Salmon of Lake Onega

by Yu. A. Smirnov

Original title: Losos' onezhskogo ozera Biologiya vosproizvodstvo
ispol'zovanie

From: Losos' onezhskogo ozera Eiologiya vosproizvodstvo ispol'zovanie (Salmon of Lake Onega), : 1-143, 1071

Translated by the Translation Bureau(PH)
Foreign Languages Division
Department of the Secretary of State of Canada

Department of the Environment Fisheries Research Board of Canada Biological Station Nanaimo, B. C. Biological Station, St. Andrews, F. B. Biological Station, St. John's, Nfld.

1972
$195 \& \quad$ pages typescript

THNMSLATEO FROM - TRPDUCTIOH DE
Exilish

AU:HOR-AUTEUR
Smimov, Tu, A.
FITLE IA EHGLISH - TITRE ANGLAIS
Tho selnon of fake Onega: bioloey - remotuction utbilization mithe in foreign language (transliterate foreign characters)
fosos' onezhskozo ozera biologiya vosumozrousbo ispol'movane
 TEFEPENGE EN LANGUE ETRANGERE (NOM DU LIVRE OU PUELICATIONI, AU COMPLET. TRANSGPIRE EN GARACTERES PHONETIQUES,
A: siover

MEFERENCE IN ENGLISH REGERENCE EN ANGLAIS
As above

$$
\begin{aligned}
& \text { UNEDITED TRANSLATION } \\
& \text { For information only } \\
& \text { TRADUCTON NOR REVISEE } \\
& \text { Information seutement }
\end{aligned}
$$

SEGRÉTARIAT D'ÉTAT FOREIGN LANGUAGES DIVISION

BUREAU DES THADUCTIONS DIVISION DES LANGUES ETRANGERES

USSR ACADEMY OF SCTENCES
 Karmilan bratce
 INSITTUTE OF BIOLOGY

Yue A. SMIRINOV

THE SAIMON OF LAKE ONEGA
BIOLOGY
REPRODUCTION
UTILIZATTON

UNEDITED TRANSLATION

For information only TRADUCTION NON REVISEE

Information seulement

SCIENCE PRESS, LENINGRAD DIVISION, IWNTNGRAD, 1971

mane cr comys

Foreword 3 2
Introduction 5 3
Chapter 1. Procedural guestions 7
I. Investigetion of the spomine rivers 7
II. Collection of meteriels on the structure of the stocks and determination of the age of the salmon. 8Sampling to determine the structure of the atocks($8 / 8$). Fransitional zone ($9 / 9$). Spaming merks(10/11). "Bpithelionetous exosion" (11/13)。
III. Observetions on rounc fish. Taceing 13 16
Chaptex 2. The spawning rivers of the basin of lake Onega: comarative description, stete and reptoductive value 15 19
I. A list of the sumning rivers 15 19
II. Fnysiomanaic descniption of the spaming niverso 16 21Structural fatures (15/2J). Water 3egime (17/23).Toe recine ans themel regime (19/26) . Waterguelity (22/30). Vegetation (22/31). Groupsof rivers ($23 / 72$).
TII. The fish fama of the rivers 27 37
Enemies $\&$ comptitors of the salmon 37
IV. The state of the rivers in comection with theix utilization. The effect of hyrraulic engineering works and logejing 36 51
The development of water use ($36 / 51$). The effect of lopeing ($38 / 54$). Observations on rivers in the basin of Jeke Oneça (40/57)
V. The location is nature of the spawnine \& rearing reaches. 40 58
VI. Frinciples for the assessment of spawning rivers \& their reprocuctive value 72
Chapter 3. Comparative description of the salmon stocks of Lake Onega 81
I. The life cycle of the salmon 81
II. Habitats of the salmon 87
In the river ($61 / 67$). In the lake ($63 / 92$)
III. The spawning migration and the factors affecting it . 65 94
IV. Types of spawning migrations of the Lale Onega salmon 67 98

Charter 3 cont

Russian
English
V. Alteretion in the stmoturo of the stock
curing the run of the salmon........ $77 \quad 113$
VI. Spemings time of spaming 8 behaviour of the salmon. 78115

VII. The structure of spaning stooks Q its amual
veriations. 83 123
VIII. Growth of the salmon in the lake. 93 136
TX. Imoholocical description of the salron 145
X. The possibilit:- of infingement of the reproduct. ive isolation between the salmon \& the trout. 102 150
Chapter 4. Salmon fishine, catches \& the state of the salmon stocks. 103 152
I. The history of the development of the salmon fishery \& catohes 103 152
II. The canses of reduction in the abundance of the selmon in Lake Cnega. 11.2 165
III. An estimate of the abundance of Onega selmoa stooks. 116 173
Chapter 5. Ways of increasines the abundance of the
salnon in leke Onegat 119 177
I. Conservation of stocks $\&$ regulation of fishing 119 177
II. Tmprovement works 180
III. The possible abundance of the salmon in Lake Onega 124 185
IV. The fish hatchery \& natural reprocuction of the salnon. 130 193
Bibliography 132 196

Some results of a study of the salmon inhabiting lake Onega are set out in this pamphlei. The materials on which the work is based were collected in the yeans 1959-m1965 when the authon was studying the spawing grounds of the salmon in the basin of Lake Onega and was at the same time making obsexvations on the comercial stocks. The estimate of the abundance of stocks and of the entire population is based on the state in 1965. Materials and observations of later years have not been included in the pamphlet.

This book could not have appeased but for the great and varied assistance of very many individuels. The bulk of the work was carried out in the Karelian Fish Plant (Karelryovod) and subsequently in the depertment of zoology and Darwinism at Petrozavodsk S'tate University.

The author is sincerely indebted to all who assisted him in his work.
*Numers in right margin indicate curresponding pages in original text.

$$
\begin{gathered}
\text { In Memory of } \\
\text { Viktor Viktorovich Azbelev (1905--1968) } \\
\text { and Leonid PavJovich Kriulin (1941--1967), } \\
\text { students of the Atlantic salmon . }
\end{gathered}
$$

INTRODUCTION

The lake form of the Atlantic salmon/Salmo salary Le morph sebago (Girard)/ is found within the range occupied by the Atlantic salmon (S. salary La.) now or in the recent past when the migratory paths of the atlantic salmon extended farther into the mainland.

IJand-locked forms of the salmon are known to exist in some lakes in North America, Newfoundland, Norway, Sweden and Finland o

In the USSR the lake salmon is confined to Karelia, where it inhabits Lakes Onega, Ladoga, Sandal, Yanis''yarvi, Vygozoro, Segozero, the Kuito Lakes (Upper, Middle and Lower), Nyukozero and Kanennoye. It is possible that very small, but independent stocks will still be discovered in two to four lakes of Central and Northern Karelia.

