges of the study extent (Fig. 264). The kriged surface is presented in Fig. 265.

Table 105. Distributional properties of
Bottom Shear Minimum (Pa).

Property Value
Number of Observations 1143
Minimum 1.000 x 10°®
Maximum 5.504 x 10
Mean 2.948 x 10™
Median 1.100 x 10
Standard Deviation 5.274 x 10™
Skewness 4,305
Kurtosis 28.095
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Fig. 261. Distribution of Bottom Shear Minimum
(Pa). Histogram was illustrated using 10 bins. X
axis is shown at 10% Y axis is shown at 107,

Fig. 262. Normal Q-Q plot for data values of Bottom Shear Minimum (Pa). Points falling under
(upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 263. Left panel: Semivariogram of Bottom Shear Minimum (Pa). Binned values are shown
as red dots; average points are shown as blue crosses; the model fit to the averaged values is
shown as a blue line. Lag size: 0.572 degrees; number of lags: 12; Parameter: 2; Range: 4.577
degrees; Partial Sill: 1.914 x 10”. Right panel: Scatterplot of predicted values versus observed
values for the model of Bottom Shear Minimum (Pa).

Table 106. Results of cross-validation of the kriged model for Bottom Shear Minimum (Pa).

Prediction error Value
Number of Observations 1143

Overall Mean Error -2.601 x 10°®
Root Mean Square Prediction Error 4.165 x 10™
Standardized Mean -6.134 x 10°®
Standardized Root Mean Square Prediction Error 1.029
Average Standard Error 4035 x 10

167



65°'W 60'W 550w

7 @E QUEBEC NEWFOUNDLAND

NEW BRUNSWICK

Bottom Shear Minimum ( Pa )

o 0.0002
-0.0001

8.8475 e-005 0 100 200 400
Kilometers
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Bottom Shear Maximum

This variable displayed a right-skewed, highly leptokurtic distribution prior to interpolation
(Table 107, Fig. 266). The data were higher than predicted by a normal distribution at both tails,
with mid-range values located below the reference line (Fig. 267). The areas of over- and under-
prediction showed no strong spatial pattern (Fig. 267).

The semivariogram showed weak autocorrelation present in the data and the model showed a fair
fit between measured and predicted values (Fig. 268). Nevertheless, good performance of the
model was indicated by the cross-validation statistics (Table 108). The error map showed high
error along the edges of the study extent (Fig. 269). The kriged surface is presented in Fig. 270.

Table 107. Distributional properties of
Bottom Shear Maximum (Pa).

Property Value
Number of Observations 1143
Minimum 2.178 x 107
Maximum 0.704
Mean 0.057
Median 0.028
Standard Deviation 0.087
Skewness 3.400
Kurtosis 15.926
A
/

=

-0.67 0 087 133 2
Standard Mormal Value

-0.67 0 067 133 2
Standard Normal Value

266 333
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Dataset ' 10

Fig. 266. Distribution of Bottom Shear
Maximum (Pa). Histogram was illustrated using
10 bins.X axis is shown at 10; Y axis is shown at
107,

Fig. 267. Normal Q-Q plot for data values of Bottom Shear Maximum (Pa). Points falling under
(upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 268. Left panel: Semivariogram of Bottom Shear Maximum (Pa). Binned values are shown
as red dots; average points are shown as blue crosses; the model fit to the averaged values is
shown as a blue line. Lag size: 0.413 degrees; number of lags: 12; Parameter: 2; Range: 3.308
degrees; Partial Sill: 8.002 x 10°°. Right panel: Scatterplot of predicted values versus observed
values for the model of Bottom Shear Maximum (Pa).

Table 108. Results of cross-validation of the kriged model for Bottom Shear Maximum (Pa).

Prediction error Value
Number of Observations 1143
Overall Mean Error 5532 x 10™
Root Mean Square Prediction Error 0.038
Standardized Mean 0.017
Standardized Root Mean Square Prediction Error 1.041
Average Standard Error 0.036
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Fig. 269. Prediction standard error surface of Bottom Shear Maximum (Pa).
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Bottom Shear Range

This variable displayed a right-skewed, highly leptokurtic distribution with outlying data in the
upper range (Table 109, Fig. 271). The data were higher than predicted by a normal distribution
at both tails, with mid-range values located lower than the reference line (Fig. 272). The areas of
over- and under-prediction showed no spatial pattern (Fig. 272).

The semivariogram showed weak autocorrelation present in the data and the model showed a fair
fit between measured and predicted values (Fig. 273). Nevertheless, good performance of the
model was indicated by the good cross-validation statistics (Table 110). The error map showed
high error along the edges of the study extent (Fig. 274). The kriged surface is presented in Fig.

275.

Table 109. Distributional properties of
Bottom Shear Range (Pa).

Property Value
Number of Observations 1143
Minimum 2.172 x 10°®
Maximum 0.704
Mean 0.057
Median 0.028
Standard Deviation 0.086
Skewness 3.401
Kurtosis 15.943
rd
/g

oo
-333 -266 -2 -1.23 -067 0 0s7 133 2
Standard Normal Value

0.02;
-333 -266 -2 -1.23 -067 0 0s7 133 2
standard Mormal Value

266
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Fig. 271. Distribution of Bottom Shear Range

(Pa). Histogram was illustrated using 10 bins. X
axis is shown at 10; Y axis is shown at 102

Fig. 272. Normal Q-Q plot for data values of Bottom Shear Range (Pa). Points falling under
(upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 273. Left panel: Semivariogram of Bottom Shear Range (Pa). Binned values are shown as
red dots; average points are shown as blue crosses; the model fit to the averaged values is shown
as a blue line. Lag size: 0.413 degrees; number of lags: 12; Parameter: 2; Range: 3.308 degrees;
Partial Sill: 7.938 x 107, Right panel: Scatterplot of predicted values versus observed values for
the model of Bottom Shear Range (Pa).

Table 110. Results of cross-validation of the kriged model for Bottom Shear Range (Pa).

Prediction error Value
Number of Observations 1143
Overall Mean Error 5.519 x 10™
Root Mean Square Prediction Error 0.037
Standardized Mean 0.017
Standardized Root Mean Square Prediction Error 1.041
Average Standard Error 0.036
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Bottom Shear Average Minimum

This variable displayed a right-skewed, highly leptokurtic distribution with outlying data in the
upper range (Table 111, Fig. 276). The data were higher than predicted by a normal distribution
at both tails, with mid-range values located below the reference line (Fig. 277). The areas of
over- and under-prediction showed no strong spatial pattern (Fig. 277).

The semivariogram showed weak autocorrelation present in the data and the model showed a
poor fit between measured and predicted values (Fig. 278). Nevertheless, good performance was
indicated by the good cross-validation statistics (Table 112). The error map showed high error
along the edges of the study extent (Fig. 279). The kriged surface is presented in Fig. 280.

Table 111. Distributional properties of
Bottom Shear Average Minimum (Pa).

Property Value
Number of Observations 1143
Minimum 8.200 x 10
Maximum 0.017
Mean 1.980 x 10
Median 1.374x 107
Standard Deviation 2.002 x 10
Skewness 2.913
Kurtosis 14.500
1.02, “‘;
f‘s"f
: pe
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Fig. 276. Distribution of Bottom Shear Average
Minimum (Pa). Histogram was illustrated using
10 bins. X axis is shown at 10% Y axis is shown
at 107,

Fig. 277. Normal Q-Q plot for data values of Bottom Shear Average Minimum (Pa). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 278. Left panel: Semivariogram of Bottom Shear Average Minimum (Pa). Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.357 degrees; number of lags: 12; Parameter: 2; Range: 2.859
degrees; Partial Sill: 3.038 x 10°°. Right panel: Scatterplot of predicted values versus observed
values for the model of Bottom Shear Average Minimum (Pa).

Table 112. Results of cross-validation of the kriged model for Bottom Shear Average Minimum
(Pa).

Prediction error Value
Number of Observations 1143

Overall Mean Error -1.428 x 10°®
Root Mean Square Prediction Error 1.226 x 10°°
Standardized Mean -1.793 x 10™
Standardized Root Mean Square Prediction Error 1.021
Average Standard Error 1.194 x 107
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Bottom Shear Average Maximum

This variable displayed a right-skewed, highly leptokurtic distribution prior to interpolation
(Table 113, Fig. 281). The data were higher than predicted by a normal distribution at both tails,
with mid-range values located below the reference line (Fig. 282). The areas of over- and under-
prediction showed no strong spatial pattern (Fig. 282).

The semivariogram showed weak autocorrelation present in the data and the model showed a fair
fit between measured and predicted values (Fig. 283). Nevertheless, good performance of the
model was indicated by the good cross-validation statistics (Table 114). The error map showed
high error along the edges of the study extent (Fig. 284). The kriged surface is presented in Fig.

285.

Table 113. Distributional properties of
Bottom Shear Average Maximum (Pa).

Property Value
Number of Observations 1143
Minimum 1.536 x 10°°
Maximum 0.276
Mean 0.030
Median 0.016
Standard Deviation 0.040
Skewness 3.324
Kurtosis 15.053
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Fig. 281. Distribution of Bottom Shear Average
Maximum (Pa). Histogram was illustrated using
10 ?ins. X axis is shown at 10; Y axis is shown at
107,

Fig. 282. Normal Q-Q plot for data values of Bottom Shear Average Maximum (Pa). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 283. Left panel: Semivariogram of Bottom Shear Average Maximum (Pa). Binned values
are shown as red dots; average points are shown as blue crosses; the model fit to the averaged
values is shown as a blue line. Lag size: 0.454 degrees; number of lags: 12; Parameter: 2; Range:
3.629 degrees; Partial Sill: 1.850 x 10°. Right panel: Scatterplot of predicted values versus
observed values for the model of Bottom Shear Average Maximum (Pa).

Table 114. Results of cross-validation of the kriged model for Bottom Shear Average Maximum
(Pa).

Prediction error Value
Number of Observations 1143
Overall Mean Error 3.183x 10™
Root Mean Square Prediction Error 0.015
Standardized Mean 0.023
Standardized Root Mean Square Prediction Error 0.997
Average Standard Error 0.015
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Fig. 284. Prediction standard error surface of Bottom Shear Average Maximum (Pa).
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Bottom Shear Average Range

This variable displayed a right-skewed, highly leptokurtic distribution prior to interpolation
(Table 115, Fig. 286). The data were higher than predicted by a normal distribution at both tails,
with mid-range values located below the reference line (Fig. 287). The areas of over- and under-
prediction showed no strong spatial pattern (Fig. 287).

The semivariogram showed weak autocorrelation present in the data and the model showed a fair
fit between measured and predicted values (Fig. 288). Nevertheless, good performance of the
model was indicated by the good cross-validation statistics (Table 116). The error map showed
high error along the edges of the study extent (Fig. 289). The kriged surface is presented in Fig.

290.

Table 115. Distributional properties of
Bottom Shear Average Range (Pa).

Property Value
Number of Observations 1143
Minimum 1.410 x 10°®
Maximum 0.264
Mean 0.028
Median 0.015
Standard Deviation 0.038
Skewness 3.334
Kurtosis 15.101
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Fig. 286. Distribution of Bottom Shear Average
Range (Pa). Histogram was illustrated using 10
bins. X axis is shown at 10; Y axis is shown at
107,

Fig. 287. Normal Q-Q plot for data values of Bottom Shear Average Range (Pa). Points falling
under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 288. Left panel: Semivariogram of Bottom Shear Average Range (Pa). Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.457 degrees; number of lags: 12; Parameter: 2; Range: 3.653
degrees; Partial Sill: 1.709 x 10, Right panel: Scatterplot of predicted values versus observed
values for the model of Bottom Shear Average Range (Pa).

Table 116. Results of cross-validation of the kriged model for Bottom Shear Average Range
(Pa).

Prediction error Value
Number of Observations 1143
Overall Mean Error 3.163 x 10™
Root Mean Square Prediction Error 0.014
Standardized Mean 0.024
Standardized Root Mean Square Prediction Error 0.996
Average Standard Error 0.014
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Fig. 289. Prediction standard error surface of Bottom Shear Average Range (Pa).

65°WW 60°W s5ouy

X
QUEBEC NEWFOUNDLAND
w@z

NEW BRUNSWICK

45°N

40°N

Bottom Shear Average Range ( Pa )

o 0.2228
-0.0589
0.0020 0 100 200 400

| Kilometers

Fig. 290. Interpolated prediction surface of Bottom Shear Average Range (Pa).

183



Sea Surface Chlorophyll a

Sea surface chlorophyll a concentration is a proxy for phytoplankton biomass and is therefore
related to the vertical flux of particulate organic carbon and food supply to the seafloor (Lutz et
al., 2007). Gradients in food supply have often been identified as the main factor in controlling
changes in benthic biomass, diversity, distribution, and zonation in the deep sea (Levin et al.,
2001; Carney, 2005; Soltwedel et al., 2009; MacDonald et al., 2010; Papiol et al., 2012). In the
northwest Atlantic, surface chlorophyll a has shown to be an important determinant in
generalized linear models of megafaunal abundance and richness (Beazley et al. 2013) and was
an important variable in random forest models predicting the presence of Geodia sponge and
sponge grounds (Knudby et al., 2013). The spring phytoplankton bloom is thought to be a
controlling factor in the reproductive cycles of several deep-sea corals (Sun et al., 2010a; 2010b;
2011; Mercier and Hamel, 2011) and sponges (Spetland et al., 2007) in the North Atlantic.
Therefore, we expect that seasonal rather than annual measures of chlorophyll a will be more
important in species distribution models.

Spring Chlorophyll a Mean

This variable displayed a right-skewed distribution with extreme leptokurtosis prior to
interpolation (Table 117, Fig. 291). The data were higher than predicted by a normal distribution
at both tails and lower than predicted at mid-values (Fig. 292). The areas of under- and over-
prediction showed spatial pattern over the study extent (Fig. 292).

The semivariogram showed weak autocorrelation present in the data and the model showed a
very good fit between measured and predicted values (Fig. 293). Nevertheless, poor performance
of the model was indicated by the poor cross-validation statistics (Table 118). The Standardized
Root-Mean-Square Prediction Error was greater than 1 indicating that variability in the
predictions has been underestimated. The error map showed low error across the study extent
(Fig. 294). The kriged surface is presented in Fig. 295.

Table 117. Distributional properties of

Spring Chlorophyll a Mean (mg m™).
Property Value
Number of Observations 157201
Minimum 0.428
Maximum 10.930
Mean 1.026 0
Median 0.869 S ew em ow ow v ow om om ow e
Sandard Deviation 0563 Nean (mg m. Histogram was Jlustrated bsing
Skewn_ess 4151 1oe§?n§.m>% ;?ld)Y axesgare shown at 10 and 10‘g5
Kurtosis 42.236

respectively.
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Fig. 292. Normal Q-Q plot for data values of Spring Chlorophyll a Mean (mg m™). Points falling
under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 293. Left panel: Semivariogram of Spring Chlorophyll a Mean (mg m™). Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.012 degrees; number of lags: 12; Parameter: 2; Range: 0.093
degrees; Partial Sill: 0.018. Right panel: Scatterplot of predicted values versus observed values

for the model of Spring Chlorophyll a Mean (mg m™).

Table 118. Results of cross-validation of the kriged model for Spring Chlorophyll a Mean (mg

m).

Prediction error Value
Number of Observations 157201
Overall Mean Error -1.278 x 10™
Root Mean Square Prediction Error 0.041
Standardized Mean -8.116 x 10°®
Standardized Root Mean Square Prediction Error 3.762
Average Standard Error 0.011
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Spring Chlorophyll a Minimum

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation
(Table 119, Fig. 296). The data were higher than predicted by a normal distribution at both tails
and lower than predicted at mid-values (Fig. 297). The areas of under- and over-prediction
showed a spatial pattern over the study extent (Fig. 297).