Although the salmon has long been specially fished in the above lakes, the scale of fishing and its economic importance have been slight in most instances. The two largest lakes, Ladoga and Onega, are an exception; in them the role of the salmon fishery has been of more than purely local significance. Old fisheries statistics show that the salmon catch reached 2500 centners ${ }^{1}$ in Lake Ladoga 30 years ago and 1000 centners and possibly more in Lake Onega in the 1890s. The salmon populations in both lakes were
${ }^{1}$ Translator's note. One Soviet centner $=100 \mathrm{~kg}$.
subseouently sharply reduced for various reasons, al though to difiering degrees. It is now only in lake Onega that the salmon has retained its independent commercial importance, but even in this lake the position of its stocks is extremely unfavourable.

The lake salmon is of great interest both economically and from the point of view of an understanding of itis biology, a feature of which is extreme adaptability (olastichost'). This feature makes the salnon an extremely promising subject in rational lake management. It onables us to select those stocks which are found to be the most convenient and advantageous. Mon is the possibility excluded that it may be cultivated in special fish fams of a type in which the fish are kept in containers; some sucoess has alneady been achieved along these lines abroad.

In the interests of development of the fish industry it is essertial that urgent measures should be taken to increase the abundance both of the salmon and of other valuable fishes of this family. Correct management is, however, impossible without precise knowledge of the biological features of a fish and of the demand which it makes on environmental conditions. 2

What is the present level of investigation of the Onega salmon and to what extent does our knowledge of it enable us to solve practical problems?

Isolated pieces of information and references to the salmon are scattered throughout a large number of sources, but the overwhelming majority are devoted to salmon fishing. The most valuable and extensive information is to be found in the writings of K. F. Kessler (1868), N. Ya. Danilevskii (1875) and in a number of the works of N. N. Pushkarev. and N. I. Kozhin. The research directed by M. I. Tikhii in connection with the construction of a hydroelectric power station on the Svir' River has yielded a great deal of information. In particular, the assumption earlier made by K. F. Kessler
that the Ladoga and Onega salmon populations are incapable of mixing has been confirmed by taeging.

There have been only two articles specially devoted to the Oneca salmon: by K. B. Zborovskaya (1935) and by Z. V. Prozorova (1951). The last of these authors considered only the salmon of the Shuya River (size, age, growth and catches from materials for 1948--19499257 iish). M. B. Zborovskaya studied the Onega salmon fron 1931 and obtained the first material. on age (838 fish) feeding and nutirition (57 fish) and fecundjty (18 fish). On this basis M. Bo Zoorovskaya compiled a valuable sumary of information on the Onega salmon fishery and on the biology of the Onega salmon (1948), in which she dealt with the population as a whole.

The investigation of the spawning rivers and of the stocks associated with theri which has been carried out since 1959 has made it possible to attempt to describe the population in terms of local stocks, to understand the causes of the profound depression of salmon stocks and to propose the first measures which are urgently needed to correct the situation.

Unfortunately, it is impossible as yet to say that the data now at * our disposal satisfy us, since they are far from adequate even for an approximate calculation of the optimum volume and structure of lake salmon management. A number of aspects of the biology of the lake salmon remain to be clarified; these include such important characteristics as the survival in different stages of development, the assortment of food items consumed, the return on feeding and also the state of the food resources, the productivity of spawning-growing grounds, the parasitological situation and other aspects without which a quantitative description of the population regime is impossible. The foregoing questions should therefore be the subject of further investigation.

Chapter 1

FROCDUEAL AUESTIOHS

I. Investifation of the Spawnine Rivers.

The object of the investigation was to take stock of the spaming grounds and to estinate their state and, where possible, their utilizetjon.

There is no generally-accepted procedure for taking stock of spaming grounds. Data on the fall of a river, on the length of the repids in it and on mean annual water discharges provide only a general representation of the river and do not allow its value for the reproduction of the salmon to be assessed, especially in the absence of reliable information on the size of the stock and on its distribution in the river.

For various reasons (unsuitable bottom material, natural and artificial obstacles to migration etco) far from all the rapids in a river are capable of being utilized by salmon for egg laying. As a result of investigation we separate from the total number of rapids the "sparning" rapids, or spawning grounds. By a "spawning ground" we undenstand a sapid ((or a small bank, the dialect word for which is kareshka, or a shallow) where salmon spawn (or used to spawn) year after year. The spawning grounds were subdivided into "existing", i.e. used by the salmon at the present time, and "potential", i.e. which for some reason are not used by the salmon at the present time but are quite suitable for spawning. Spawning grounds may lose their importance as a result of pollution of the water and the bottom material, alteration of the hydrologic regime, silting and beconing overgrown special mention has been made of such cases.

The salmon does not use any part of a spaming rapid for egg laying, but strictiy defined localities distinguisbed by their microregine. The saimon frequently excavate their redds at the same points year after year. Where may, therefore, be fairly permanent areas of redds within a spawning ground. In most instances it is impossible to estimate the size of the area occupied by redds owing to the considerable depth and low transparency of our rivers. What some investigators have in mind when they refer to a "spawning ground" is essentially an area containing redds.

Determination of the area over which the young spread out is no less important than determination of the spawning area proper. The area in which growth takes place may include all stretches of rapids (except for waterfalls), including stretches unsuitable for spawning which may be entered by the young salmon as a result of mjgrations.

It is desirable for practical reasons to use the concept of a
"spawning-growth axea", including in it the entire area of the rapids in which spawning takes place and which is continuously inhabited by young. Because the size of this area alters in relation to the amount of water in the river in the year concerned, its observed size when discharge is minimum should be taken as its basic size.

The following rivers were examined between 1959 and 1964: Shuya, Syapsya, Kutizhma (in part), Upper and Lower Lizhma, Elgamka, Sordiya, Sheichuga, Syargezhka, Kumsa, Oster, Vichka, Nemina, Pazha, Pyal'ma, Zhilaya Tambitsa, Tuna, Tuba, Vama, Vodla and a number of trout streams and brooks. The total length of the stretches investigated is more than 500 km and almost all the rivers were examined twice, at different water levels. Boats (wooden or rubber) were used to move along the large rivers; small
rivers were investigated on foot. The record which was made of the nomber and size of shaming grounds gave an idea of the effect of logeing, uncontrolled removal and alteration of the regime of the rivers on the remroduction of the salmon. In adaition, observations were made on spawning and on salmon redds in the Syapsya, Lower Lizhma, Tuba and Vana Rivers.
II. Coljection of Materials on the Structure of the Sitocks and Deteminetion of the Age of the Salmon.

Sampling to determine the structure of the stocks. Since it was assumed that the composition of the stocks was not the same at dixferent periods of the spowning run, samples for determination of the structure of the stocks vere taken throughout the entire run. All the fish in mall catches were measured as a rule If the catch exceeded 50 fish, the proportion of the catch which constituted the sample has been noted. The samples were fully representative; they were from 25 to 80% of the total catch. An adequately complete picture of the structure of the stocks is therefore arrived at by simple addition of the mean samples. Furthermore, since the rate of removal is considerably in excess of 50% in the Shuya and the Pyal'ma, and axound this figure in the Vodla, the samples characterize the structure of the stocks quite adequately in all instances.

The sex of the migratory salmon was determined by the external appearance; the correctness of the determination was, as a rule, confirmed by the control dissections which were sometimes carried out. It is impossible to determine the sex of a salmon during the feeding period by appearance since sexual dimorphism is not so clearly expressed as it is in the migrating fish. If dissection was impossible, the sex was not recorded.

The material collected for determination of the structure $0 \therefore$ the
stocks between 1958 and 1965 totalled 5496 fish, of which 4666 were collected personally by the author or with his participation and 830 were kindly supplied by Karelrybvod. The material on the salmon durine the feeding period was small in quantity (200 fish) . the explanation for this is the banning of "garva" ${ }^{1}$ íshing since 1958; this salnon is not often found in catches of other fishes.
${ }^{1}$ The "garva" is a large-mesh net used in Lake Onega to catch feeding salmon in the upper horizons of the water.

Special consideration should be given to the determination of age. For comparable results to be obtained it was essential that all investigators shouid adhere to a standard procedure. Unfortunately, this does rot invariably happen in work with the salmon.

The "stumbling blocks" to determination of the age of the salmon are the "transitional" zones lying between the river zones and the feeding zones, the spawning marks and also the areas of damage ("epitheliometous erosion") caused by some disease of the epithelium, which are extremely simjlar to spawning marks.

Transitional zone. Elucidation of the time at which and the conditions under which the "transitional" ring (or. "transitional" growth zone) forms is of great importance for its correct interpretation and, consequently, for correct determination of the age of the salmon.

Some authors count the transitional ring as a year of the river period (Zborovskaya, 1948, p. 130), others count it as a year of the feeding (marine) period (Kuchina, 1939; Svetovidova, 1941), while yet others do not
regard the tranitional ring as an annus and finclude it in the first year of the feeding period (Xankovskaya, 1958; Mel'nikova, 1959; Eiman, 1960; Enyutina, 1962; Bilton and Ricker: 1965). The comparison or age charactexistics is thereby complicated.

The fact that a "trensitional ring" is to be found both in the marine and in the lake salmon removes the basis for the assumption of sone authors (Kuchina, 1939; Svetovidova, 1041) that the formation of a "transitional" ring is due either to an aliteration of salinjty or to retention of the batmon in cem-freshened parts of the sea.
L. A. Yankovskaya (1958) xelates the formation of the "transitional" ring to the time of downstream migration of the smolts. Were this to be so the percentage of fish with transitional rings should be lower in stocks with a shorter downstream migratory peth, but this is not found in the rivers of Lake Onegar .

The different frequency of fish with "transitional" rings and differences in the structure of these rings in salmon of the different stocks of Lake Onega justify the assumption that there is a connection between the formation of the "transitional" ring and the feeding conditions when the smolts encounter after downstream migration. This view is confirmed by the elegant experiments on the rainbow trout conducted by Bhatia (1932), who demonstrated that scale structure precisely reflects alterations in the availability of food. All kinds of rings, including "transitional" rings, were obtained in these experiments in relation to feeding. Bilton and Ricker (1965) used tageing to demonstrate that the supernumexary ring of a pink salmon is not an annulus. The same point of view is held concerning the Atlantic salmon by L : A. Yankowskaya (1958) and M. N. Mel'nikova (1959).

The few sclerites (2-a4) of soring growth which form in a small proportion of the smolts while still in the river, before the time of downstream migration to the lake, may in essence also be included in the transitional zone. According to our materjals, the vast majority of downstream migrents do not have springtine river growth. This is in agreement with the conclusions of A. R. Mitans (1965; for the Salatsa River in Latvia).

In detemmation of the age of the Onega salmon, we included the transitional zones and spring growth of downstream migronts in the first year of the feeding period. Eren although H. B. Zborovskaya regarded the transitional zone as a year of river life, her materials are quite suitable for comparative use. The point is that the percentage of fish with transitional zones in the salmon stock of the Shuya River, for which M. Bu Zborovskaya collected the greatest amount of material, is very small, no more than 16%, and consequently the error will be slight. This remark should be borne in mind in the analysis of the annual variations of population structure given in section VII of chapter 3.

Spawning manks (Russian terms: nerestovye metki, otmetki; znaki) ${ }^{1}$,
"which are, in the first instance, a reflexion of the fishing rate (and possibly, also, of the special features of the rivers), are ercountered with widely varying frequency in different years, from 50% to 5% or lesse Some

1 Spawning marks are areas of damage to scales caused by the modification of metabolism connected with preparation of the fish for spawning.
authors, including z. V. Prozorova(1951), do not consider the age of fish which have spawning marks, but merely refer to their percentage in the catch. The reason for this is the lack of any precise understanding as to the period of
tine to which a spawning mark corresponds, joe. by how much the number of years must be increased after the annual zones have been counted. liowever; by refusing to consider the age of fish which have spawned previously we deprive ourselves of the possibility of estimating the abundance of sparing stocks in past years and the extent to which these stocks were fished.

The lake salmon, which enters the riven with a completed annual zone (additions are extremely rare !), passes 6--12 months in it since a proportion of the "val'chiki" ${ }^{2}$ migrate downstream immediately after spawning, and the remainder in the following spring, in the beginning of May beginning of Tune.
${ }^{2}$ Val' chiki are spared salmon leaving the river.

In any case the val'chiki cannot begin to feed intensively until bay when the smelt approaches the river mouths. A fish needs to spend at least a year (12-16 months), and sometimes 2 years in the lake for restoration of its weight (the weight loss reaches 40%) and development of the gonads. When salmon were tagged in Gross lake (Maine, USA) it was found that the lake salmon spawned in the next year but one and only exceptionally in the year after spawning (Warner, 1962). The spawning mark should therefore be regarded as equal to one year for the lake salmon which does not have a hiemal autumn forme This is confirmed by the results of the tagging of val'chiki in Lake Ladoga (Iikhii, 1931c; Fravdin, 1948b). T. I. Privol'nev (1933) takes the spawning mark to be 2 years in the autumn Atlantic salmon, and we should evidently agree with this.

Scales with spawning marks should be examined very closely since erosion frequently covers several peripheral annual zones, especially in males.

I'he age may be understated if the last zones are not noted. To avoid this, scales must be taken in two places: firstly, as is nornal, below the dorsal fin where the scales becone submerged in the skin in the post-spawning condition ("loshonie") 1 and are heavily eroded, with the result that the spawning marks are excellently apparent on them, but the peripheral annual zones are frequently "overlooked"; secondly, from around the pelvic fin where the scales are not submerged and spawning marks are weakly expressed on them or may even be completely absent, but all the zones are presexyed. Such material was

[^0]collected from 1960, since the defects of the former method were already apparent in the first year of the operations.