The semivariogram showed weak autocorrelation present in the data and the model showed a
very good fit between measured and predicted values (Fig. 298). Good performance of the model
was indicated by the good cross-validation statistics (Table 120). The error map showed low
error across the study extent (Fig. 299). The kriged surface is presented in Fig. 300.

Table 119. Distributional properties of
Spring Chlorophyll a Minimum (mg m™).
Property Value
Number of Observations 157201
Minimum 0.171
Maximum 8.264
Mean 0.627 )
Median 0.550 017 0.88 1.79 26 3 D‘:tﬂZSZEt 503 5.84 6.65 7.45 8.26
Standard Deviation 0.398 Fig. 296. Distribution of Spring Chlorophyll a
Skewness 6.775 Minimum (mg m™). Histogram was illustrated
. ' using 10 bins. Y axis is shown at 10
Kurtosis 71.759
fr -
6.6 /:5)
3.41 //
y e
: =

‘aE 381 27 -8t 9 0 09 181 271 381 451
Standard Normal Value

Fig. 297. Normal Q-Q plot for data values of Spring Chlorophyll a Minimum (mg m™). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 298. Left panel: Semivariogram of Spring Chlorophyll a Minimum (mg m™). Binned values
are shown as red dots; average points are shown as blue crosses; the model fit to the averaged
values is shown as a blue line. Lag size: 0.012 degrees; number of lags: 12; Parameter: 2; Range:
0.092 degrees; Partial Sill: 8.462 x 10°. Right panel: Scatterplot of predicted values versus
observed values for the variable Spring Chlorophyll a Minimum.

Table 1320. Results of cross-validation of the kriged model for Spring Chlorophyll a Minimum
(mg m”).

Prediction error Value
Number of Observations 157201
Overall Mean Error -3.457 x 10°
Root Mean Square Prediction Error 0.028
Standardized Mean -4.478 x 10™
Standardized Root Mean Square Prediction Error 1.006
Average Standard Error 0.027
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Fig. 299. Prediction standard error surface of Spring Chlorophyll a Minimum (mg m™).
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Spring Chlorophyll a Maximum

This variable displayed a right-skewed, highly leptokurtic distribution prior to interpolation
(Table 121, Fig. 301). The data were higher than predicted by a normal distribution at both tails
and lower than predicted at mid-values (Fig. 302). The areas of under- and over-prediction
showed no strong spatial pattern over the study extent (Fig. 302).

The semivariogram showed autocorrelation present in the data and the model showed a good fit
between measured and predicted values (Fig. 303). Fair performance was indicated by the cross-
validation statistics (Table 122). The Standardized Root-Mean-Square Prediction Error was
higher than 1 indicating that variability in the predictions has been underestimated. The error
map showed medium error in a grid-like pattern over the study extent (Fig. 304). The kriged
surface is presented in Fig. 305.

Table 121. Distributional properties of

Spring Chlorophyll a Maximum (mg m™).

Property Value
Number of Observations 157201
Minimum 0.521
Maximum 18.400
Mean 1.811
Median 1.502
Standard Deviation 1.023
Skewness 2.578
Kurtosis 15.548

Dataset 10

1.84,

-361 -2

standard Normal Value

0.05,
-451 361

271 181

——

09 0 0.8
Standard Normal Value

181

2n 361

0.05 023 0.41 059 077 0.85 iz 13 148 166 184
Dataset-10”"

Fig. 301. Distribution of Spring Chlorophyll a
Maximum (mg m™). Histogram was illustrated
using 10 bins. X and Y axes are shown at 10
and 10~ respectively.

Fig. 302. Normal Q-Q plot for data values of Spring Chlorophyll a Maximum (mg m™). Points
falling under (upper panel) and over (lower panel) the reference line are mapped.
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Fig. 303. Left panel: Semivariogram of Spring Chlorophyll a Maximum (mg m™). Binned values
are shown as red dots; average points are shown as blue crosses; the model fit to the averaged
values is shown as a blue line. Lag size: 0.013 degrees; number of lags: 12; Parameter: 1.515;
Range: 0.104 degrees; Partial Sill: 0.210. Right panel: Scatterplot of predicted values versus
observed values for the variable Spring Chlorophyll a Maximum (mg m™®).

Table 1322. Results of cross-validation of the kriged model for Spring Chlorophyll a Maximum
(mg m”).

Prediction error Value
Number of Observations 157201
Overall Mean Error -2.146 x 10™
Root Mean Square Prediction Error 0.235
Standardized Mean -8.448 x 10™
Standardized Root Mean Square Prediction Error 1.636
Average Standard Error 0.142
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Spring Chlorophyll a Range

This variable displayed a right-skewed, highly leptokurtic distribution prior to interpolation
(Table 123, Fig. 306). The data were higher than predicted by a normal distribution at both tails
and lower than predicted at mid-values (Fig. 307). The areas of under- and over-prediction
showed no spatial pattern over the study extent (Fig. 307).

The semivariogram showed moderate autocorrelation present in the data and the model showed
good fit between measured and predicted values (Fig. 308). Fair performance was indicated by
the cross-validation statistics (Table 124). The error map showed medium error in a grid-like
pattern over the study extent (Fig. 309). The kriged surface is presented in Fig. 310. Negative
values resulted from the right-skewed nature of the raw data (Fig. 306). Of the 326,283 raster
cells in the study extent, only 2 contained negative values (see Table Al). These were located
together near the southern edge of the study extent above the abyssal plan (Fig. A5).

Table 123. Distributional properties of
Spring Chlorophyll a Range (mg m™).

Property Value
Number of Observations 157201
Minimum 0.127
Maximum 13.101
Mean 1.184
Median 0.929
Standard Deviation 0.797
Skewness 2.011
Kurtosis 9.684
. _—

-451 381 271 81

08 0 09
Standard Normal Value

181 271 381

45

Frequency 10 °
1.13

(X1

0.01 014 027 0% 053 068 078 052 1.05 118 131
Dataset 10"

Fig. 306. Distribution of Spring Chlorophyll a
Range (mg m™). Histogram was illustrated using
10 bins. X and Y axes are shown at 10™ and 107
respectively.

1

Fig. 307. Normal Q-Q plot for data values of Spring Chlorophyll a Range (mg m™). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 308. Left panel: Semivariogram of Spring Chlorophyll a Range (mg m™). Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.019 degrees; number of lags: 12; Parameter: 1.190; Range:
0.148 degrees; Partial Sill: 0.212. Right panel: Scatterplot of predicted values versus observed
values for the variable Spring Chlorophyll a Range (mg m™).

Ta?le 124. Results of cross-validation of the kriged model for Spring Chlorophyll a Range (mg
m™).

Prediction error Value
Number of Observations 157201
Overall Mean Error -1.363 x 10™
Root Mean Square Prediction Error 0.232
Standardized Mean -3.953 x 10™
Standardized Root Mean Square Prediction Error 1.206
Average Standard Error 0.191
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Summer Chlorophyll a Mean

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation
(Table 125, Fig. 311). The data were higher than predicted by a normal distribution at both tails
and lower than predicted at mid-values (Fig. 312). The areas of under- and over-prediction
showed a very strong spatial pattern over the study extent (Fig. 312).

The semivariogram showed weak autocorrelation present in the data and the model showed a
very good fit between measured and predicted values (Fig. 313). Fair performance was indicated
by the cross-validation statistics (Table 126). The Standardized Root-Mean-Square Prediction
Error was less than 1 indicating that variability in the predictions has been overestimated. The
error map showed low to medium error over the study extent (Fig. 314). The kriged surface is

presented in Fig. 315.

Table 125. Distributional properties of
Summer Chlorophyll a Mean (mg m™).

Property Value
Number of Observations 157201
Minimum 0.140
Maximum 8.655
Mean 0.565
Median 0.398
Standard Deviation 0.525
Skewness 3.845
Kurtosis 30.224

8.66,
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Standard Normal Value

L

=

"

0.14.

451 381 271 181 08 0 09 181 271 361

Standard Normal Value

45

1

Frequency - 10"
1.38

0
0.14 0.9% 1.84 2569 3.55 4.4 525 6.1 6.95 78 8.66
Dataset

Fig. 311. Distribution of Summer Chlorophyll a
Mean (mg m™). Histogram was illustrated using
10 bins. Y axis is shown at 10~

Fig. 312. Normal Q-Q plot for data values of Summer Chlorophyll a Mean (mg m™). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 313. Left panel: Semivariogram of Summer Chlorophyll a Mean (mg m™). Binned values
are shown as red dots; average points are shown as blue crosses; the model fit to the averaged
values is shown as a blue line. Lag size: 0.015 degrees; number of lags: 12; Parameter: 2; Range:
0.117 degrees; Partial Sill: 0.010. Right panel: Scatterplot of predicted values versus observed
values for the variable Summer Chlorophyll a Mean (mg m™®).

Ta?le 126. Results of cross-validation of the kriged model for Summer Chlorophyll a Mean (mg
m™).

Prediction error Value
Number of Observations 157201
Overall Mean Error 7.438x 10°
Root Mean Square Prediction Error 0.024
Standardized Mean 2.758 x 10°®
Standardized Root Mean Square Prediction Error 0.506
Average Standard Error 0.044
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Summer Chlorophyll a Minimum

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation
(Table 127, Fig. 316). The data were higher than predicted by a normal distribution at both tails
and only slightly lower than predicted at mid-values (Fig. 317). The areas of under- and over-
prediction showed a very strong spatial pattern over the study extent (Fig. 317).

The semivariogram showed weak autocorrelation present in the data and the model showed a
good fit between measured and predicted values (Fig. 318). Fair performance was indicated by
the cross-validation statistics (Table 128). The Standardized Root-Mean-Square Prediction Error
was less than 1 indicating that variability in the predictions has been overestimated. The error
map showed low to medium error over the study extent (Fig. 319). The kriged surface is
presented in Fig. 320.

Table 127. Distributional properties of
Summer Chlorophyll a Minimum (mg m™®).
Property Value
Number of Observations 157201
Minimum 0.099
Maximum 7.130
Mean 0.421 )
Median 0.310 0.1 0.8 1.51 vl 291 D:t:s‘IEt 432 502 572 6.43 713
Standard Deviation 0.372 Fig. 316. Distribution of Summer Chlorophyll a
Skewness 3.888 Minimum (mg m™). Histogram was illustrated
) ' using 10 bins. Y axis is shown at 10°.
Kurtosis 32.782
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Fig. 317. Normal Q-Q plot for data values of Summer Chlorophyll a Minimum (mg m™). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 318. Left panel: Semivariogram of Summer Chlorophyll a Minimum (mg m™). Binned
values are shown as red dots; average points are shown as blue crosses; the model fit to the
averaged values is shown as a blue line. Lag size: 0.015 degrees; number of lags: 12; Parameter:
2; Range: 0.123 degrees; Partial Sill: 3.429 x 10. Right panel: Scatterplot of predicted values
versus observed values for the variable Summer Chlorophyll a Minimum (mg m™).

Table 128. Results of cross-validation of the kriged model for Summer Chlorophyll a Minimum

(mg m™).

Prediction error

Value

Number of Observations
Overall Mean Error

Root Mean Square Prediction Error

Standardized Mean

Standardized Root Mean Square Prediction Error

Average Standard Error

157201
4.779 x 107
0.022
1.921 x 10
0.512
0.042
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Summer Chlorophyll a Maximum

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation
(Table 129, Fig. 321). The data were higher than predicted by a normal distribution at both tails
and slightly lower than predicted at mid-values (Fig. 322). The areas of under- and over-
prediction showed a strong spatial pattern over the study extent (Fig. 322).

The semivariogram showed weak autocorrelation present in the data and the model showed a
very good fit between measured and predicted values (Fig. 323). However, poor performance
was indicated by poor cross-validation results (Table 130). The Standardized Root-Mean-Square
Prediction Error was greater than 1 indicating that variability in the predictions has been
underestimated. The error map showed low to medium error over the study extent (Fig. 324).

The kriged surface is presented in Fig. 325.

Table 129. Distributional properties of
Summer Chlorophyll a Maximum (mg m™).

Property Value
Number of Observations 157201
Minimum 0.156
Maximum 13.202
Mean 0.769
Median 0.499
Standard Deviation 0.810
Skewness 4,370
Kurtosis 33.846
/f*“
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Fig. 321. Distribution of Summer Chlorophyll a
Maximum (mg m™). Histogram was illustrated
using 10 bins. X and Y axes are shown at 10
and 107 respectively.

Fig. 322. Normal Q-Q plot for data values of Summer Chlorophyll a Maximum (mg m™). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 323. Left panel: Semivariogram of Summer Chlorophyll a Maximum (mg m™). Binned
values are shown as red dots; average points are shown as blue crosses; the model fit to the
averaged values is shown as a blue line. Lag size: 0.016 degrees; number of lags: 12; Parameter:
2; Range: 0.130 degrees; Partial Sill: 0.046. Right panel: Scatterplot of predicted values versus
observed values for the variable Summer Chlorophyll a Maximum (mg m™).

Table 1330. Results of cross-validation of the kriged model for Summer Chlorophyll a Maximum
(mg m”).

Prediction error Value
Number of Observations 157201
Overall Mean Error 1.891 x 10™
Root Mean Square Prediction Error 0.096
Standardized Mean 3.690 x 10°®
Standardized Root Mean Square Prediction Error 1.369
Average Standard Error 0.069
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Fig. 324. Prediction standard error surface of Summer Chlorophyll a Maximum (mg m™).
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Summer Chlorophyll a Range

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation
(Table 131, Fig. 326). The data were higher than predicted by a normal distribution at both tails
and lower than predicted at mid-values (Fig. 327). The areas of under- and over-prediction
showed a strong spatial pattern over the study extent (Fig. 327).

The semivariogram showed moderate autocorrelation present in the data and the model showed
good fit between measured and predicted values (Fig. 328). The model showed fair cross-
validation statistics (Table 132). The error map showed medium to high error in a grid-like
pattern over the study extent (Fig. 329). The kriged surface is presented in Fig. 330.

Table 131. Distributional properties

of A

Summer Chlorophyll a Range (mg m™).

Property Value
Number of Observations 157201
Minimum 0.035
Maximum 9.341
Mean 0.348
Median 0.193
Standard Deviation 0.471
Skewness 5.240
Kurtosis 45,549
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Fig. 326. Distribution of Summer Chlorophyll a
Range (mg m™). Histogram was illustrated using
10 bins. Y axis is shown at 10~

Fig. 327. Normal Q-Q plot for data values of Summer Chlorophyll a Range (mg m™). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 328. Left panel: Semivariogram of Summer Chlorophyll a Range (mg m™). Binned values
are shown as red dots; average points are shown as blue crosses; the model fit to the averaged
values is shown as a blue line. Lag size: 0.074 degrees; number of lags: 12; Parameter: 0.903;
Range: 0.593 degrees; Partial Sill: 0.052. Right panel: Scatterplot of predicted values versus
observed values for the variable Summer Chlorophyll a Range (mg m™).

Ta?le 132. Results of cross-validation of the kriged model for Summer Chlorophyll a Range (mg
m™).

Prediction error Value
Number of Observations 157201
Overall Mean Error -1.108 x 10™
Root Mean Square Prediction Error 0.093
Standardized Mean -6.054 x 10™
Standardized Root Mean Square Prediction Error 1.231
Average Standard Error 0.074
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Fig. 329. Prediction standard error surface of Summer Chlorophyll a Range (mg m™).
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Fig. 330. Interpolated prediction surface of Summer Chlorophyll a Range (mg m™).
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Fall Chlorophyll a Mean

This variable displayed a right-skewed, highly leptokurtic distribution prior to interpolation
(Table 133, Fig. 331). The data were higher than predicted by a normal distribution at both tails
and slightly lower than predicted at mid-values (Fig. 332). The areas of under- and over-
prediction showed a very strong spatial pattern over the study extent (Fig. 332).