Pectoral-fin rays and otoliths were also taken to check that the zones had been correctly counted in fish with spawning marks, but the amount of material involved was small, since salmon are not prepared at the fishing places.
"Epithelionatous erosion" is a term used provisionally to designate destruction of the scales caused by some disease of the epithelium, the nature of which has not been established. This disease has not previously been recorded for Lake Onega. In the opinion of O. N. Bauer, who examined a diseased fish sent by the author, the condition is "epithelioma", i.e. a viral disease. Io judge by the description, M. I. Vladimirskaya (1957) encountered the some disease in the Pechora, but only in dwarf. males, and also called it epithelioma. Calderwood (1906) and Menzies (1931) refer to "white spot
digease found among, salmon in the rivers on the western cosst of the British Isles (Scotland). This disease is seen in fish irhabiting small rivers in a hot summer; the salmon are covered by white spots, but when the river floods they are cleansed. None of the authors cited refers to the effect of this disease on the scales.

Some of the foregoing information is in agreement with our observations. Tmature parxs are subject to the disease as well as dwarí males. Infected fingerlings (up to 20% in the catch) are encountered in August and September. They later disappear sonewhere and it may be that they are in fact cured in connexion with the autumn flood or the drop in temperature. The disease was not noticed to cause the death or a fish or to occasion severe suffering. Even those fingerlings in which up to a half of the body surface was affected were eible to maintain themselves in a fast current, were active and took the bait well. Infected awari males are found around the redas togetner with healthy fish. The disease was not noted in smolts or in silvery parr and it was, in general, not encountered in the first half of the summer.

Several adult fish were recorded with white spots on the head and body. \star These fish were caught in the Pyal'ma River ox near its mouth in August and September. Although we did not find infected immature fish feeding in the lake, they undoubtedly exist, as is convincingly shown by an analysis of the scales. The point is that there is no stock of the Onega salmon incliding fish which mature after one year of life in the lake, like the grilse of the Atlantic salmon or the Ladoga grilse ("sinyushka"). This is confirmed by observations covering many years, by fencing off in the Pyal'ma and by catching in the spawning grounds. The earliest time of maturation is after 4 years in the lake, but usually after 5-0.6 years. However, "spawning marks" are found on scme fish after 1, 2 or 3 years in the lake but not on all scales even around the dorsal
fin. All thet can be assuned in such instances is that we are once again confronted with epithejiona. It is curious thet such fish are very rare in the stock of the Shuya, but usual and even plentiful in the stocks of the Pyal'ra and the Voda. JI the disease is in sone way connected with feeding conditions, the unequal frequency of si.ck and recovered fish (with traces on the scales) in the different stocks may indicate that feeding takes place in different regions of the lake. Ae M. Gulyaeva (1966) notes that a disease of the vendace which affected the epithelium and the scales was prevalent in the northeastern part of Lake Onega between 1961 and 1965 ; she suggests that this discase was "whitefish pestilence". However, may it not have been comected with the disease of the feeding salmon, which is in constant contact with the vendace, all the more so because the description of the external stigmata of the disease is very imilar to that of "epitheliomary

The disease observed by us both in fingerlings and in adult salmon was expressed in the formation of slight whitish swellings accompanied by petechi.al haemorrhages on the body of the fish. Such "white spots" are most often scattered above the lateral line and sometimes merge Eogether and cover up to half the surface of the body, not excluding the fins. The scales within the "spots" become ragged and are eroded, sometimes almost entirely. In adult fish considerable portions of the body are sometimes covered by patches of very small (1-m mm long), abnormally located scales which apparently grow where the scales have been completely eroded. Were the erosion of a scale to be partial, a false spawning mark would form on it after the fish recovered and it would not always be possible to distinguish it from a true spawning mark. In general, however, the difference between a spawning mark and epitheliomatous erosion is very considerable. Epitheliomatous erosion may be found on the same fish in
different amusl zones, for oxmale two years in succession, ise there is evidently no develormont of imanity.

The correct identification of "epitheliomatous erosion" is of great importance. J.ts confusion with spauning marks will lead to overstatenent of the proportion of the carry-over in the stock and this will distort calculations of the size of spawning stocks and of the rate of renovals.o

The taking of scales in two places, around the dorsal and pelvic fins, reduces the probabjlity of exror.

ITT OEsenvotions on Younc Fish. Tageingo

Young salmon were observed in the Shuya, Syopsya, Upper and Lower Lizhua, ElGamke, Kumsa, Nemina, Pazha, Pyal. ma, Tambitsa, Tuba and Vodla Riverso All ages were represented jin the collections, from the time of completion of morphogenesis (as defined by Iikiforov, 1959a, from the fourth stage) to smolts from the lake. These materials are in course of processing.

Observation of the distribution of young in the rivers and the nesults of test fishing (by a small trap net for fingerlings, by hand net and by rod and line) made i.t possible to estimate the population density of the parr in some instances.

Tagging has been begun in the Pyal'ma and Iuba Rivers to study movements, behaviour and survival. Smolts, silvery parr and parr, including dwaxf males, and grayling fingerlings and adult dace have been tagged. The tag used was an individual celluloid tag 0.5 mm thick and $4 \times 11 \mathrm{~mm}$ in size described by B. Carlin (1955). The tag has a wire and an end piece of nickelechrome wire 0.15 mm in diameter. The end piece was inserted into the body by means of two needies of the type used for subcutaneous injection fastenod together. The tag
was attached beneath the dorsal fin encircling the basal bones. In some of the fish only the adipose fin was clipped (in the Tuba River). The smallest size of the tagged fish (ad) was 4 cm .

To' lessen the damage to the fish they were tagged under anaesthetic. The anaesthetic used was the imported product chinoldin recommended to the author by L. A. Petrenko, a scientific officer of the State Research Institute for Lake and River Fisheries (GGSNTORKh) (Leningrad). The preparation vas added to the water immediately before tagging. The optimum concentration is approximately 1 : 100000 ; at this concentration the fish is anaesthetized for 1--2 min at a water temperature of $10-20^{\circ} \mathrm{C}$. When a lesser dose is used the narcosis is shallow and the fish struggles and is injured. A dose 3 to 4 times larger leads to the death of the fish. Fish should not be kept in the solution for more than 5 min . After tagging the fish were placed in pure water where they recovered within 5 to 15 min and adopted a normal position. The fish were then kept for up to 2 days in running-water containers, after which they were released into the river; this period may be reduced to one hour. Some fish were kept in the containers for up to two weeks for observation of the healing of the wounds, after which they were released.

Subsequent observations on the behaviour of the tagged fishes have shown that the parr and the young grayling remained within a radius of up to 50 m from the point of release for a month (September). This is in agreement With the observations of other authors (Vladimirskaya, 1957; Saunders and Gee, 1964) in which tagging was used. When fish were recaught the tags had kept their position well and the wounds from the punctures had healed.

The use of an anaesthetic rakes it possible to obtain material on the size and age composition of the young in addition to tagging. Scales are removed with needles. Weight is determined from the amount of water displaced
in a moasuring cylinder. The wastage in catching and tageing was 2% The method may be used under expedition conditions and in work at stations on rivers.

THE SFAGJNG RIVERS OP THE BASIN OF LAEE OHEGA: COMPARAPIVE

 DESCRTPYION, STATE ATD REPRGDUCTIVE VALUEI. A List of the Spawing Riverso

We know for certain that the following rivers are utilized (or have been utilized) by the Onega salmon for breeding:

Lososinka,
Shuya (to Lake Salon-yarvi), its tributaries the Syapsyo and the
Malaya Suna,
Guna (to the Kivach Falls), its tributaries the Sandalka and the Trivdiika,

Lizhma, its parts the Upper, Middle and Lower Lizhma and its tributaxy the Elgamka,

Unitsa,
Kumsa,
Fovenchanka,
Nemina, jits tributary the Pazha,
Pyal'ma, i.ts tributaries the Zhilaya Tambitsa and the Tuna,
Tuba,
Vodla, its source the Vama and its tributary the Koloda,
Andona, its tributary the Samina,
Vytegra,
Megra,
Vodlitsa.

In addition to these 15 rivers with their 12 tributaries, according to Ne N. Pushkarev (1900a), the salmon previousiy entered a further 7 rivers: the Shoksha, the Tambitsa (around TambitgriNos) and all the rivers of eny size between the Pyal'ma and Orov Bay, i.e. the Arzhema, Vozritsa, Nelyuksa, Issel'ga (Tambitsa) and Filippa Rivers. The salmon disappeared from these rjifers at the end of the lest century, but the trout continued to enter them; they remain trout rivens down to the present. The transition of rivers from the category of selmon rivers to that of trout rivers has been noted fox the basin of Lake Ladoge by D. Ke Khalturin (1956).

According to unverified information, the salmon now enters the Syargezhka (e tributary of the Lizhma) and the Somba (a tributary of ibe Vodia). In 1963 and 1964 there were isolated instences of salmon being caught in the Ragnuksa (a tributary of the Vodla) and in the Chernaya stream (around Besov Nos (Cape Besovf), where it had prevjously never been caught; this wes evidently an instance of straying
M. B. Zborovskaya (1948) included the Oshta among ine rivers which the salmon may possibly entier. Whether or not this is so has not as yet been : established. Nor is it known whether the salmon previously entered the tributaries of Vodlozero -- the Ileksa, the Kelka and the Okhtomreka. Mo B. Zborovskaya (1948) considers that it did enter these tributaries, but B. S. Lukash (1939), to whom she refers, does not state anything definite on the matter but refers to these rivers as spawning grounds of the whitefish, the bream and the dace and notes that the spawing grounds of the salmon are in the Vama, and that in Vodlozero the salmon is occasionally taken in the lakhta (near the source of the Vama) and in the middle part of the lake. There are stil. 1 rare instances of the catching of salmon in Vodozero (2 fish in 1962 and

3 in 1963), when the salmon succeeds in negotiating the Vama dam when the backwater is relatively low. However, all the catches of the sajmon relate to the southern or middle part of the lake and there axe no known instances of salmon being caught in the three tributaries mentioned.

The Irsta, a tributary of the Shuya, is a river which the salmon may possibly have entered, but since the construction of a hydroelectric power station near the settlement of Ignoilo this river has, like the upper reaches of the Shuya, become inaccessible to it.

If, therefore, we disregard the last 9 rivers, for which there is no verified information, the salmon has bred in only 34 rivers, inciuding tributaries. It is these rivers which will be considered subsequently.

II. Physiomadnic Descrivtion of the Spaming Rivers

It is appropriate at this point to give a general description of the rivers, without entering into detailed descriptions of each of theme

Structural features. The drainage system of Karelia is distinctive a by virtue of topographic features and the youth of the system itself. The territory is one of quite rugged topography and intricate structure. The main features of its present-day appearance were formed under the influence of three main relief-forming factors: tectonic movements, denudation and glaciation (glacial exaration and accumulation, glaciofluvial accretion). The surface of Karelia is covered by a mantle of quaternary deposits, interrupted in places by exposures of the underlying bedrock. The deposits are thickest in areas where there are glacial and glaciofluvial accretional forms and in major depressions in the surface of the pre-Quaternary rocks (Biske, 1959).

Many of the rivers, especially the small ones, are practically like
mountain streams They have large gradients (average fall from 0.001 to 0.007), a stony, littlemeroded bed, as a resuli of which there are numerous waterfalls, rapids, kareshki ${ }^{1}$ and shallows, alternating with pools and at times with lakewhe widenings and true lakes. The rivers of Karelia ane

1 Kareshki are small gentle rapids.
essentially not xivers in the strict sense, but lakerriver systems consisting of altornating lakes and river reaches.

The rapids which dam the pools and lakes are found in places where crystalline rocks outcrop in the river bed or in those places were the river cuts its way through a moraine or glaciofluvial deposits containing boulderso In the lattor case the formation of rapids consisting of an accumalation of boulders has been due to the work of the river which has. carried avay the finegrained material and leit benind the larger size categories.

The valleys of most of the rivers are faults and fissures in the crystalline rocks. For example, the nerrow valley of the Kunsa River (reaching a width of 300 m in the region of Kol'ozero) is a tectonic depression; it hes high, steep slopes consisting of crystalline rocks. In those places where the river cuts through a body of Quaternary deposits the valley is more developed. On the whole the river valleys are distinguished by features found in young valleys: the longitudinal and transverse profiles have not been elaborated. In some instances the transverse profile is V-shaped or trapezoidal, but the valley is not invariably expressed throughout the length of the river. Cyclic terraces developed throughout the length of the river are as a rule absent (Karandeeva, 1957).

Terraces are found in those parts of the valleys where the rivers flow through unconsolidated deposits subjected to greater erosion than the bedrock. They are clearly expressed in the lower reaches of the rivers owing to the lowering of the base level of erosion. Terraces are to be seen along the Suna, Shuya, Vodla, Memina, Samina and Tososinka Rivers; in the Lososinka there are terraces within the town of Petrogavodsk.

The floodplain of the rivers is a relatively narrow, interrupted area of bog or meadow. Its surface may be level or humocked. The floodplain is frequently overgrown with shrubs or forest.

Bogs and iakes occupy a considerable area in the river basins. The xatios of lake surface and bog area to drainage area stand in inverse proportion (Gritsevskaya, 1964).

Water refire The water regime of the rivers may have a decisive influence on the reproduction of the salmon Rivers with higher and nore stable levels in the summer and winter lowwater periods are of greater value, since the size of the feeding grounds and the preservation of the eggs in the redds during the winter are dependent on the stability of level.
A. V. Shnitnikov (1962) arrived at the following conclusions in an analysis of the variability of general moisture conditions in the Neva basjin. to which the basin of Lake Onega belongs.

1. There is a well-expressed intrasecular cyclicity of general. moisture conditions corresponding to the long-term regime of atmospheric precipitation; over the period from 1850 to 1960 there were four phases of reduced moisture and four pheses of increased moisture; the duration of the cycle is between 27 and 31 years.
2. The intrasecular variability of general moisture conditions
occurs against a background of suprasecular variability; over the secular
period the total moisture clearly tends to reduce.
3. In the secular regime of total moisture the effect of man's economic activity is increasingly manifested as time passes.