The semivariogram showed weak autocorrelation present in the data and the model showed good
fit between measured and predicted values (Fig. 333). However, poor performance was indicated
by the cross-validation statistics (Table 134), with a standardized root mean square greater than 1
indicating that variability in the predictions has been underestimated. The error map showed low
error over the study extent (Fig. 334). The kriged surface is presented in Fig. 335.

Table 133. Distributional properties of
Fall Chlorophyll a Mean

51

(mg m?).
Property Value
Number of Observations 157201
Minimum 0.240
Maximum 7.287
Mean 0.755
Median 0.646
Standard Deviation 0.497
Skewness 3.130
Kurtosis 20.684
/[
165 will

24,
451 381 271 181

T
08

0 08
Standard Normal Value

181 271 361

45

Frequency +10 "
117

0.24 084 185 235 3.08 376 447 517 588 858 729
Dataset

Fig. 331. Distribution of Fall Chlorophyll a Mean
(mg m™). Histogram was illustrated using 10 bins.
Y axis is shown at 10”.

1

Fig. 332. Normal Q-Q plot for data values of Fall Chlorophyll a Mean (mg m™®). Points falling
under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 333. Left panel: Semivariogram of Fall Chlorophyll a Mean (mg m™). Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.011 degrees; number of lags: 12; Parameter: 2; Range: 0.086
degrees; Partial Sill: 0.013. Right panel: Scatterplot of predicted values versus observed values
for the variable Fall Chlorophyll a Mean (mg m™).

Table 134. Results of cross-validation of the kriged model for Fall Chlorophyll a Mean (mg m™).

Prediction error Value
Number of Observations 157201
Overall Mean Error -9.322 x 10
Root Mean Square Prediction Error 0.043
Standardized Mean -6.695 x 10
Standardized Root Mean Square Prediction Error 4.048
Average Standard Error 0.010
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Fig. 334. Prediction standard error surface of Fall Chlorophyll a Mean (mg m™).
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Fall Chlorophyll a Minimum

This variable displayed a right-skewed, highly leptokurtic distribution prior to interpolation
(Table 135, Fig. 336). The data were higher than predicted by a normal distribution at the upper
range and slightly lower than predicted at mid-values (Fig. 337). The areas of under- and over-
prediction showed a strong spatial pattern over the study extent (Fig. 337).

The semivariogram showed weak autocorrelation present in the data (Fig. 338). There was a very
good fit between measured and predicted values (Fig. 338). Fair performance was indicated by
the cross-validation results (Table 136), although the Standardized Root-Mean-Square Prediction
Error was greater than 1 indicating that variability in the predictions has been underestimated.
The error map showed low error over the study extent with high error in areas without data
points (Fig. 339). The kriged surface is presented in Fig. 340.

Table 135. Distributional properties of
Fall Chlorophyll a Minimum (mg m™).
Property Value
Number of Observations 157169
Minimum 0.058
Maximum 5.361 022
Mean 0.487 i
Median 0.412 0.06 0.59 112 1.65 218 D:t.:s‘let 224 397 43 483 5.36
Standard Deviation 0.331 Fig. 336. Distribution of Fall Chlorophyll a
" . . _3 . -
SKewness 3978 I\/I!nlmum_(mg m_)._ Histogram V\_/?s illustrated
. using 10 bins Y axis is shown at 10™.
Kurtosis 32.511
. /f“g”
2.18 /,
1.12 //
} —
) ,/

08,
451 381 271 81 08 0 09 181 271 361 451
Standard Normal Value

Fig. 337. Normal Q-Q plot for data values of Fall Chlorophyll a Minimum (mg m™). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 338. Left panel: Semivariogram of Fall Chlorophyll a Minimum (mg m™). Binned values
are shown as red dots; average points are shown as blue crosses; the model fit to the averaged
values is shown as a blue line. Lag size: 0.012 degrees; number of lags: 12; Parameter: 1.657,
Range: 0.100 degrees; Partial Sill: 5.395 x 10, Right panel: Scatterplot of predicted values
versus observed values for the variable Fall Chlorophyll a Minimum (mg m™).

Ta?le 136. Results of cross-validation of the kriged model for Fall Chlorophyll a Minimum (mg
m™).

Prediction error Value
Number of Observations 157169
Overall Mean Error -2.678x 10°
Root Mean Square Prediction Error 0.028
Standardized Mean -2.998 x 10™
Standardized Root Mean Square Prediction Error 1.474
Average Standard Error 0.019
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Fig. 339. Prediction standard error surface of Fall Chlorophyll a Minimum (mg m™).
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Fig. 340. Interpolated prediction surface of Fall Chlorophyll a Minimum (mg m™).
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Fall Chlorophyll a Maximum

This variable displayed a right-skewed, highly leptokurtic distribution prior to interpolation
(Table 137, Fig. 341). The data were higher than predicted by a normal distribution at both tails
and slightly lower than predicted at mid-values (Fig. 342). The areas of under- and over-
prediction showed some spatial pattern over the study extent (Fig. 342).

The semivariogram showed moderate autocorrelation present in the data and the model showed
fair fit between measured and predicted values (Fig. 343). Good performance of the model was
indicated by the good cross-validation results (Table 138). The error map showed medium to
high error in a grid-like pattern over the study extent (Fig. 344). The kriged surface is presented

in Fig. 345.
Table 137. Distributional properties of
Fall Chlorophyll a Maximum (mg m™®).
Property Value
Number of Observations 157201
Minimum 0.280
Maximum 17.178
Mean 1.298 .
Median 1.054 0.03 0z 037 053 07 D;t::Et_lo-l1 04 1.21 1.38 155 172
Standard Deviation 1.009 Fig. 341. Distribution of Fall Chlorophyll a
Maximum (mg m™). Histogram was illustrated
Skewn?ss 2.968 using 10 bins. X and Y axes are shown at 10 and
Kurtosis 18.946 105 respectively.
1.04) j§
0.37 //
0.37) //
0.03! -///

-
-4.51 =361 -2.71 -1.81 -03 0 0.9 181 2m 361
Standard Mormal Value

451

Fig. 342. Normal Q-Q plot for data values of Fall Chlorophyll a Maximum (mg m™). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 343. Left panel: Semivariogram of Fall Chlorophyll a Maximum (mg m™). Binned values
are shown as red dots; average points are shown as blue crosses; the model fit to the averaged
values is shown as a blue line. Lag size: 5.385 x 10 degrees; number of lags: 12; Parameter:
1.285; Range: 0.043 degrees; Partial Sill: 0.170. Right panel: Scatterplot of predicted values
versus observed values for the variable Fall Chlorophyll a Maximum (mg m™®).

Ta?le 138. Results of cross-validation of the kriged model for Fall Chlorophyll a Maximum (mg
m™).

Prediction error Value
Number of Observations 157201
Overall Mean Error -3.664 x 10™
Root Mean Square Prediction Error 0.292
Standardized Mean -8.759 x 10
Standardized Root Mean Square Prediction Error 0.892
Average Standard Error 0.326
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Fig. 344. Prediction standard error surface of Fall Chlorophyll a Maximum (mg m™®).
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Fig. 345. Interpolated prediction surface of Fall Chlorophyll a Maximum (mg m™).
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Fall Chlorophyll a Range

This variable displayed a right-skewed, highly leptokurtic distribution prior to interpolation
(Table 139, Fig. 346). The data were higher than predicted by a normal distribution at both tails
and slightly lower than predicted at mid-values (Fig. 347). The areas of under- and over-
prediction showed some spatial pattern over the study extent (Fig. 347).

The semivariogram showed autocorrelation present in the data and the model showed fair fit
between measured and predicted values (Fig. 348). Good performance of the model was
indicated by the good cross-validation results (Table 140). The error map showed medium to
high error in a grid-like pattern over the study extent (Fig. 349). The kriged surface is presented

in Fig. 350.

Table 139. Distributional properties of
Fall Chlorophyll a Range (mg m™).

Property Value
Number of Observations 157201
Minimum 0.060
Maximum 15.782
Mean 0.811
Median 0.566
Standard Deviation 0.800
Skewness 3.508
Kurtosis 25.154

Frequency +10°%
1.41

0
0.01 0.18 0.32 0.48 083 0.79 0.95 1.11 1.26 1.42 158
Dataset 10"

Fig. 346. Distribution of Fall Chlorophyll a Range
(mg m™). Histogram was illustrated using 10 bins.
X and Y axes are shown at 10" and 107
respectively.
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Fig. 347. Normal Q-Q plot for data values of Fall Chlorophyll a Range (mg m™). Points falling
under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 348. Left panel: Semivariogram of Fall Chlorophyll a Range (mg m™). Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.053 degrees; number of lags: 12; Parameter: 0.743; Range:
0.426 degrees; Partial Sill: 0.377. Right panel: Scatterplot of predicted values versus observed
values for the variable Fall Chlorophyll a Range (mg m™).

Table 140. Results of cross-validation of the kriged model for Fall Chlorophyll a Range.

Prediction error Value
Number of Observations 157201
Overall Mean Error 5.399 x 10
Root Mean Square Prediction Error 0.294
Standardized Mean 2.522 x 10™
Standardized Root Mean Square Prediction Error 0.966
Average Standard Error 0.303
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Fig. 349. Prediction standard error surface of Fall Chlorophyll a Range (mg m™).
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Fig. 350. Interpolated prediction surface of Fall Chlorophyll a Range (mg m™).
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Annual Chlorophyll a Mean

This variable displayed a right-skewed, highly leptokurtic distribution prior to interpolation
(Table 141, Fig. 351). The data were higher than predicted by a normal distribution at both tails
and lower than predicted at mid-values (Fig. 352). The areas of under- and over-prediction
showed a very strong spatial pattern over the study extent (Fig. 352).

The semivariogram showed weak autocorrelation present in the data and the model showed a
very good fit between measured and predicted values (Fig. 353). Nevertheless, poor performance
of the model was indicated by the cross-validation results (Table 142). The error map showed
low error over the study extent (Fig. 354). The kriged surface is presented in Fig. 355.

Table 141. Distributional properties of

Annual Chlorophyll a Mean (mg m™).
Property Value
Number of Observations 157201
Minimum 0.262
Maximum 7.711
Mean 0.799
Median 0.686
Standard Deviation 0.491
Skewness 3.614
Kurtosis 26.529

/
/
L

&1 -2.71 -1.e1 -08 0 0.9
Standard Normal Value

1.81 2m 361

51

0.26. =
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0
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Fig. 351. Distribution of Annual Chlorophyll a

Mean (mg m™). Histogram was illustrated using
10 bins. Y axis is shown at 10~

Fig. 352. Normal Q-Q plot for data values of Annual Chlorophyll a Mean (mg m™). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 353. Left panel: Semivariogram of Annual Chlorophyll a Mean (mg m™). Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 0.011 degrees; number of lags: 12; Parameter: 2; Range: 0.088
degrees; Partial Sill: 8.573 x 10°°. Right panel: Scatterplot of predicted values versus observed
values for the variable Annual Chlorophyll a Mean (mg m™).

Ta?le 142. Results of cross-validation of the kriged model for Annual Chlorophyll a Mean (mg
m™).

Prediction error Value
Number of Observations 157201
Overall Mean Error -1.091 x 10™
Root Mean Square Prediction Error 0.023
Standardized Mean -9.262 x 107
Standardized Root Mean Square Prediction Error 2.612
Average Standard Error 8.001 x 10
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Fig. 354. Prediction standard error surface of Annual Chlorophyll a Mean (mg m™®).
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Fig. 355. Interpolated prediction surface of Annual Chlorophyll a Mean (mg m™).
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Annual Chlorophyll a Minimum

This variable displayed a right-skewed, highly leptokurtic prior to interpolation (Table 143, Fig.
356). The data were higher than predicted by a normal distribution at both tails and lower than
predicted at mid-values (Fig. 357). The areas of under- and over-prediction showed a very strong

spatial pattern over the study extent (Fig. 357).

The semivariogram showed weak autocorrelation present in the data and the model showed a
very good fit between measured and predicted values (Fig. 358). However, poor model
performance was indicated by the cross-validation results (Table 144). The Standardized Root-
Mean-Square Prediction Error was greater than 1 indicating that variability in the predictions has
been underestimated. The error map showed low error over the study extent (Fig. 359). The
kriged surface is presented in Fig. 360.

Table 143. Distributional properties of
Annual Chlorophyll a Minimum (mg m™).

Property Value
Number of Observations 157201
Minimum 0.110
Maximum 6.642
Mean 0.532
Median 0.423
Standard Deviation 0.415
Skewness 3.550
Kurtosis 27.101
([564 Agﬂfu o
272 I/
1.42 //
) —
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011 0.76 1.42 2.07 27z 3.38 403 468 5.34 589 6.64
Dataset

Fig. 356. Distribution of Annual Chlorophyll a
Minimum (mg m™). Histogram was illustrated
using 10 bins. Y axis is shown at 10,

Fig. 357. Normal Q-Q plot for data values of Annual Chlorophyll a Minimum (mg m™®). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 358. Left panel: Semivariogram of Annual Chlorophyll a Minimum (mg m™). Binned values
are shown as red dots; average points are shown as blue crosses; the model fit to the averaged
values is shown as a blue line. Lag size: 0.011 degrees; number of lags: 12; Parameter: 2; Range:
0.088 degrees; Partial Sill: 4.626 x 10°. Right panel: Scatterplot of fredicted values versus
observed values for the variable Annual Chlorophyll a Minimum (mg m™)

Table 1344. Results of cross-validation of the kriged model for Annual Chlorophyll a Minimum
(mg m”).

Prediction error Value
Number of Observations 157201
Overall Mean Error -5.680 x 10
Root Mean Square Prediction Error 0.023
Standardized Mean -4.044 x 10™
Standardized Root Mean Square Prediction Error 5.831
Average Standard Error 0.039
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Fig. 359. Prediction standard error surface of Annual Chlorophyll a Minimum (mg m™®).
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Fig. 360. Interpolated prediction surface of Annual Chlorophyll a Minimum (mg m).
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Annual Chlorophyll a Maximum

This variable displayed a right-skewed, highly leptokurtic distribution prior to interpolation
(Table 145, Fig. 361). The data were higher than predicted by a normal distribution at both tails
and slightly lower than predicted at mid-values (Fig. 362). The areas of under- and over-
prediction showed some spatial pattern over the study extent (Fig. 362).

The semivariogram showed moderate autocorrelation present in the data and the model showed
good fit between measured and predicted values (Fig. 363). However, poor model performance
was indicated by the cross-validation results (Table 146). The Standardized Root-Mean-Square
Prediction Error was greater than 1 indicating that variability in the predictions has been
underestimated. The error map showed low error over the study extent (Fig. 364). The kriged
surface is presented in Fig. 365.

Table 145. Distributional properties of
Annual Chlorophyll a Maximum (mg m™).
Property Value
Number of Observations 157201
Minimum 0.317 e
Maximum 10.412
Mean 1.127 )
Median Ol988 0.03 013 023 033 0.44 D;;:Et.m"DSQ 074 084 0.84 1.04
Standard Deviation 0.641 Fig. 361. Distributi30n of Annual Chlorophyll a
Maximum (mg m™). Histogram was illustrated
Skewness 2.963 . .
) using 10 bins. X and Y axes are shown at 10" and
Kurtosis 19.666 108 respectively.
0.84) /Fyu
0.44) ‘/
//
0.23) /
0.44 //
0.03. ,//

451 261 -2.71 -1.81 -08 0 0.8 1.81 27 361 451
Standard Normal Value

Fig. 362. Normal Q-Q plot for data values of Annual Chlorophyll a Maximum (mg m™). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 363. Left panel: Semivariogram of Annual Chlorophyll a Maximum (mg m™). Binned
values are shown as red dots; average points are shown as blue crosses; the model fit to the
averaged values is shown as a blue line. Lag size: 6.900 x 10 degrees; number of lags: 12;
Parameter: 2; Range: 0.055 degrees; Partial Sill: 0.028. Right panel: Scatterplot of predicted
values versus observed values for the variable Annual Chlorophyll a Maximum (mg m™).

Table 1346. Results of cross-validation of the kriged model for Annual Chlorophyll a Maximum
(mg m™).

Prediction error Value
Number of Observations 157201
Overall Mean Error -1.961 x 10™
Root Mean Square Prediction Error 0.099
Standardized Mean -1.500 x 107
Standardized Root Mean Square Prediction Error 1.357
Average Standard Error 0.072
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Fig. 364. Prediction standard error surface of Annual Chlorophyll a Maximum (mg m™).
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Annual Chlorophyll a Range

This variable displayed a right-skewed, highly leptokurtic distribution prior to interpolation
(Table 147, Fig. 366). The data were higher than predicted by a normal distribution at both tails
and slightly lower than predicted at mid-values (Fig. 367). The areas of under- and over-
prediction showed no spatial pattern over the study extent (Fig. 367).

The semivariogram showed moderate autocorrelation present in the data and the model showed
good fit between measured and predicted values (Fig. 368). However, poor model performance
was indicated by the cross-validation results (Table 148). The Standardized Root-Mean-Square
Prediction Error was greater than 1 indicating that variability in the predictions has been
underestimated. The error map showed low error over the study extent (Fig. 369). The kriged
surface is presented in Fig. 370. Negative values resulted from the right-skewed nature of the
raw data (Fig. 366). Of the 326,283 raster cells in the study extent, only 1 was negative (see
Table Al). This was located near the southern edge of the study extent above the abyssal plain
(Fig. A6).

Table 147. Distributional properties of
Annual Chlorophyll a Range (mg m™).

Property Value

Number of Observations 157201

Minimum 0.128

Maximum 4.877 02

Mean 0.595

Median 0.516 T e T L
Standard Deviation 0.305 Fig. 366. Distribution of Annual Chlorophyll a
Skewness 2937 Range (mg m™). Histogram was illustrated using

. 10 bins. Y axis is shown at 10™.
Kurtosis 11.932
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Fig. 367. Normal Q-Q plot for data values of Annual Chlorophyll a Range (mg m™). Points
falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 368. Left panel: Semivariogram of Annual Chlorophyll a Range (mg m™). Binned values are
shown as red dots; average points are shown as blue crosses; the model fit to the averaged values
is shown as a blue line. Lag size: 6.491 x 107 degrees; number of lags: 12; Parameter: 1.325;
Range: 0.052 degrees; Partial Sill: 0.023. Right panel: Scatterplot of predicted values versus
observed values for the variable Annual Chlorophyll a Range (mg m™).

Table 148. Results of cross-validation of the kriged model for Annual Chlorophyll a Range (mg

m).

Prediction error Value
Number of Observations 157201
Overall Mean Error -7.161 x 10®
Root Mean Square Prediction Error 0.099
Standardized Mean -5.353 x 10
Standardized Root Mean Square Prediction Error 1.326
Average Standard Error 0.074
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Fig. 369. Prediction standard error surface of Annual Chlorophyll a Range (mg m™).
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Primary Production

Primary production measures the rate at which atmospheric or aqueous carbon dioxide is
converted to organic carbon by autotrophs (Bender et al., 1987) and relates more directly to the
flux of particulate organic carbon and food supply to the seafloor than sea surface chlorophyll a
concentration. However, as satellite-derived chlorophyll a is a main source of data used in the
calculation of the primary production variables in this report, we expect these variables to be
highly correlated.

Spring Primary Production Mean

This variable displayed a near-normal distribution prior to interpolation (Table 149, Fig. 371).
The data were higher than predicted by a normal distribution at the lower range and lower than
predicted at the highest and the lowest values (Fig. 372). The areas of under- and over-prediction
showed no spatial pattern over the study extent (Fig. 372).

The semivariogram showed moderate autocorrelation present in the data and the model showed
fair fit between measured and predicted values (Fig. 373). Good performance of the model was
indicated by the cross-validation results (Table 150). The error map showed high error along the
edges of the study extent (Fig. 374). The kriged surface is presented in Fig. 375.

Table 149. Distributional properties of

Spring Primary Production Mean

(mg C m? day™).
Property Value 101
Number of Observations 5321
Minimum 306.670
Maximum 1224.400
Mean 868.350 e e em ew om om0 e m in
Median o 868.420 Fig. 371. Distribution of Spring Primary
Standard Deviation 101.610 Production Mean (mg C m? day™). Histogram
Skewness 3.418 x 107 was illustrated using 10 bins. X and Y axes are
Kurtosis 3.065 shown at 10°°,
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Fig. 372. Normal Q-Q plot for data values of Spring Primary Production Mean (mg C m™ day™).
Points falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 373. Left panel: Semivariogram of Spring Primary Production Mean (mg C m™ day™).
Binned values are shown as red dots; average points are shown as blue crosses; the model fit to
the averaged values is shown as a blue line. Lag size: 0.054 degrees; number of lags: 12;
Parameter: 2; Range: 0.432 degrees; Partial Sill: 2487.116. Right panel: Scatterplot of predicted
values versus observed values for the variable Spring Primary Production Mean
(mg C m™ day™).

Table 150. Results of cross-validation of the kriged model for Spring Primary Production Mean
(mg C m™ day™).

Prediction error Value
Number of Observations 5321
Overall Mean Error -0.042

Root Mean Square Prediction Error 46.1725
Standardized Mean -1.195x 10
Standardized Root Mean Square Prediction Error 1.045
Average Standard Error 44.023
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Spring Primary Production Minimum

This variable displayed a near-normal distribution with light leptokurtosis prior to interpolation
(Table 151, Fig. 376). The data were higher than predicted by a normal distribution at both tails
and slightly lower than predicted at mid-values (Fig. 377). The areas of under- and over-
prediction showed no spatial pattern over the study extent (Fig. 377).

The semivariogram showed moderate autocorrelation present in the data (Fig. 378). The fit
between measured and predicted values was fair (Fig. 378), with under-prediction of large values
and over-prediction of small values, a property inherent to the kriging method. Good
performance of the model was indicated by the cross-validation results (Table 152). The error
map showed moderate error over the study extent (Fig. 379). The kriged surface is presented in

Fig. 380.

Table 151. Distributional properties of
Spring Primary Production Minimum
(mg C m? day™).

Frequency - 107
191

Property Value
Number of Observations 5321
Minimum 170.120
Maximum 896.290
Mean 486'430 1.7 243 31 3a8 481 533 606 878 751 824 298
Median 471.840 0 376, Distributi Dm‘““'mf Soring._ Pri
. ig. ) istribution o pring Primary
Standard Deviation 83.675 Production Minimum (mg C m2 day-l).
Skewness 0.730 Histogram was illustrated using 10 bins. X axis
Kurtosis 3.703 is shown at 107 Y axis is shown at 107,
7.51 fj :
16.06 /4/
461 ,/
. ,-—/
umsM
16.061 'gfrlg ;‘;g?‘@.)
461 ,/ i#‘ﬁ%? 50 ‘Z i ”/)"é;'/'{—“{("" i}:’,{g‘n
/ His :&ﬁ{f‘l-. é\ .:‘

449 075 [} 075 1.48 224 259
Standard Normal Value

373

Fig. 377. Normal Q-Q plot for data values of Spring Primary Production Minimum (mg C m’
day™). Points falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 378. Left panel: Semivariogram of Spring Primary Production Minimum (mg C m™ day™).
Binned values are shown as red dots; average points are shown as blue crosses; the model fit to
the averaged values is shown as a blue line. Lag size: 0.021 degrees; number of lags: 12;
Parameter: 0.740; Range: 0.170 degrees; Partial Sill: 4453.784. Right panel: Scatterplot of
predicted values versus observed values for the variable Spring Primary Production Minimum
(mg C m™ day™).

Table 152. Results of cross-validation of the kriged model for Spring Primary Production
Minimum (mg C m™ day™).

Prediction error Value
Number of Observations 5321
Overall Mean Error -0.083

Root Mean Square Prediction Error 64.050
Standardized Mean -1.252 x 107
Standardized Root Mean Square Prediction Error 0.978
Average Standard Error 65.492
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Spring Primary Production Maximum

This variable displayed a negatively skewed, leptokurtic distribution with outlying data in the
upper range (Table 153, Fig. 381). The data followed the 1:1 reference line in the Q-Q plot (Fig.
382) except at the extreme tails where the data were higher than predicted at the upper range and
lower than predicted at the lower range. The areas of under- and over-prediction showed no
spatial pattern over the study extent (Fig. 382).

The semivariogram showed moderate autocorrelation present in the data (Fig. 383). The fit
between measured and predicted values was fair (Fig. 383), with under-prediction of large values
and over-prediction of small values, a property inherent to the kriging method. The single large
outlier was poorly predicted. Good performance of the model was indicated by the cross-
validation results (Table 154). The error map showed high error along the edges of the study
extent (Fig. 384). The kriged surface is presented in Fig. 385.

Table 153. Distributional properties of
Spring Primary Production Maximum
(mg C m™ day™).

ency 107

Property Value 18
Number of Observations 5321
Minimum 509.550 )
Maximum 2980.700 )
Mean 1385400 00.51 0.78 1 1.25 1.5 D.Jtﬁét-mjégg 2324 2.49 273 2.98
Median 1406.500 Fig. 381. Distribution of Spring Primary
Standard Deviation 175.240 Production Maximum (mg C m? day™).
Skewness -0.318 Histogram was illustrated using 10 bins. X and
Kurtosis 4595 Y axes are shown at 107,
1.99) ﬁ///iﬁa—u
1 ,’//
3
248 4‘8’?‘&&% e
198 _— %‘i‘w j éﬁ
— 'y @
15 — Z 5 ;}; J 2 %}j -5' }25
s Yo Z[é ff?/}/i} ‘ff |
/f/:'

0510 o
-373 299 224 <148 075 0 07s 143 224 299
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EREY

Fig. 382. Normal Q-Q plot for data values of Spring Primary Production Maximum (mg C m™

day™). Points falling under (upper panel) and

over (bottom panel) the reference line are mapped.
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Fig. 383. Left panel: Semivariogram of Spring Primary Production Maximum (mg C m™ day™).
Binned values are shown as red dots; average points are shown as blue crosses; the model fit to
the averaged values is shown as a blue line. Lag size: 0.671 degrees; number of lags: 12;
Parameter: 0.998; Range: 5.368 degrees; Partial Sill: 20845.870. Right panel: Scatterplot of
predicted values versus observed values for the variable Spring Primary Production Maximum
(mg C m™ day™).

Table 154. Results of cross-validation of the kriged model for Spring Primary Production
Maximum (mg C m™ day™).

Prediction error Value
Number of Observations 5321
Overall Mean Error -7492 x 107
Root Mean Square Prediction Error 123.168
Standardized Mean -8.158 x 10”
Standardized Root Mean Square Prediction Error 0.996
Average Standard Error 123.462
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Spring Primary Production Range

This variable displayed a negatively skewed, leptokurtic distribution with outlying data in the
upper range (Table 155, Fig. 386). The data followed the 1:1 reference line in the Q-Q plot (Fig.
387) except at the extreme tails where the data were higher than predicted at the upper range and
lower than predicted at the lower range. The areas of under- and over-prediction showed no
spatial pattern over the study extent (Fig. 387).

The semivariogram showed moderate autocorrelation present in the data (Fig. 388). The fit
between measured and predicted values was fair (Fig. 388), with under-prediction of large values
and over-prediction of small values. The single large outlier was poorly predicted. Good
performance of the model was indicated by the cross-validation results (Table 156). The error
map showed high error along the edges of the study extent (Fig. 389). The kriged surface is

presented in Fig. 390.

Table 155. Distributional properties of

Spring Primary Production Range
(mg C m™ day™).

Property Value
Number of Observations 5321
Minimum 154.360
Maximum 2384.300
Mean 898.960
Median 908.250
Standard Deviation 179.010
Skewness -0.107
Kurtosis 3.864
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Fig. 386. Distribution of Spring Primary
Production Range (mg C m? day™). Histogram
was illustrated using 10 bins. X and Y axes are
shown at 107,
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Fig. 387. Normal Q-Q plot for data values of Spring Primary Production Range (mg C m™ day™).
Points falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 388. Left panel: Semivariogram of Spring Primary Production Range (mg C m? day™).
Binned values are shown as red dots; average points are shown as blue crosses; the model fit to
the averaged values is shown as a blue line. Lag size: 0.520 degrees; number of lags: 12;
Parameter: 0.961; Range: 4.162 degrees; Partial Sill: 17811.780. Right panel: Scatterplot of
predicted values versus observed values for the variable Spring Primary Production Range (mg C

m day™).

Table 156. Results of cross-validation of the kriged model for Spring Primary Production Range

(mg C m? day™).

Prediction error Value
Number of Observations 5321
Overall Mean Error 0.044

Root Mean Square Prediction Error 136.497
Standardized Mean 2.917 x 10™
Standardized Root Mean Square Prediction Error 0.999
Average Standard Error 136.465
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Spring Primary Production Average Minimum

This variable displayed a near-normal distribution prior to interpolation (Table 157, Fig. 391).
The data were higher than predicted by a normal distribution at low and high values however the
mid-region was very well-predicted (Fig. 392). The areas of over- and under-prediction showed
no spatial pattern over the study extent (Fig. 292).

The semivariogram showed weak autocorrelation present in the data (Fig. 393). The fit between
measured and predicted values was fair (Fig. 393), with under-prediction of large values and
over-prediction of small values. Good performance of the model was indicated by the cross-
validation results (Table 158). Moderate error was predicted over the study extent (Fig. 394).
The kriged surface is presented in Fig. 395.

Table 157. Distributional properties of

Spring Primary Production Average

Minimum (mg C m? day™).
Property Value ™
Number of Observations 5321
Minimum 235.750
Maximum 1059 -
Mean 638-970 |]024 0.32 0.4 048 057 085 _IJS?S 081 089 0.98 1.08
Median o 627.33 Fig. 391. Distribution of Spring Primary
Standard Deviation 97.470 Production Average Minimum (mg C m? day™).
Skewness 0.514 Histogram was illustrated using 10 bins. X and Y
Kurtosis 3.206 axes are shown at 107,
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Fig. 392. Normal Q-Q plot for data values of Spring Primary Production Average Minimum (mg
C m day™). Points falling under (upper panel) and over (bottom panel) the reference line are
mapped.
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Fig. 393. Left panel: Semivariogram of Spring Primary Production Average Minimum (mg C m™
day™). Binned values are shown as red dots; average points are shown as blue crosses; the model
fit to the averaged values is shown as a blue line. Lag size: 0.738 degrees; number of lags: 12;
Parameter: 0.87; Range: 5.905 degrees; Partial Sill: 10193.75. Right panel: Scatterplot of
predicted values versus observed values for the model of Spring Primary Production Average
Minimum (mg C m day™).

Table 158. Results of cross-validation of the kriged model for Spring Primary Production
Average Minimum (mg C m? day™).