These extremely interesting and important conclusions should certainly be borne in mind when analyzing the causes for fluctuations in the abundance of the salmon.

The rivers are fied from a combination of sources: snow ${ }_{3}$ ratin and groundwater. A. N. Malyavkin (1962) has estimated that groundwater accounts for between 10 and 25% of the mean long-term discharge.

The elements which are distinguished in the anmal variation of the water level of the rivens axe the spring flood (peak in May), a short summer low-water period, a rise, usually of shorb duration, in the autumn (due to rain) and a winter lowwater period with levels falling gradually to April. Levels are usually lowest at the end of Narch and in the first half of April. Groundwater feeding plays a large role in the formation of discharge in the winter low water period.

The lakes incorporated in the river systems strongly regulate (smooth) the annual variation of level and discharge. The size of the maximum and minimum discharges and of the specific rates of flow is dependent on the ratio of lake surface to drainage area. As the percentage of lake surface increases the maximum specific rates of flow are reduced and the minimum rates are increased. The most regulated rivers with a lake surface of more than 20% have an annual graph of the fluctuation of discharges which is reminiscent in its smoothness of graphs of the variation of lake level (Malyavkin, 1947).

The regulating effect of lakes is dependent on their position in the basin; the closer a lake is to the line of river flow, the greater is its influence. The factors other than the ratio of lake surface to drainage area
which affect seasonal fluctuations of discharges are the size of the catchment (the flood is evened out when the catchment is larger), the area of bogs to the drainage area (its effect is similar to the effect of lakes, but to a lesser degree) and the afforestation.

The distribution of discherge over the course of the year has been affected by wholesale felling of forests in the basins of some small rivers wi.th a low ratio of lake surface to drainage area. Such rivers as the Vilga, the Upper Jizhma, the Elgamka and the Zhilaya. Tambitsa have begun to freeze in the winter, which is sonething which, in the words of old inhabitants, did not havpen previously. This is apperently connected with alteration of the regime of bottom feeding as a result of the reduction of the forests.

In adcition to their role in the regulation of the water regime of the rivers, the lakes are receivers of groundwater feeding. The proportion of groundraten in the balanco of a river is proportional to the area of the lakes, since groundwater under pressure enters deep lake basins which frequently lie below sea level. This is well manifested in the minimum specific rates of flow in the winter.
A. N. Malyavkin (1962, 1965) has established a relationship between the degree of lake regulation (the ratio of lake surface to drainage area) and the amount of the minimum discharge.

1. Rivers with slight lake regulation Ratio of lake surface to drainage axea $0-3 \%$. Minimum specific rates of flow $1--2$ litres $/ \mathrm{sec} / \mathrm{km}^{2}$.
2. Rivers with intermediate lake regulation. Ratio of lake surface to drainage area $4--8 \%$. Minimum specific rates of flow $2-2.5$ litres $/ \mathrm{sec} / \mathrm{km}^{2}$.
3. Rivers with medium lake regulation. Ratio of lake surface to drainage area $9-15 \%$. Mininum specific rates of flow $2.5-3$ litres $/ \mathrm{sec} /$ $/ \mathrm{km}^{2}$.
4. Highly-regulated rivers. Ratio of lake surface to drainage

The variation of winter levels, which is lareely dependent on groundwater and bottom feeding may in some instances have a decisive influence on the reproduction of salmonids. The freezing of the rapids when water level falls, which occurs in small xivers and in part also in laxge ones (the Vame and the Suna, meinly owing to the regulation of dischaxgo) undoubtedly causes ege mortality.

Ice regine and therral regir:e. the petrozavodsk Observatory of the Meteorological Office has been studying the ice regime of rivers for tho last fev years (Ustinov, 1964, 1966a, 1966b; Gromov and Ustinov, 1965). Nevertheloss, there is still no clarity on many points which are vory imcortant for a etudy of the conditions of reproduction of the salmon, in as much as these have remainod outsibe the purvew of the investigators. It should be noted that it is very difficult to set up direct observations on the effoct of the jee regime on fishes and what is said on some points can only be tentative. Thus, in oux opinion, frazil ice ; and sludge may be a cause of the death of \therefore spawned satmono The oral cavity and gills of dead fish have been found to be clogged with ice which evidently interfered with respiration.

Bottom ice may sometimes cover the whole area of rapids in a continuous layer, the thickness of which ranges from $5--10 \mathrm{~cm}$ (Vama River, October 30-Movember 2, 1963) to $0.5-1.0 \mathrm{~m}$. Such covering of the bottom undoubtedly causes "clogging" of the redds and, in consequence, a heavy reduction and possibly cessation of the flow and filtration of water through the redds, i.e. a deterioration of oxygen supply. It has not been possible to establish hov long botton ice may renain (for a short period or until the spang),

End it is therefore diffioult to cstimate the degree of the influenco of this factor fhen the bottom ice floats up to the surface of the water it carnies with it bottom material, including laree stones; this may cause destruction of the reads and egg mortality Botiom jece is also trobblesome In the artificial propagation of fishes (Novikov, 1932).

Plugs formed by the accumbation of sludge, ascending bottom ice and tinely broken-up floes in the stream are no less important factor. Plugs in rapids may block off the whole cross-section of the stream for hundreds of metres and even kjlometres; in such localities the water flows above the ice and bursts the banks. Here, as in the case of bottom ice, flow through the redds should be strongly reduced. It is not know what happens to fish which do not succeed in quitting the rapids, buti rit must be thought that thejr chances of survival are very low In the winter of 1965-m1966 there were very strong plugs on the Vana River, which burst its banks and flowed into the forest. In the spring of 1966 the Vodlozero Collective Farm attempted to catch fish in the river, but without success. The fishermen themselves consider that the harsh winter and the plugs were the cause of the reduction a in the quantity of ifsh in the Vama. In 1966 a reduction in the quantity of indigenous fishes was noted for the whole of the Shuya River below Lake Vagat.
V. V. Azbelev and B. I. Shuster (1965) consider that the survival of eggs in redds is wholly dependent on the winter regime and they refer to repeated observations of instances of the destruction not only of individual Atlantic salmon redds, but also of entire spaming grounds a s a result of plugs.

Frazil ice forms every year in the rivers of Karelia; the plugs were strongest in 1949--1950, 1954--1955, 1962--1963 and 1965-1966.

Icing usually begins in the rivers of the basin of Lake Onega in the
second half of October and the beginning of llovember: bank ice in pools and frazil ice and sludge in rapids. The autum ice run occurs in November. Fermanent ice is usually observed in pools no earlier than the second half of loverher; by the end of the winter its thickness reaches 70 cm . The ice is thin and unstable in rapids. Waterfalls and the largest rapids do not freeze over and are centres of the formation of frazil ice since the excellent mixing and supercooling of vater masses essential for this occur in them. The rapids become ice free earlier than the pools, sometimes by as arty as Nach or the beginning of April. An ice run does not occur in all rivers; the i.ce frequently melts in situ in small rivers. within two to three weeks of the river ice run the lakes comected to the rivers are opened and lake ice j.s carried into the river. There ase no observations on the effect of the ice run on fishes. the rivers are completely freed of ice in the second half of Aprin or the beginning of May, with the midale of May as a late period. The temperature regime of the rivers is dependent not only on air temperature, but also on the hydrographic features of the basin and on the nature of the catchment. Rivers which have a marshy catchment are cooled faster in the autumn than those which include lakes. Rivers which flow from large lakes are more slowly cooled owing to the reserve of heat accumulated during the summer heating; the greater is the volume of the water mass of the lakes, the farther downtream does their influence extend. It is this factor which is responsible for the differences in the time of spawning of the salmon in different rivers of the Lake Onega basin (end of September--beginning of October in the Pyal'ma and the Tuba, middle--end of October in the Vama and the Shuya, sometimes extending to the beginning of November). Water temperature is measured in tenths of a degree or is around zero from November (December) until April. Following the supercooling of the water in rapids the temper-
ature becomes negative, This may evidently affect the embryonic development of the salmon and lower the survival rate of the eges in the redds since the ontimum develoment temperature lies in the range $2-\ldots 5^{\circ} \%$ and fluctuations of temperatures to above $8^{\circ} \mathrm{C}$ and below $0^{\circ} \mathrm{C}$ are impermissible at critical periods (Vernidub, 1950, 1961, 1964; Nonich, 1955), at all events the temperature should not be below $-0_{6} 5^{\circ} \mathrm{C}$ (Lozina-Lozinskii and Lyubjitskaya, 1940).

Adaittedly, temperature was not measured in the redds, but: j.t would appear to be slicintly higher than in the river, possibly as a result of supply of heat froa the bottom or as a result of spring waters, although this is in need of verification. The causes of the extremely high mortality of saimon eges in the redds during incubation (on average 91.9%, Nikiforov, 1959a, 1959b) have not been established. In our opinion, these causes aight be supercooling of the water and the ice phenomena to which reference has been mede above.

The upper temperature limit is no less important. According to N. D. Nikiforov (1959b), grovth of young salmon in the summer takes place when temperature is not in excess of $25^{\circ} \mathrm{C}$. McGrimmon (1954) has established that. the heating of water to $25^{\circ} \mathrm{C}$ does not reveal a noticeable effect on survival rate, but that a temperature of $28.5^{\circ} \mathrm{C}$ is lethal for young Atlantic salmon of all ages. According to the observations of M. I. Vladimirskaya (1957), salmon in the Pechora in July 1954, when water temperature reached $22.4--24 n 2^{\circ} \mathrm{C}$, behaved in an agitated manner and swam to streams in which the water was colder. Dying adult salmon which had no damage on the body were found at this time. Young Atlantic salmon move to places where the current is faster in the middle of the summer. According to the observations of N. V. Evropeitseva (1950), young salmon in ponds were depressed e.t $25^{\circ} \mathrm{C}$ and attempted to keep to places where there was greater flow.
M. N. Lishev and E. Ya. Rimsh (1961) established that the abundance
of the salmon was conditioned by the conditions of its existence during the first year of life, to the underyearling stage Strong and average yearclasses formed in years when the summer air temperature (from May through September) did not exceed $90-95 \%$ of the ceriod mean and when spring-sumater discharge was at least 110% of the usual (norm). The absolute index of the norm was $14.6^{\circ} \mathrm{C}$; a correlation was estabjished between yield and temperature in 75--85\% of cases.

In the rivers of the basin of Lake Onega waten temperature is highest in July and mey reach a level at which the salmon becone demessed. Thus, at the outflow of the Midale Lizhma fron Lizhmozero a temperature of $25.7^{\circ} \mathrm{C}$ was recorded on July 31,1938 , while the mean maximum temperature (over 17 years) from this point was $22.3^{\circ} \mathrm{C}$. A temperature of $23.0^{\circ} \mathrm{C}$ was recorded in the Kunsa near the mouth on July 10--11, 1954; the mean naximum over 11 years was $21.1^{\circ} \mathrm{C}$. A maximum of $24.5^{\circ} \mathrm{C}$ was recorded for the Vodla and $24.0^{\circ} \mathrm{C}$ for the Shuya.

Vater quality. The water of rivers in the basin of Lake Onega belongs to the hydrocarbonate class. Such water is characterized by extreme* ly slight mineralization, an increased content of coloured humic acids and by virtue of this a weakly acid reaction. The last two circumstances are caused by the considerable frequency of bogs, the overall area of which is approximately 30% of the total area of Karelia (Lepin, 1957). Bogs and lakes have an opposite effect on the colour index and acidity of the water.

The Karelian rivers are characterized by extremely slight sediment discharge, which is explained by the resistance to erosion of the rocks forming the bed. Because of this the rivers have transparent water and the transportation and deposition of alluvium are slight. The reduction of the forests has not apperently affected the sediment discharge, since instances of soill
erosion have not been recorded in the former areas of forest.
The turbidity of the river water may be strongly increased in some instances by shallow "feeder" lakes or lakes with through flow. This happens when such lakes are subjected to strong wind mixing as a result of which silt and clay particles are stirred up and carried in suspension into the river. An effect of this kird is to be noted in a number of rivers: in the Shuya below Lake Vagat, in the Vana issuing from the Vavdepol'skaya arm of Vodlozero, in the Tuba flowing through Lake Ngozero. The silt carried into the river settles in part in the spawine" grounds in close proximity to the outflow and this may possibly lead to a deterioration of the incubation regime Cobservations on the Shuya and the Vama in the second and third decades of October, i.e. nearer the end of spawning). The suspended matter settles mainly in the pools and the water clears. This is largely facilitated in the Tuba by the dense reed beds in the challow of the river, which function so efficiently as a filter that transparency increased from $0.4-0.5 \mathrm{~m}$ to 1.0 m in the course of 4.5 km below Lake Egozero, and at the mouth (9 km below Egozero) the bottom could be seen at a depth of down to 1.2 m (observations in August 1963). \because

Vegetation. The development of aquatic vegetation in rivers is dependent on a combination of different, factors -- bottom naterial, flow rate, depth, the tronsparency of the water, and also logeing, which have such a mechanical effect primarily on inshore and coarse vegetation that such vegetation does not as a rule form beds of considerable size in logging rivers (there is no logging in the Tuba). The largest beds of submerged soft vegetation are found in the Tuna, the Middle Lizhma and the Syapsya, which are highly transparent. Water moss is common in the rapids of all the rivers. There are reed beds, sometimes with bulrushes, around the mouths and outlets of the
rivers in lakes through which rivers flow; considerable ageregations of pike are conmon in such localities. For this reason aquatic vegetation is undestrable in saimon rivens.

Groups of rivers. The salmon rivers of Lake Onega may be divided into three grouns in relation to size and weter content: large, medium and snall.