Prediction error Value
Number of Observations 5321
Overall Mean Error -3.548 x 10°®
Root Mean Square Prediction Error 52.599
Standardized Mean 1.059 x 10
Standardized Root Mean Square Prediction Error 1.087
Average Standard Error 48.365

245



65:W SO:W 55:W

e " NEWFOUNDLAND
"'®E saes =g 2 a X

1% j R [ Jx‘__), A.-:‘éa -ku_’,
‘ -4 - ~

i

45°N

Spring Primary Production Average Minimum (mg C m*2 day™) N
74.0579

: 29.6466
24.0304

0 100 200 400
- e <ilometers

Fig. 394. Prediction standard error surface of Spring Primary Production Average Minimum
(mg C m? day™).

65:W 60:W 55:W
PN S A
2 Qu EBEFCA Wf‘\‘//fg /,/ NEWFOUNDLAND
A S ™ s 2 -
- S //?y e A
o N, 5
s
4
‘. | Z
Spring Primary Production Average Minimum (mg C m# day™) ¥
934.5940
- 636.2540
348.1530
0 100 200 400
- e e Kilometers

Fig. 395. Interpolated prediction surface of Spring Primary Production Average Minimum
(mg C m?day™).

246



Spring Primary Production Average Maximum

This variable displayed a slightly left-skewed, playkurtic distribution prior to interpolation
(Table 159, Fig. 396). The data were lower than predicted by a normal distribution at both tails
and slightly higher than predicted at lower mid-range values (Fig. 397). The areas of over-
prediction showed no spatial pattern over the study extent (Fig. 397).

The semivariogram showed weak autocorrelation present in the data (Fig. 398). The fit between
measured and predicted values was fair (Fig. 398), with under-prediction of large values and
over-prediction of small values. Good performance of the model was indicated by the cross-
validation results (Table 160). Moderate error was predicted over the study extent (Fig. 399).
The kriged surface is presented in Fig. 400.

Table 159. Distributional properties of
Spring Primary Production Average
Maximum (mg C m™ day™).
Property Value
Number of Observations 5321
Minimum 371.450
MaXimum 1511.200 [ s SRR S S I (R R R I SE—
Mean 1121-300 |:|037 049 06 0.71 0.83 0.94 :ISIJE 117 128 1.4 1.51
Median - 1132.100 Fig. 396. Distribution of Spring Primary
Standard Deviation 144.300 Production Average Maximum (mg C m? day™).
Skewness -0.270 Histogram was illustrated using 10 bins. X and Y
Kurtosis 2.814 axes are shown at 107,
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Fig. 397. Normal Q-Q plot for data values of Spring Primary Production Average Maximum (mg
C m? day™). Points falling under (upper panel) and over (bottom panel) the reference line are
mapped.
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Fig 398. Left panel: Semivariogram of Spring Primary Production Average Maximum (mg C m™
day™). Binned values are shown as red dots; average points are shown as blue crosses; the model
fit to the averaged values is shown as a blue line. Lag size: 0.930 degrees; number of lags: 12;
Parameter: 0.715; Range: 7.436 degrees; Partial Sill: 22540.080. Right panel: Scatterplot of
predicted values versus observed values for the model of Spring Primary Production Average
Maximum (mg C m? day™).

Table 160. Results of cross-validation of the kriged model for Spring Primary Production
Average Maximum (mg C m™ day™).

Prediction error Value
Number of Observations 5321
Overall Mean Error 0.028

Root Mean Square Prediction Error 77.765
Standardized Mean 2.460 x 10
Standardized Root Mean Square Prediction Error 1.033
Average Standard Error 75.115
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Fig. 399. Prediction standard error surface of Spring Primary Production Average Maximum
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Spring Primary Production Average Range

This variable displayed a near normal distribution prior to interpolation (Table 161, Fig. 401).
The data were higher than predicted by a normal distribution at the lowest values and lower than
predicted at the highest values (Fig. 402). However, the mid-region was very well-predicted (Fig.
402). The areas of over-prediction showed no spatial pattern over the study extent (Fig. 402).

The semivariogram showed moderate autocorrelation present in the data (Fig. 403). The fit
between measured and predicted values was fair (Fig. 403), with under-prediction of large values
and over-prediction of small values. Good performance of the model was indicated by the cross-
validation results (Table 162). Moderate error was predicted over the study extent (Fig. 404).
The kriged surface is presented in Fig. 405.

Table 161. Distributional properties of

Spring Primary Production Average

Range (mg C m? day™).

Property Value

Number of Observations 5321

Minimum 79.020

Maximum 914.100

Mean 482.350 S te 2 s am <e s se ce ss sw
Median 481.680 Fig. 401. Distribution of Spring Primary
Standard Deviation 134.060 Production Average Range (mg C m? day™).
Skewness 0.066 Histogram was illustrated using 10 bins. X axis
Kurtosis 2770 is shown at 10%; Y axis is shown at 107,
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Fig. 402. Normal Q-Q plot for data values of Spring Primary Production Average Range (mg C
m™ day™). Points falling over the reference line are mapped; no points fall under the reference
line.
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Fig 403. Left panel: Semivariogram of Spring Primary Production Average Range (mg C m™
day™). Binned values are shown as red dots; average points are shown as blue crosses; the model
fit to the averaged values is shown as a blue line. Lag size: 0.473 degrees; number of lags: 12;
Parameter: 0.694; Range: 3.784 degrees; Partial Sill: 15865.82. Right panel: Scatterplot of
predicted values versus observed values for the model of Spring Primary Production Average
Range (mg C m? day™).

Table 162. Results of cross-validation of the kriged model for Spring Primary Production
Average Range (mg C m™ day™).

Prediction error Value
Number of Observations 5321
Overall Mean Error 0.040

Root Mean Square Prediction Error 87.858
Standardized Mean 2.218 x 10*
Standardized Root Mean Square Prediction Error 1.017
Average Standard Error 86.306
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Summer Primary Production Mean

This variable displayed a bimodal distribution prior to interpolation (Table 163, Fig. 406). The
data were higher than predicted by a normal distribution at mid- and the lowest range values and
lower than predicted at low and the highest range values (Fig. 407). The areas of under- and
over-prediction showed a spatial pattern over the study extent (Fig. 407).

The semivariogram showed moderate autocorrelation present in the data and the model showed a
good fit between measured and predicted values (Fig. 408). Good performance of the model was
indicated by the cross-validation results (Table 164). The error map showed moderate error
across the study extent except at the exact location of data points where it was low (Fig. 409).
The kriged surface is presented in Fig. 410.

Table 163. Distributional properties of
Summer Primary Production Mean

(mg C m? day™).

0.4z 0.5 0.58 0.66 0.75 0.83 0.91 0.59 1.07 1.16 124
Dataset-10™°

Fig. 406. Distribution of Summer Primary
Production Mean (mg C m? day™). Histogram
was illustrated using 10 bins. X and Y axes are
shown at 107,

Property Value
Number of Observations 5329
Minimum 415.900
Maximum 1239.700
Mean 791.130
Median 821.080
Standard Deviation 148.100
Skewness -0.485
Kurtosis 2.486

. A

o S

374 288 224 148 0TS

0

075 1.49 224

Standard Normal Value

299 374

Fig. 407. Normal Q-Q plot for data values of Summer Primary Production Mean (mg C m™ day’
1. Points falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 408. Left panel: Semivariogram of Summer Primary Production Mean (mg C m™ day™).
Binned values are shown as red dots; average points are shown as blue crosses; the model fit to
the averaged values is shown as a blue line. Lag size: 0.915 degrees; number of lags: 12;
Parameter: 1.207; Range: 7.319 degrees; Partial Sill: 30641.890. Right panel: Scatterplot of
predizcted \{alues versus observed values for the variable Summer Primary Production Mean (mg
C m™day™).

Table 164. Results of cross-validation of the kriged model for Summer Primary Production Mean
(mg C m™ day™).

Prediction Error Value
Number of Observations 5329

Overall Mean Error -2.377x 10
Root Mean Square Prediction Error 32.427
Standardized Mean -2.152 x 10™
Standardized Root Mean Square Prediction Error 1.105
Average Standard Error 29.153
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Summer Primary Production Minimum

This variable displayed a platykurtic distribution prior to interpolation (Table 165, Fig. 411). The
data were higher than predicted by a normal distribution at low and upper-mid range values and
lower than predicted at mid and high values (Fig. 412). The areas of under- and over-prediction
showed some spatial pattern over the study extent (Fig. 412).

The semivariogram showed moderate autocorrelation present in the data and the model showed
good fit between measured and predicted values (Fig. 413). Good performance was indicated by
the cross-validation results (Table 166). The error map showed high error along the edges of the
study extent (Fig. 414). The kriged surface is presented in Fig. 415.

Table 165. Distributional properties of
Summer Primary Production Minimum

(mg C m™ day™).

Property Value
Number of Observations 5329
Minimum 174.090
Maximum 885.170
Mean 557.880
Median 571.680
Standard Deviation 118.250
Skewness 0.015
Kurtosis 1.889

7.43) //.

16.01 //

4.59] -——_2,

3.16 f

743 //‘wn

459 '/

=

374 288

224

148

075 0 075 1.48 224 289

standard Normal Value

374

Frequency - 10 =

Dataset 1072

Fig. 411. Distribution of Summer Primary
Production Minimum (mg C m? day™).
Histogram was illustrated using 10 bins. X axis is
shown at 10%; Y axis is shown at 107,

Fig. 412. Normal Q-Q plot for data values of Summer Primary Production Minimum (mg C m™
day™). Points falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 413. Left panel: Semivariogram of Summer Primary Production Minimum (mg C m™ day™).
Binned values are shown as red dots; average points are shown as blue crosses; the model fit to
the averaged values is shown as a blue line. Lag size: 0.064 degrees; number of lags: 12;
Parameter: 2; Range: 0.514 degrees; Partial Sill: 3132.746. Right panel: Scatterplot of predicted
valuias versus observed values for the variable Summer Primary Production Minimum (mg C m™
day™).

Table 166. Results of cross-validation of the kriged model for Summer Primary Production
Minimum (mg C m™ day™).

Prediction error Value
Number of Observations 5329
Overall Mean Error 0.070 x 10°°
Root Mean Square Prediction Error 43.931
Standardized Mean 1.687 x 107
Standardized Root Mean Square Prediction Error 1.089
Average Standard Error 40.254
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Summer Primary Production Maximum

This variable displayed a near-normal, but slightly platykurtic distribution prior to interpolation
(Table 167, Fig. 416). The data were higher than predicted by a normal distribution at lower and
upper-mid ranges and lower than predicted at high values (Fig. 417). The areas of under- and
over-prediction showed no spatial pattern over the study extent (Fig. 417).

The semivariogram showed moderate autocorrelation present in the data (Fig. 418). The fit
between measured and predicted values was fair (Fig. 418), with under-prediction of large values
and over-prediction of small values. Good performance of the model was indicated by the cross-
validation results (Table 168). The error map showed high error along the edges of the study
extent (Fig. 419). The kriged surface is presented in Fig. 420.

Table 167. Distributional properties of
Summer Primary Production Maximum
(mg C m? day™).

Frequency 10
108

0.64 0.79 0.93 1.08 122 1.37 1.51 1.66 1.8 1.94
Dataset- 107"

Fig. 416. Distribution of Summer Primary
Production Maximum (mg C m? day?).
Histogram was illustrated using 10 bins. X and Y
axes are shown at 107,

Property Value
Number of Observations 5329
Minimum 499.520
Maximum 1944.800
Mean 1187
Median 1175.800
Standard Deviation 273.140
Skewness -0.010
Kurtosis 2.526

166 ’//
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Fig. 417. Normal Q-Q plot for data values of Summer Primary Production Maximum (mg C m™
day™). Points falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 418. Left panel: Semivariogram of Summer Primary Production Maximum (mg C m™ day’
1). Binned values are shown as red dots; average points are shown as blue crosses; the model fit
to the averaged values is shown as a blue line. Lag size: 0.058 degrees; number of lags: 12;
Parameter: 2; Range: 0.464 degrees; Partial Sill: 18045.730. Right panel: Scatterplot of predicted
valuias versus observed values for the variable Summer Primary Production Maximum (mg C m™
day™).

Table 168. Results of cross-validation of the kriged model for Summer Primary Production
Maximum (mg C m™ day™).

Prediction error Value
Number of Observations 5329
Overall Mean Error 0.016

Root Mean Square Prediction Error 137.618
Standardized Mean -0.482 x 10°
Standardized Root Mean Square Prediction Error 1.027
Average Standard Error 133.835
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Summer Primary Production Range

This variable displayed a near-normal, but slightly platykurtic distribution prior to interpolation
(Table 169, Fig. 421). The data were higher than predicted by a normal distribution at the lowest
values and slightly lower than predicted at the highest values (Fig. 422). The areas of under- and
over-prediction showed some spatial pattern over the study extent (Fig. 422).

The semivariogram showed autocorrelation present in the data (Fig. 423). The fit between
measured and predicted values was fair (Fig. 423), with under-prediction of large values and
over-prediction of small values. Excellent performance of the model was indicated by the cross-
validation results (Table 170). The error map showed moderate error over the study extent (Fig.
424). The kriged surface is presented in Fig. 425.

Table 169. Distributional properties of
Summer Primary Production Range
(mg C m? day™). oss
Property Value
Number of Observations 5329
Minimum 105.300
Maximum 1430.700 '
Mean 629090 0T 022 0ar 0.5 0.64 D;;:Etlmg.a 103 147 1.3 143
Median 611.830 Fig. 421. Distribution of Summer Primary
Standard Deviation 224.440 Production Range (mg C m™ day™). Histogram
Skewness 0.143 was iIIustratgd using 10 bins. X and Y axes are
Kurtosis 2.517 shown at 10~
1.43, /'...‘
- ,//
064, /
0.37 I//
E i.jsuﬁ ° DTﬁH{AB -075 0 075 143 224 289 374
117 f B
, ,//
064, /
0.37 //
o

374 288 224 .48 075 [} 075 1.48 224 259 374
Standard Normal Value

Fig. 422. Normal Q-Q plot for data values of Summer Primary Production Range (mg C m™ day’
1. Points falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 423. Left panel: Semivariogram of Summer Primary Production Range (mg C m™ day™).
Binned values are shown as red dots; average points are shown as blue crosses; the model fit to
the averaged values is shown as a blue line. Lag size: 0.148 degrees; number of lags: 12;
Parameter: 1.061; Range: 1.185 degrees; Partial Sill: 29972.610. Right panel: Scatterplot of
predizcted \{alues versus observed values for the variable Summer Primary Production Range (mg
C m™day™).

Table 170. Results of cross-validation of the kriged model for Summer Primary Production
Range (mg C m? day™).

Prediction error Value
Number of Observations 5329
Overall Mean Error 0.082

Root Mean Square Prediction Error 142.571
Standardized Mean 3.990 x 10
Standardized Root Mean Square Prediction Error 1.000
Average Standard Error 142.549
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Summer Primary Production Average Minimum

This variable displayed a left-skewed, bimodal distribution prior to interpolation (Table 171, Fig.
426). The data were lower than predicted by a normal distribution at high and mid-values, and
higher than predicted at low and upper mid-range values (Fig. 427). The areas of under- and
over-prediction showed some spatial pattern over the study extent (Fig. 427).

The semivariogram showed moderate autocorrelation present in the data and the model showed a
good fit between measured and predicted values (Fig. 428). Good performance of the model was
indicated by the cross-validation results (Table 172). The error map showed moderate error
across the study extent (Fig. 429). The kriged surface is presented in Fig. 430.

Table 171. Distributional properties of
Summer Primary Production Average

Minimum (mg C m™ day™).

374

Property Value
Number of Observations 5329
Minimum 312.630
Maximum 1086.200
Mean 667.350
Median 700.870
Standard Deviation 125.040
Skewness -0.436
Kurtosis 2.260

093 "#.
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Dataset 10~

Fig. 426. Distribution of Summer Primary
Production Average Minimum (mg C m? day™).
Histogram was illustrated using 10 bins. X and Y
axes are shown at 107,
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Fig. 427. Normal Q-Q plot for data values of Summer Primary Production Average Minimum
(mg C m™ day™). Points falling under (upper panel) and over (bottom panel) the reference line

are mapped.
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Fig. 428. Left panel: Semivariogram of Summer Primary Production Average Minimum (mg C
m™ day™). Binned values are shown as red dots; average points are shown as blue crosses; the
model fit to the averaged values is shown as a blue line. Lag size: 0.812 degrees; number of lags:
12; Parameter: 1.211; Range: 6.496 degrees; Partial Sill: 20741.640. Right panel: Scatterplot of
predicted values versus observed values for the model of Summer Primary Production Average
Minimum (mg C m day™).

Table 172. Results of cross-validation of the kriged model for Summer Primary Production
Average Minimum (mg C m? day™).

Prediction error Value
Number of Observations 5329
Overall Mean Error -0.014

Root Mean Square Prediction Error 29.697
Standardized Mean -4.849 x 10™
Standardized Root Mean Square Prediction Error 1.100
Average Standard Error 26.785
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Fig. 429. Prediction standard error surface of Summer Primary Production Average Minimum
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Fig. 430. Interpolated prediction surface of Summer Primary Production Average Minimum
(mg C m™ day™).
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Summer Primary Production Average Maximum

This variable displayed a slightly left-skewed, platykurtic distribution prior to interpolation
(Table 173, Fig. 431). The data were higher than predicted by a normal distribution at low and
upper mid-range values and lower than predicted at high and mid-range values (Fig. 432). The
areas of under- and over-prediction showed some spatial pattern over the study extent (Fig. 432).

The semivariogram showed weak autocorrelation present in the data and the model showed a
good fit between measured and predicted values (Fig. 433). Good performance of the model was
indicated by the cross-validation results (Table 174). The error map showed moderate error
across the study extent (Fig. 434). The kriged surface is presented in Fig. 435.

Table 173. Distributional properties of
Summer Primary Production Average

Maximum (mg C m? day™).

374

Property Value
Number of Observations 5329
Minimum 449.760
Maximum 1562.700
Mean 931.720
Median 948.430
Standard Deviation 189.100
Skewness -0.310
Kurtosis 2.678
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Fig. 432. Normal Q-Q plot for data values of Summer Primary Production Average Maximum
(mg C m™ day™). Points falling under (upper panel) and over (bottom panel) the reference line
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Fig. 431. Distribution of Summer Primary
Production Average Maximum (mg C m™ day™).
Histogram was illustrated using 10 bins. X and Y
axes are shown at 107,

1.23 1.24 1.45 1.56

374

268



v-10°5 Predicted 102

1545 * 1563
1352 o & b 1424
1.159 . s ook 1284
0.9 ARSI R 1145
0773 * 0 *
. . . 1.006
058 o, ni 2 %4
g . . . 5 e 0867
0.386 B _
O . 0728
0193 = . 1
o 0589
0 016 032 048 0628 0799 0959 1119 1279 1439 s
= Model + Binned = Averaged Distance (Degree). h 1071 045 0573 067 0821 0944 1068 1192 1315 1438 1583
Model - 1581 2*Nugget=51224"Stable(9.59.1.0156) Measured -10-3

Fig. 433. Left panel: Semivariogram of Summer Primary Production Average Maximum (mg C
m™ day™). Binned values are shown as red dots; average points are shown as blue crosses; the
model fit to the averaged values is shown as a blue line. Lag size: 1.199 degrees; number of lags:
12; Parameter: 1.016; Range: 9.590 degrees; Partial Sill: 51223.870. Right panel: Scatterplot of
predicted values versus observed values for the model of Summer Primary Production Average
Maximum (mg C m? day™).

Table 174. Results of cross-validation of the kriged model for Summer Primary Production
Average Maximum (mg C m™ day™).

Prediction error Value
Number of Observations 5329
Overall Mean Error 0.011

Root Mean Square Prediction Error 59.528
Standardized Mean 1.635x 107
Standardized Root Mean Square Prediction Error 1.079
Average Standard Error 54.985
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Summer Primary Production Average Range

This variable displayed a right-skewed distribution prior to interpolation (Table 175, Fig. 436).
The data were higher than predicted by a normal distribution at both tails (Fig. 437). No data
points fell below the reference line. The areas of over-prediction showed no strong spatial pattern
over the study extent (Fig. 437).

The semivariogram showed weak autocorrelation present in the data (Fig. 438). The fit between
measured and predicted values was fair (Fig. 438), with under-prediction of large values and
over-prediction of small values. Good performance of the model was indicated by the cross-
validation statistics (Table 176). The error map showed moderate error across the study extent
(Fig. 439). The kriged surface is presented in Fig. 440.

Table 175. Distributional properties of

Summer Primary Production Average

Range (mg C m? day™).
Property Value
Number of Observations 5329 0s
Minimum 31.300
Maximum 784230
Mean 26437 5.31 1.07 1.82 257 332 D:t.‘:ssEtlmlsa 5.58 6.34 7.08 7.84
Median 255.880 Fig. 436. Distribution of Summer Primary
Standard Deviation 105.03 Production Average Range (mg C m? day™).
Skewness 0.441 Histogram was illustrated using 10 bins. X axis
Kurtosis 3,061 is shown at 10%; Y axis is shown at 107,

Dataset 10
784
834

e
Pe 22 <
482 e/ — gz
23

o

3.32]

182

k.

031
374 289 22¢ 148 7S 0 075 149 224 289 374
Standard Normal Value

Fig. 437. Normal Q-Q plot for data values of Summer Primary Production Average Range (mg C
m™ day™). Points falling over (bottom panel) the reference line are mapped; no points fall under
the reference line.
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Fig. 438. Left panel: Semivariogram of Summer Primary Production Average Range (mg C m™
day™). Binned values are shown as red dots; average points are shown as blue crosses; the model
fit to the averaged values is shown as a blue line. Lag size: 0.568 degrees; number of lags: 12;
Parameter: 0.643; Range: 4.543 degrees; Partial Sill: 10593.400. Right panel: Scatterplot of
predicted values versus observed values for the model of Summer Primary Production Average
Range (mg C m? day™).

Table 176. Results of cross-validation of the kriged model for Summer Primary Production
Average Range (mg C m™ day™).

Prediction error Value
Number of Observations 5329
Overall Mean Error 0.027

Root Mean Square Prediction Error 60.608
Standardized Mean 3.176 x 10™
Standardized Root Mean Square Prediction Error 0.983
Average Standard Error 61.560
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Fall Primary Production Mean

There was incomplete coverage of this variable across the study extent. Prior to interpolation,
this variable displayed a slightly right-skewed, leptokurtic distribution (Table 177, Fig. 441). The
data were higher than predicted by a normal distribution at mid-range and high values and
slightly lower than predicted at low values (Fig. 442). The areas of under- and over-prediction
showed no spatial pattern over the study extent (Fig. 442).

The semivariogram showed moderate autocorrelation present in the data (Fig. 443). The fit
between measured and predicted values was fair (Fig. 443), with under-prediction of large values
and over-prediction of small values. Good performance of the model was indicated by the cross-
validation statistics (Table 178). The error map showed patches of high error across the study
extent, particularly off Cape Breton (Fig. 444). The kriged surface is presented in Fig. 445.

Table 177. Distributional properties of

Fall Primary Production Mean
(mg C m? day™).

Frequency 10
58

1.26

27 3.29 3.86 4.47 5.06 566  6.25 6.84 7.43 8.02 8.61
Dataset - 10>

Fig. 441. Distribution of Fall Primary Production
Mean (mg C m™ day™). Histogram was illustrated
using 10 bins. X axis is shown at 10 Y axis is
shown at 107,

Property Value
Number of Observations 4426
Minimum 269.910
Maximum 861.300
Mean 521.420
Median 515.960
Standard Deviation 64.683
Skewness 0.305
Kurtosis 4.020

7.43 f'y :

o

Pl

27¢ '-/

’,/

- -~

275" 08
389 295 221 A4 0

074 148 221 288

standard Normal Value

Fig. 442. Normal Q-Q plot for data values of Fall Primary Production Mean (mg C m™ day™).
Points falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 443. Left panel: Semivariogram of Fall Primary Production Mean (mg C m™ day™). Binned
values are shown as red dots; average points are shown as blue crosses; the model fit to the
averaged values is shown as a blue line. Lag size: 0.043 degrees; number of lags: 12; Parameter:
2; Range: 0.343 degrees; Partial Sill: 1040.843. Right panel: Scatterplot of predicted values
versus observed values for the variable Fall Primary Production Mean (mg C m™ day™).

Table 178. Results of cross-validation of the kriged model for Fall Primary Production Mean
(mg C m™ day™).

Prediction error Value
Number of Observations 4426
Overall Mean Error 0.078

Root Mean Square Prediction Error 35.523
Standardized Mean 1.717 x 10°®
Standardized Root Mean Square Prediction Error 1.068
Average Standard Error 33.019
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Fig. 444. Prediction standard error surface of Fall Primary Production Mean (mg C m™ day™).
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Fall Primary Production Minimum

There was incomplete coverage of this variable across the study extent. Prior to interpolation,
this variable displayed a slightly left-skewed, platykurtic distribution (Table 179, Fig. 446). The
data were slightly lower than predicted by a normal distribution at lower mid-range and high
values and slightly higher than predicted at low values (Fig. 447). The areas of under- and over-
prediction showed no spatial pattern over the study extent (Fig. 447).

The semivariogram showed moderate autocorrelation present in the data (Fig. 448). The fit
between measured and predicted values was fair (Fig. 448), with under-prediction of large values
and over-prediction of small values. Good performance of the model was indicated by the cross-
validation statistics (Table 180). The error map showed patches of high error across the study
extent, particularly off Cape Breton (Fig. 449). The kriged surface is presented in Fig. 450.

Table 179. Distributional properties of
Fall Primary Production Minimum
(mg C m? day™).
Property Value
Number of Observations 4426 0s
Minimum 86.590
Maximum 625.340 '
Mean 336280 ou.sr 1.4 1.94 248 3.02 Dat.:et-ltl'g..l 464 5.18 571 6.25
Median o 372.320 Fig. 446. Distribution of Fall Primary Production
Standard Deviation 85.143 Minimum (mg C m? day™). Histogram was
Skewness -0.289 illustrated using 10 bins. X axis is shown at 10%
KUrtosis 2 612 Y axis is shown at 102,
i ,A/EI- ..’t
. e g o
/ M g . e
3.02 i P, X / 5
pd “

5
389 285 221 143 074 0 0.74 148 22 295 389
Standard Normal Value

0.57,
369 295 221 148 0T 0 074 148 221 295 369
Standard Normal Value

Fig. 447. Normal Q-Q plot for data values of Fall Primary Production Minimum (mg C m™ day’
1. Points falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 448. Left panel: Semivariogram of Fall Primary Production Minimum (mg C m™ day™).
Binned values are shown as red dots; average points are shown as blue crosses; the model fit to
the averaged values is shown as a blue line. Lag size: 0.210 degrees; number of lags: 12;
Parameter: 0.494; Range: 1.676 degrees; Partial Sill: 7737.392. Right panel: Scatterplot of
predizcted \{alues versus observed values for the variable Fall Primary Production Minimum (mg
C m™day™).

Table 180. Results of cross-validation of the kriged model for Fall Primary Production Minimum
(mg C m™ day™).

Prediction error Value
Number of Observations 4426
Overall Mean Error 0.081

Root Mean Square Prediction Error 67.953
Standardized Mean 8.344 x 10™
Standardized Root Mean Square Prediction Error 1.025
Average Standard Error 66.284
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Fall Primary Production Maximum

There was incomplete coverage of this variable across the study extent. Prior to interpolation,
this variable displayed a slightly right-skewed, leptokurtic distribution (Table 181, Fig. 451). The
data were lower than predicted by a normal distribution at mid-range values and higher than
predicted at both tails (Fig. 452). The areas of under- and over-prediction showed no spatial

pattern over the study extent (Fig. 452).

The semivariogram showed moderate autocorrelation present in the data (Fig. 453). The fit
between measured and predicted values was fair (Fig. 453), with under-prediction of large
values. Good performance of the model was indicated by the cross-validation statistics (Table
182). The error map showed patches of high error across the study extent, particularly off Cape
Breton (Fig. 454). The kriged surface is presented in Fig. 455.

Table 181. Distributional properties of
Fall Primary Production Maximum
(mg C m? day™).

Frequency +10
216

1.73

1.29

0388

o
0.33 0.44 0.56 0.67 0.79 0.9 1.02 1.14 1.25 1.37 1.48
Dataset-10™°

Fig. 451. Distribution of Fall Primary Production
Maximum (mg C m? day™). Histogram was
illustrated using 10 bins. X and Y axes are shown
at 107,

Property Value
Number of Observations 4426
Minimum 326.470
Maximum 1481.500
Mean 677.710
Median 644.870
Standard Deviation 133.940
Skewness 1.237
Kurtosis 4.660

. _—

/

0.56 M’_ o i

Standard Normal Value

389 295 22 43 074 0 074 148 22 295

Fig. 452. Normal Q-Q plot for data values of Fall Primary Production Maximum (mg C m™ day’
1. Points falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 453. Left panel: Semivariogram of Fall Primary Production Maximum (mg C m™ day™).
Binned values are shown as red dots; average points are shown as blue crosses; the model fit to
the averaged values is shown as a blue line. Lag size: 0.079 degrees; number of lags: 12;
Parameter: 2; Range: 0.633 degrees; Partial Sill: 5667.416. Right panel: Scatterplot of predicted
values versus observed values for the variable Fall Primary Production Maximum
(mg C m™ day™).

Table 182. Results of cross-validation of the kriged model for Fall Primary Production
Maximum (mg C m™ day™).

Prediction error Value
Number of Observations 4426
Overall Mean Error 6.161 x 10°°
Root Mean Square Prediction Error 70.713
Standardized Mean -3.351 x 10™
Standardized Root Mean Square Prediction Error 1.071
Average Standard Error 65.625

281



B5°W 60°W 85°W

QUEBEC NEWFOUNDLAND

NEW BRUNSWICK
PEl

=

45°N

40°N

Fall Primary Production Maximum (mg C m? day)

o 108.6560
-41.8085
20.2070
0 100 200 400
Kilometers

Fig. 454. Prediction standard error surface of Fall Primary Production Maximum
(mg C m? day™).

B5°W 60°W 85°W

QUEBEC NEWFOUNDLAND

NEW BRUNSWICK

PH 4 ’

-5

s
45°N

40°N

Fall Primary Production Maximum (mg C m?2 day™)
o 10747200
-683.8060
354.6860

00
Kilometers

Fig. 455. Interpolated prediction surface of Fall Primary Production Maximum
(mg C m™ day™).

282



Fall Primary Production Range

There was incomplete coverage of this variable across the study extent. Prior to interpolation,
this variable displayed a slightly right-skewed, leptokurtic distribution (Table 183, Fig. 456). The
data were higher than predicted by a normal distribution at both tails, and slightly lower than
predicted at mid-range values (Fig. 457). The areas of under- and over-prediction showed no
spatial pattern over the study extent (Fig. 457).

The semivariogram showed moderate autocorrelation present in the data (Fig. 458). The fit
between measured and predicted values was fair (Fig. 458), with under-prediction of large values
and over-prediction of small values. Good performance of the model was indicated by the
cross-validation statistics (Table 184). The error map showed patches of high error across the
study extent, particularly off Cape Breton (Fig. 459). The kriged surface is presented in Fig. 460.

Table 183. Distributional properties of
Fall Primary Production Range
(mg C m-Z day-l). 1.05
Property Value P P—
Number of Observations 4426
Minimum 19.090
Maximum 1025 '
Mean 31143 oﬂ.oz 012 0.22 032 0.42 D:t.‘:szet-lﬂpéez 0.72 0.82 0.92 1.03
Median 284.69 Fig. 456. Distribution of Fall Primary Production
Standard Deviation 151.440 Range (mg C m? day?). Histogram was
Skewness 1.004 iIIustgated using 10 bins. X and Y axes are shown
Kurtosis 4.125 at10™.
0.82 f‘MﬂD
062 ,/
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LY
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T g
= i'%?g@g ,’f/ ﬁf&ﬁiﬁ%ﬁ

Fig. 457. Normal Q-Q plot for data values of Fall Primary Production Range (mg C m™ day™).
Points falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 458. Left panel: Semivariogram of Fall Primary Production Range (mg C m™ day™). Binned
values are shown as red dots; average points are shown as blue crosses; the model fit to the
averaged values is shown as a blue line. Lag size: 0.168 degrees; number of lags: 12; Parameter:
1.074; Range: 1.345 degrees; Partial Sill: 11158.190. Right panel: Scatterplot of predicted values
versus observed values for the variable Fall Primary Production Range (mg C m™ day™).

Table 184. Results of cross-validation of the kriged model for Fall Primary Production Range
(mg C m™ day™).

Prediction error Value
Number of Observations 4426
Overall Mean Error 2.878 x 10°®
Root Mean Square Prediction Error 97.123
Standardized Mean 4.264 x 10”
Standardized Root Mean Square Prediction Error 1.020
Average Standard Error 95.020
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Fig. 459. Prediction standard error surface of Fall Primary Production Range (mg C m™ day™).
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Fall Primary Production Average Minimum

There was incomplete coverage of this variable across the study extent. This variable displayed a
near-normal distribution with negative skew (Table 185, Fig. 461). The data were higher than
predicted by a normal distribution at both tails and lower than predicted at lower and upper mid-
range values (Fig. 462). Mid-range values were well predicted. The areas of under- and over-
prediction showed no spatial pattern over the study extent (Fig. 462).

The semivariogram showed weak autocorrelation present in the data (Fig. 463). The fit between
measured and predicted values was fair (Fig. 463), with under-prediction of large values and
over-prediction of small values. Good performance of the model was indicated by the cross-
validation statistics (Table 186). The error map showed patches of high error across the study
extent, particularly off Cape Breton (Fig. 464). The kriged surface is presented in Fig. 465.

Table 185. Distributional properties of
Fall Primary Production Average
Minimum (mg C m™ day™).
Property Value
Number of Observations 4426 .
Minimum 222.310
Maximum 686.050
Mean 430'630 2022 269 3.15 381 4.08 454 501 547 593 6.4 6.86
Median 434.840 , TP — .
dard - Fig. 461. Distribution of Fall Primary Production
Standard Deviation 63.630 Average Minimum (mg C m™ day™). Histogram
Skewness -0.242 was illustrated using 10 bins. X axis is shown at
Kurtosis 2.986 102 Y axis is shown at 10°.
) P
—~
4.08 ,/
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e
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2.2,
389 285 221 148 074 0 074 148 22 295 269
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Fig. 462. Normal Q-Q plot for data values of Fall Primary Production Average Minimum (mg C
m™ day™). Points falling under (upper panel) and over (bottom panel) the reference line are
mapped.
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Fig. 463. Left panel: Semivariogram of Fall Primary Production Average Minimum (mg C m™
day™). Binned values are shown as red dots; average points are shown as blue crosses; the model
fit to the averaged values is shown as a blue line. Lag size: 0.449 degrees; number of lags: 12;
Parameter: 0.499; Range: 3.592 degrees; Partial Sill: 3495.583. Right panel: Scatterplot of
predicted values versus observed values for the variable Fall Primary Production Average
Minimum (mg C m day™).

Table 186. Results of cross-validation of the kriged model for Fall Primary Production Average
Minimum (mg C m? day™).

Prediction error Value
Number of Observations 4426
Overall Mean Error 0.050

Root Mean Square Prediction Error 46.765
Standardized Mean 7.044 x 10™
Standardized Root Mean Square Prediction Error 0.958
Average Standard Error 48.759
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Fall Primary Production Average Maximum

There was incomplete coverage of this variable across the study extent. Prior to interpolation,
this variable displayed slightly right-skewed, leptokurtic distribution (Table 187, Fig. 466). The
data were lower than predicted by a normal distribution at mid-range values and higher than
predicted at both tails (Fig. 467). The areas of under- and over-prediction showed no spatial
pattern over the study extent (Fig. 467).

The semivariogram showed moderate autocorrelation present in the data (Fig. 468). The fit
between measured and predicted values was fair (Fig. 468), with under-prediction of large values
and over-prediction of small values. Good performance of the model was indicated by the cross-
validation statistics (Table 188). The error map showed patches of high error across the study
extent, particularly off Cape Breton (Fig. 469). The kriged surface is presented in Fig. 470.

Table 187. Distributional properties of

Fall Primary Production Average
Maximum (mg C m? day™).

Frequency 10
175

1.4

1.05

o

0.35

0.47 0.55 0.6z (g 078 0.85

Dataset- 107"

0.93 1.01 1.08

Fig. 466. Distribution of Fall Primary Production
Average Maximum (mg C m™ day™). Histogram
was illustrated using 10 bins. X and Y axes are
shown at 107,

Property Value
Number of Observations 4426
Minimum 317.51
Maximum 1082
Mean 612.23
Median 594,510
Standard Deviation 98.649
Skewness 0.976
Kurtosis 4.596
Pat
ez P
ﬁ/”f/
: s

0.32 i
389 295 221 143 074 0 074 148
Standard Normal Value

221

288

389

Fig. 467. Normal Q-Q plot for data values of Fall Primary Production Average Maximum (mg C
m™ day™). Points falling under (upper panel) and over (bottom panel) the reference line are

mapped.
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Fig. 468. Left panel: Semivariogram of Fall Primary Production Average Maximum (mg C m™
day™). Binned values are shown as red dots; average points are shown as blue crosses; the model
fit to the averaged values is shown as a blue line. Lag size: 0.058 degrees; number of lags: 12;
Parameter: 2; Range: 0.466 degrees; Partial Sill: 2523.029. Right panel: Scatterplot of predicted
valuezs verius observed values for the variable Fall Primary Production Average Maximum (mg
C m™day™).

Table 188. Results of cross-validation of the kriged model for Fall Primary Production Average
Maximum (mg C m™ day™).

Prediction error Value
Number of Observations 4426
Overall Mean Error 0.037

Root Mean Square Prediction Error 48.520
Standardized Mean 1.590 x 10
Standardized Root Mean Square Prediction Error 1.092
Average Standard Error 44.035
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Fig. 469. Prediction standard error surface of Fall Primary Production Average Maximum
(mg C m? day™).
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Fall Primary Production Average Range

There was incomplete coverage of this variable across the study extent. Prior to interpolation,
this variable displayed right-skewed, leptokurtic distribution (Table 189, Fig. 471). The data
were lower than predicted by a normal distribution at mid-range values and higher than predicted
at both tails (Fig. 472). The areas of under- and over-prediction showed no spatial pattern over

the study extent (Fig. 472).

The semivariogram showed moderate autocorrelation present in the data (Fig. 473). The fit
between measured and predicted values was fair (Fig. 473), with under-prediction of large values
and over-prediction of small values. Good performance of the model was indicated by the cross-
validation statistics (Table 190). The error map showed patches of high error across the study
extent, particularly off Cape Breton (Fig. 474). The kriged surface is presented in Fig. 475.

Table 189. Distributional properties of
Fall Primary Production Average

Range (mg C m? day™).

0.05 0.69 1.3z 1.96 26 3.24 3.87 4.51 5.15 578  6.42
Dataset-10™°

Fig. 471. Distribution of Fall Primary Production
Average Range (mg C m day™). Histogram was
illustrated using 10 bins. X axis is shown at 107%;
Y axis is shown at 10>,

Property Value
Number of Observations 4426
Minimum 5.030
Maximum 642.120
Mean 181.600
Median 161.310
Standard Deviation 103.180
Skewness 1.014
Kurtosis 4.133
=
{f’f
/
N
»

0.05 B
-389 285 221 148 074

0 074 148 221 285

standard Normal Value

Fig. 472. Normal Q-Q plot for data values of Fall Primary Production Average Range (mg C m™
day™). Points falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 473. Left panel: Semivariogram of Fall Primary Production Average Range (mg C m™ day’
1). Binned values are shown as red dots; average points are shown as blue crosses; the model fit
to the averaged values is shown as a blue line. Lag size: 0.209 degrees; number of lags: 12;
Parameter: 1.172; Range: 1.676 degrees; Partial Sill: 5444.139. Right panel: Scatterplot of
predicted values versus observed values for the variable Fall Primary Production Average Range
(mg C m™ day™).

Table 190. Results of cross-validation of the kriged model for Fall Primary Production Average
Range (mg C m? day™).

Prediction error Value
Number of Observations 4426
Overall Mean Error 0.029

Root Mean Square Prediction Error 62.574
Standardized Mean 4.162 x 10™
Standardized Root Mean Square Prediction Error 1.019
Average Standard Error 61.216
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Fig. 474. Prediction standard error surface of Fall Primary Production Average Range
(mg C m? day™).

65°W 60°W 55°W

g Q.UEBE/‘CN S NEWFOUNDLAND

NEW BRUNSWICK 7 C

40°N

Fall Primary Production Average Range (mg C m2 day™)

p 592.3230
-230.4550
43.7542
0 100 200 400
Kilometers

Fig. 475. Interpolated prediction surface of Fall Primary Production Average Range
(mg C m™ day™).
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Annual Primary Production Mean

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 191,
Fig. 476). The data were higher than predicted by a normal distribution at high values and lower
than predicted at low values however the mid-region was well-predicted (Fig. 477). The areas of
under- and over-prediction showed no spatial pattern over the study extent (Fig. 477).

The semivariogram showed moderate autocorrelation present in the data (Fig. 478). The fit
between measured and predicted values was fair (Fig. 478), with under-prediction of large values
and over-prediction of small values. Good performance of the model was indicated by the cross-
validation results (Table 192). The error map showed high error along the edges of the study
extent (Fig. 479). The kriged surface is presented in Fig. 480.

Table 191. Distributional properties of
Annual Primary Production Mean
(mg C m? day™).

Property Value
Number of Observations 5330 1o
Minimum 375.130
Maximum 988.290
M ean 700 .480 .':l‘].TE 4.36 4.98 5.59 6.2 D:t::et, o 243 8.04 8.66 8.27 8.88
Median 699.740 Fig. 476. Distribution of Annual Primary
Standard Deviation 47.576 Production Mean (mg C m™ day™). Histogram
Skewness 0.106 was illustrated using 10 bins. X axis is shown at
Kurtosis 5 555 102 Y axis is shown at 10°°,
i
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Fig. 477. Normal Q-Q plot for data values Annual Primary Production Mean (mg C m™ day™).
Points falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 478. Left panel: Semivariogram of Annual Primary Production Mean (mg C m™ day™).
Binned values are shown as red dots; average points are shown as blue crosses; the model fit to
the averaged values is shown as a blue line. Lag size: 0.048 degrees; number of lags: 12;
Parameter: 2; Range: 0.383 degrees; Partial Sill: 662.644. Right panel: Scatterplot of predicted
values versus observed values for the variable Annual Primary Production Mean
(mg C m™ day™).

Table 192. Results of cross-validation of the kriged model for Annual Primary Production Mean
(mg C m? day™).

Prediction error Value
Number of Observations 5330
Overall Mean Error -0.038

Root Mean Square Prediction Error 23.352
Standardized Mean -1.407 x 10°®
Standardized Root Mean Square Prediction Error 1.095
Average Standard Error 21.048
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Fig. 480. Interpolated prediction surface of Annual Primary Production Mean (mg C m™ day™).
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Annual Primary Production Minimum

This variable displayed a right-skewed, slightly platykurtic distribution prior to interpolation
(Table 193, Fig. 481). The data were higher than predicted by a normal distribution at low and
high values and slightly lower than predicted at mid-values (Fig. 482). The areas of under- and
over-prediction showed no spatial pattern over the study extent (Fig. 482).

The semivariogram showed moderate autocorrelation present in the data (Fig. 483). The fit
between measured and predicted values was fair (Fig. 483), with under-prediction of large values
and over-prediction of small values. Good performance of the model was indicated by the cross-
validation results (Table 194). The error map showed high error along the edges of the study
extent (Fig. 484). The kriged surface is presented in Fig. 485.

Table 193. Distributional properties of

Annual Primary Production Minimum

(mg C m™ day™).
Property Value R —
Number of Observations 5330
Minimum 77.590
Maximum 502.980 h
Mean 215.990 L VN
Median 207.840 Fig. 481. Distribution of Annual Primary
Standard Deviation 60.209 Production Minimum (mg C m? day?).
Skewness 0.540 Histogram was illustrated using 10 bins. X axis is
Kurtosis 2778 shown at 10%; Y axis is shown at 107,
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Fig. 482. Normal Q-Q plot for data values of Annual Primary Production Minimum (mg C m™
day™). Points falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 483. Left panel: Semivariogram of Annual Primary Production Minimum (mg C m™ day™).
Binned values are shown as red dots; average points are shown as blue crosses; the model fit to
the averaged values is shown as a blue line. Lag size: 0.666 degrees; number of lags: 12;
Parameter: 1.030; Range: 5.325 degrees; Partial Sill: 3045.595. Right panel: Scatterplot of
predicted values versus observed values for the variable Annual Primary Production Minimum
(mg C m™ day™).

Table 194. Results of cross-validation of the kriged model for Annual Primary Production
Minimum (mg C m™ day™).

Prediction error Value
Number of Observations 5330
Overall Mean Error -0.070

Root Mean Square Prediction Error 38.998
Standardized Mean -1.633 x 10°®
Standardized Root Mean Square Prediction Error 1.043
Average Standard Error 37.367
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Annual Primary Production Maximum

This variable displayed a left-skewed, leptokurtic distribution with outlying data in the upper
range (Table 195, Fig. 486). The data were higher than predicted by a normal distribution at the
highest values and lower than predicted at the lowest values (Fig. 487) with good prediction of
mid-range values (Fig. 487). The areas of under- and over-prediction showed no spatial pattern
over the study extent (Fig. 487).

The semivariogram showed weak to moderate autocorrelation present in the data (Fig. 488). The
fit between measured and predicted values was poor (Fig. 488), with under-prediction of large
values and over-prediction of small values. The single large outlier was poorly predicted.
Nonetheless good performance of the model was indicated by the cross-validation results (Table
196). The error map showed high error along the edges of the study extent (Fig. 489). The kriged
surface is presented in Fig. 490.

Table 195. Distributional properties of
Annual Primary Production Maximum
(mg C m™ day™).
Property Value
Number of Observations 5330
Minimum 775.150
Maximum 2980.700
Mean 1461200 i7 1 122 144 168 D.;t‘::et-lu'gj 232 2854 278 298
Median 1467.300 Fig. 486. Distribution of Annual Primary
Standard Deviation 144,720 Production Maximum (mg C m? day?).
Skewness -0.019 Histogram was illustrated using 10 bins. X and Y
KUrtosis 5714 axes are shown at 103,
241 /ﬂgw
1.66 /
—
/
-

078 20
-394 299 -224 -1.49 -0.75 0 075 1.48 224 299 374
Standard Normal Value

Fig. 487. Normal Q-Q plot for data values of Annual Primary Production Maximum (mg C m™
day™). Points falling under (upper panel) and over (bottom panel) the reference line are mapped.

301



e Predicted -10-3
1.985 2581
1737 7%

1483 2481

1.241 2246

.

0.933 2

0744 1.755

0.4%6 157

0248 1.265 o™

1oz ]
0 0609 1218 1828 2437 3046 3655 4264 4874 5483

== Model + Binned < Averaged Distance (Degres). h-107 0775 0996 1216 1437 1657 1878 2098 2313 254 276 2981

Model : 12086"Nugget+5396.55table(0.36552,2) Measured -10-3

Fig. 488. Left panel: Semivariogram of Annual Primary Production Maximum (mg C m™ day™).
Binned values are shown as red dots; average points are shown as blue crosses; the model fit to
the averaged values is shown as a blue line. Lag size: 0.046 degrees; number of lags: 12;
Parameter: 2; Range: 0.366 degrees; Partial Sill: 5396.508. Right panel: Scatterplot of predicted
valuias versus observed values for the variable Annual Primary Production Maximum (mg C m™
day™).

Table 196. Results of cross-validation of the kriged model for Annual Primary Production
Maximum (mg C m™ day™).

Prediction error Value
Number of Observations 5330
Overall Mean Error 0.077

Root Mean Square Prediction Error 122.062
Standardized Mean 6.112 x 10™
Standardized Root Mean Square Prediction Error 1.024
Average Standard Error 118.877
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Fig. 489. Prediction standard error surface of Annual Primary Production Maximum
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Annual Primary Production Range

This variable displayed a leptokurtic distribution with outlying data in the upper range prior to
interpolation (Table 197, Fig. 591). The data were higher than predicted by a normal distribution
at the highest value and lower than predicted at the lowest values (Fig. 492). However, the mid-
region was well-predicted. The areas of under- and over-prediction showed no spatial pattern
over the study extent (Fig. 492).

The semivariogram showed weak autocorrelation present in the data and the model showed poor
fit between measured and predicted values (Fig. 493). The fit between measured and predicted
values was poor (Fig. 493), with under-prediction of large values and over-prediction of small
values. The single large outlier was poorly predicted. Nonetheless good performance of the
model was indicated by the cross-validation results (Table 198). The error map showed high
error along the edges of the study extent (Fig. 494). The kriged surface is presented in Fig. 495.

Table 197. Distributional properties of
Annual Primary Production Range
(mg C m™ day™). &
Property Value
Number of Observations 5330
Minimum 615.040
Maximum 2697.700
Mean 1245.200 i& 0.82 103 124 1.45 D;t:it‘m_;&e 207 228 228 27
Median 1244.600 Fig. 491. Distribution of Annual Primary
Standard Deviation 155.38 Production Range (mg C m? day™). Histogram
Skewness 0.059 was iIIustratgzd using 10 bins. X and Y axes are
Kurtosis 4.530 shown at 10,
1.86) /ﬂﬁo"y
. —
0.52./-’-1?/ . .
1.88 /ﬂuw
L
uszg/u:n/@‘/

374 289 224 149 075 0 075 149 224 299 374

P
Standard Normal Value

Fig. 492. Normal Q-Q plot for data values of Annual Primary Production Range (mg C m day’
1. Points falling under (upper panel) and over (bottom panel) the reference line are mapped.
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Fig. 493. Left panel: Semivariogram of Annual Primary Production Range (mg C m™ day™).
Binned values are shown as red dots; average points are shown as blue crosses; the model fit to
the averaged values is shown as a blue line. Lag size: 0.046 degrees; number of lags: 12;
Parameter: 2; Range: 0.366 degrees; Partial Sill: 5968.154. Right panel: Scatterplot of predicted
values versus observed values for the variable Annual Primary Production Range (mg C m™ day”

1).

Table 198. Results of cross-validation of the kriged model for Annual Primary Production Range
(mg C m™ day™).

Prediction error Value
Number of Observations 5330
Overall Mean Error 0.179

Root Mean Square Prediction Error 128.527
Standardized Mean 1.287 x 10°®
Standardized Root Mean Square Prediction Error 1.024
Average Standard Error 125.205
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Fig. 494. Prediction standard error surface of Annual Primary Production Range
(mg C m? day™).
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Fig. 495. Interpolated prediction surface of Annual Primary Production Range (mg C m™ day™).
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Annual Primary Production Average Minimum

This variable displayed a leptokurtic distribution with outlying data in the upper range (Table
199, Fig. 496). The data were higher than predicted by a normal distribution at both tails,
however, the mid-region was well-predicted (Fig. 497). The areas of over-prediction showed
little spatial pattern over the study extent (Fig. 497).

The semivariogram showed moderate autocorrelation present in the data (Fig. 498). The model
showed a poor fit between measured and predicted values (Fig. 498), with over-prediction of
small values and under-prediction of large values. Nonetheless, good performance of the model
was indicated by the cross-validation results (Table 200). The error map showed high error along
the edges of the study extent (Fig. 499). The kriged surface is presented in Fig. 500.

Table 199. Distributional properties of Frequency 110

Annual Primary Production Average

Minimum (mg C m™ day™).
Property Value ] ——
Number of Observations 5330
Minimum 168.570
Maximum 804.370 '
Mean 324180 1D.<39 232 2.56 3.59 423 D:t::et-1u'§£ 6.14 6.77 7.41 8.04
Median 3324.180 Fig. 496. Distribution of Annual Primary
Standard Deviation 56.056 Production Average Minimum (mg C m™ day™).
Skewness 0.458 Histogram was illustrated using 10 bins. X axis
Kurtosis 4.360 is shown at 10%; Y axis is shown at 107,

Dataset- 10
B.04

—
- /
/

169,
374 288 224 148 07 0 078 148 224 299 374
Standard Normal Value

Fig. 497. Normal Q-Q plot for data values of Annual Primary Production Average Minimum (mg
C m™ day™). Points falling over the reference line are mapped. No points fall under the reference
line.
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Fig. 498. Semivariogram of Annual Primary Production Average Minimum (mg C m™ day™).
Binned values are shown as red dots; average points are shown as blue crosses; the model fit to
the averaged values is shown as a blue line. Lag size: 0.069 degrees; number of lags: 12;
Parameter: 2; Range: 0.553 degrees; Partial Sill: 745.901. Right panel: Scatterplot of predicted
values versus observed values for the model of Annual Primary Production Average Minimum
(mg C m™ day™).

Table 200. Results of cross-validation of the kriged model for Annual Primary Production
Average Minimum (mg C m? day™).

Prediction error Value
Number of Observations 5330
Overall Mean Error -0.081

Root Mean Square Prediction Error 32.097
Standardized Mean -1.863 x 10°®
Standardized Root Mean Square Prediction Error 1.030
Average Standard Error 31.061
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Fig. 499. Prediction standard error surface of Annual Primary Production Average Minimum
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Fig. 500. Interpolated prediction surface of Annual Primary Production Average Minimum
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Annual Primary Production Average Maximum

This variable displayed a near-normal distribution with slight negative skew and leptokurtosis
prior to interpolation (Table 201, Fig. 501). The data were lower than predicted by a normal
distribution at both tails, however the mid-region was well-predicted (Fig. 502). The areas of
under-prediction showed no spatial pattern over the study extent (Fig. 502).

The semivariogram showed moderate autocorrelation present in the data (Fig. 503). The model
showed a poor fit between measured and predicted values (Fig. 503), with over-prediction of
small values and under-prediction of large values. Nonetheless, good performance of the model
was indicated by the cross-validation results (Table 202). The error map showed high error along
the edges of the study extent (Fig. 504). The kriged surface is presented in Fig. 505.

Table 201. Distributional properties of
Annual Primary Production Average
Maximum (mg C m? day™).
Property Value o
Number of Observations 5330
Minimum 598.620
Maximum 1570.800 |
Mean 1199300 Uus 0.7 079 0.89 0.99 D;b::ﬂ.ml’m 1.28 1.38 147 1.57
Median 1199.800 Fig. 501. Distribution of Annual Primary
Standard Deviation 109.960 Production Average Maximum (mg C m™ day™).
Skewness -0.152 Histogram was illustrated using 10 bins. X and Y
Kurtosis 3362 axes are shown at 107,
s
138 // & it
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Fig. 502. Normal Q-Q plot for data values of Annual Primary Production Average Maximum
(mg C m? day™). Points falling under the reference line are mapped. No points fall over the
reference line.
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Fig. 503. Semivariogram of Annual Primary Production Average Maximum (mg C m™ day™).
Binned values are shown as red dots; average points are shown as blue crosses; the model fit to
the averaged values is shown as a blue line. Lag size: 0.048 degrees; number of lags: 12;
Parameter: 2; Range: 0.383 degrees; Partial Sill: 3777.334. Right panel: Scatterplot of predicted
values versus observed values for the model of Annual Primary Production Average Maximum
(mg C m™ day™).

Table 202. Results of cross-validation of the kriged model for Annual Primary Production
Average Maximum (mg C m™ day™).

Prediction error Value
Number of Observations 5330
Overall Mean Error 0.057

Root Mean Square Prediction Error 76.820
Standardized Mean 4581 x 10™
Standardized Root Mean Square Prediction Error 1.018
Average Standard Error 75.348

311



65"V 60°W 85°W
1 1 1

¥ QUEBEC NEWFOUNDLAND

NEW BRUNSWICK

45°N

40°N

Annual Primary Production Average Maximum (mg C m2 day)
o 72.9541
-30.5635
27.4709

0 100 200 400
- e e Kilometers

Fig. 504. Prediction standard error surface of Annual Primary Production Average Maximum
(mg C m? day™).
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Fig. 505. Interpolated prediction surface of Annual Primary Production Average Maximum
(mg C m™ day™).
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Annual Primary Production Average Range

This variable displayed a near-normal distribution with slight negative skew prior to
interpolation (Table 203, Fig. 506). The data were lower than predicted by a normal distribution
at both tails, however the mid-values were well predicted (Fig. 507). The areas of under-
prediction showed no spatial pattern over the study extent (Fig. 507).

The semivariogram showed moderate autocorrelation present in the data (Fig. 508). The model
showed a poor fit between measured and predicted values (Fig. 508), with over-prediction of
small values and under-prediction of large values. Nonetheless, good performance of the model
was indicated by the cross-validation results (Table 204). The error map showed high error along
the edges of the study extent (Fig. 509). The kriged surface is presented in Fig. 510.

Table 203. Distributional properties of

Annual Primary Production Average Range

(mg C m? day™).

Property Value
Number of Observations 5330
Minimum 242.500
Maximum 1237.400
Mean 875.160
Median 873.38
Standard Deviation 120.11
Skewness -0.062
Kurtosis 3.191
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Fig. 506. Distribution of Annual Primary
Production Average Range (mg C m? day™).
Histogram was illustrated using 10 bins. X and Y
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Fig. 507. Normal Q-Q plot for data values of Annual Primary Production Average Range (mg C
m™ day™). Points falling under the reference line are mapped. No points fall over the reference

line.
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Fig. 508. Semivariogram of Annual Primary Production Average Range (mg C m™ day™).
Binned values are shown as red dots; average points are shown as blue crosses; the model fit to
the averaged values is shown as a blue line. Lag size: 0.058 degrees; number of lags: 12;
Parameter: 1.937 Range: 0.468 degrees; Partial Sill: 4489.26. Right panel: Scatterplot of
predicted values versus observed values for the model of Annual Primary Production Average
Range (mg C m? day™).

Table 204. Results of cross-validation of the kriged model for Annual Primary Production
Average Range (mg C m™ day™).

Prediction error Value
Number of Observations 5330
Overall Mean Error 0.161

Root Mean Square Prediction Error 83.366
Standardized Mean 1.433x 107
Standardized Root Mean Square Prediction Error 1.014
Average Standard Error 82.097
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Dissolved Oxygen

Dissolved oxygen affects the distribution of marine animals, and is produced in the marine
environment. The ratio of dissolved oxygen to carbon is used to estimate net primary production
during a bloom period (Queste et al., 2015). Generally, as water stratification develops in the
spring, nitrate, phosphate, and silicate nutrients are consumed and drawn down to deeper water
by phytoplankton and remain low throughout the rest of the year, while dissolved oxygen
decreases (Manasrah et al., 2006).

Dissolved Oxygen

This variable displayed a bimodal distribution prior to interpolation (Table 205, Fig. 511). The
data were higher than predicted by a normal distribution at the lowest and upper mid-range
values, and lower than the reference line at mid-values (Fig. 512). The areas of under- and over-
prediction showed no spatial pattern over the study extent (Fig. 512).

The semivariogram showed weak autocorrelation present in the data (Fig. 513). The model
showed poor fit between measured and predicted values (Fig. 513), with over-prediction of low
values and under-prediction of high values. Poor model performance was also indicated by the
cross-validation statistics (Table 206). The error map showed a highly discontinuous and patchy
pattern over the study extent with low error at the location of data observations (Fig. 514). The
kriged surface, which is also patchy and discontinuous, is presented in Fig. 515.

Table 205. Distributional properties of
Dissolved Oxygen (ml I™%).
Property Value
Number of Observations 1867
Minimum 2.963
Maximum 9564 R —
Mean 5.560 2096 362 428 494 56 626 692 758 824 89 9.56
Median 5.266 Pt
Standard Deviation 1.201 Fig. l511. Distribution of Dissolved Oxygen
(ml I7). Histogram was illustrated using 10 bins.
Skewn_ess 0.389 Y axis is shown at 102,
Kurtosis 2.396
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Fig. 513. Left panel: Semivariogram of Dissolved Oxygen (ml I™"). Binned values are shown as
red dots; average points are shown as blue crosses; the model fit to the averaged values is shown
as a blue line. Lag size: 0.004 degrees; number of lags: 12; Parameter: 0.836; Range: 0.031
degrees; Partial Sill: 1.177. Right panel: Scatterplot of predicted values versus observed values
for the variable Dissolved Oxygen (ml I%).

Table 206. Results of cross-validation of the kriged model for Dissolved Oxygen (ml I'%).

Prediction error Value
Number of Observations 1867

Overall Mean Error 0.021
Root Mean Square Prediction Error 0.970
Standardized Mean 0.008
Standardized Root Mean Square Prediction Error 0.753
Average Standard Error 1.326
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APPENDIX I - Summary of Variables with Negative Values in the
Interpolated Prediction Surface Resulting from Ordinary Kriging

Appendix 1 shows a map of each of the seven variables with negative values resulting in the
prediction surfaces after spatial interpolation using ordinary kriging. The location of the negative
values is highlighted in blue. The data distribution prior to modeling and the numbers of cells
with negative values for each variable is presented in Table Al. Negative values associated with

temperature and salinity were found along the continental slope.

Table Al. Summary of environmental variables with negative prediction values resulting from

ordinary kriging.

Negative Total Cells with
. Data . Range of
Variable values LT number  negative .
o distribution negative values
in input of cells values
Bottom Temperature . -0.78 to
Range No Right-skewed 326,283 1970 243 % 10°
Right-skewed
Bottom Temperature . ' -0.68 to
Average Range No smg_le large 326,283 5470 596 x 10
outlier
- Right-skewed
Bottom Salinity . ’ -0.18 to
Range No smg_le large 326,283 4032 283 x 10
outlier
- Right-skewed
Bottom Salinity . ' -0.13 to
Average Range No smg_le large 326,283 11390 139 x 10°
outlier
Spring Chlorophyll Right-skewed ~ 326,283 2 -0.06, -0.03
a Range
Annual Chlorophyll Right-skewed,; i
a Range No outliers 326,283 1 0.02
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