Whe first group comprises only three xivers, the Vodla, the Shuya and the Suna, wich were of very great economic importance to the salmon fisheries in the past. These rivens are at least 170 km long and the mean annual discharge of wator is at least $70 \mathrm{~m}^{3} / \mathrm{sec}$. The Vama, which is a reach of the Vodla, should not be separately distinguished, although this has been done in table 1.

The group of medium rivers comprises the Syapsya, Sandalka, Jizhma, Kunsa, Fovenchanka, Nemina, Fyal'ma, Koloda, Andoma, Samina, Vytegra and Megra Rivers. These rivers are from 15 to 156 km long and have mean annual water discharges of between 6 and $25 \mathrm{~m}^{3} / \mathrm{sec}^{\text {. }}$ The Sandalka, the Povenchanka and the Vytegra have been rendered completely unsuitable for the reproduction of the salmon owing to hydraulic engineering vorks. Only the pyalma is at present of commercial significance; there are very few salmon in the other rivers and the salmon has disappeared completely from the Koloda.

The small rivers have mean annual water discharges of from 1 to 4 $\mathrm{m}^{3} / \mathrm{sec}$ and are between 15 and 57 km long. They include the Lososinka, Malaya (Iesser) Suna, I'ivaiika, Upper Lizhma, Eleamka, Unitsa, Pazha, Zhilaya Tambitsa, Tuna, Tuba and Voditsa Rivers. Their role in the reproduction of the salmon is insignifjcant at the present time.

The area of rapids suitable to salmon was taken into consideration in addition to size and water content when dividing the rivers into groups. Thus,
although the mean annual discharge of water in the Tivdibika rose to $62 \mathrm{~m}^{3} / \mathrm{sec}$ after the inclusion of a pert of the catchnent of the Suna, the reproductive potentialities of the river have not been increased and it has been left in the group of small rivers.

The mein hydrogranhical and hydrologic characteristics of the spaming (salmon) rivers of the basin of Lake Onega are set out in table 1, a composite table compiled from the data of S. A. Bersonov (1960), S. V. Grigor'ev and G. L. Gritsevskaya (1959), S. A. Sovetov (1917) and I. I. Tsimbalenko (1918).

Information concernjng those rivers wich are entered only by chence by the salmon or for which entry is doubtful is set out in table 2 . Those rivers which for varions reasons heve ceased to be breeding grounds of the salmon and have passed to the category of trout rivers are given at the end of this table The other trout tributaries of Leke Onega have similar character. istics. In adaition to the eastern showes of the lake, there are groups of trout rivers between the outflow of the Svi.r and Petrozavodsk and between the \therefore Kondopoga and the Lizhma.

The differences between the salmon and trout rivers of Lake Onega may be summarized as follows.

1. Even when small, salmon rivers are larger than trout rivers; if the trout enters salmon rivers, it spaws either in the lower rapids or in the small tributaries nearest the mouth.
2. The salmon rivers are more gently flowing than the trout rivers, /26/ as was noted by K. F. Kessler (1868): "for preference the taimen (Hucho taimen) chooses the most stony rivers and streams with the most rapids for spawing, whercas the salmon to some extent avoids such eternally grumbling

Tabimyat.

3 peria, mbinot			6 Mnomadz nozo- conge, nas		入опуगs croka, 4.cек. mm^{2}	Pacxor ваны, м" $/$ еек.	Ірнаечанин
	23.8	123.0	322.5	5.7	11.3	3.66	(3 Ceaomroo maxy a hesoso if rphe pyeno… Butx вдар в mifa, roteman, ogto -
-'119\% . =	272.0	103.0	10267	10.3	9.4	96.27	```*& © 1703 r. moc. Hriqoŭma (130 ma or yemm) c 1939 r. indomesa IdC, pycatomo```
Camos	34.0	17.0	1803	20.4	8.7	15.72	- плотme met.
* Vnama Cona	23.3	28.3	481.6	8.5	8.5	4.09	Comamarat motnha у 7 fin of yotra.
cigar -	281.6	325.2	7665	13.5	9.6	74.06	Crok mepeñpomor or biry limpude a az. Maльe--03. Caw, 2 Sointoroжckas ryon.
- Caminama	14.9	20.8	1056	26.2	9.5	10.17	
- Thaphma	16.0	- 10.0	449.7	24.7	9.4	4.41	- 6oif, pexa mopecoxia. иоли fospoc po 62 зti/ces:
.fronta	68.3	114.0	717.0	13.4	10.6	7.61	шем течиии.
Jeprames ifmmara.	20.0	79.5	48.7	$\underset{5}{*}$	11.0	1.08	
\| aramkia	18.0	83.3	-	$\leqslant 2$	0	≤ 1	Mrotwaxe prapyneizt.
) mbeat	56.7	141.4	394.3	2.4	10.0	3.95	
lignca	60.2	126.6	745.4	8.5	10.0	7.45	resemm.

Key to Table I: Te Table 1 2. Main characteristics of spawning (salmon) rivers of the basin of Lake Onega 3. River, tributary 4 . Length, km 5. Fall, m 6. Catchment area, $\mathrm{km}^{2} \quad 7$. Ratio of lake surface to drainage area, \% 8. Specific rate of flow, litres $/ \mathrm{sec} / \mathrm{km}^{2}$ 9. Water discharge, $\mathrm{m}^{3 / s e c}$ 10. Comment 11. Lcsosinka 12. Seasonal reservoir at outflow and three river-bed reservoirs in lower reaches, one in existence since 1703 13. Shuye 14. Hydroelectric power station dam near the settlement of Imoila (130 km from the mouth) since 1939 , river bed reservoir 15. Syapsya 16. Malaya (Lesser) Buna 17. No dams 18. Sum a 19. Jogging dam 7 km from mouth 20. Discharge diverted from the Girvas Fells into Lake Pall .-. Lake Sandal Migozero -... Kondopozhskaya Bay 21. Sandalka 22. Outflow dammed off in 1926, river dried up 23. Tivdika 24. A part of the catchment or the Suns to an area of $5861 \mathrm{kr}^{2}$ was included in 1952 and the discharge of water rose to $62 \mathrm{fil}^{3} / \mathrm{mec} 25$. Litima 20. Dams in upper, middle and lover reaches 27. Upper Lizhna 28. Elyamka 29。 Logging dam 30. Dams destroyed 31. Units 32. Joined to the small lake Pignozerka, dams. 33. Kuna 34. Dams in upper, middle and lover reaches. 35. Table 1 (contimation) 36. Povenchanka 37. Incorporated in the White Sea-Baltic canal 38. liemina 39. Dan 30 km from mouth 40. Pazha 41. Dams destroyed 42. Pyal'ma 43. Zhilaya Tambitsa 44. Tuna 45. Dam destroyed 46. No dams 47. Tuba 48. Iwo dams: dam at outflow from Fgozero destroyed, dan in lower reach not used. 49. Vodla 50. Dams at both outflows, Vodlozero is a seasonal reservoir 51. Vama 52. Koloda 53. Dam at outflow 54. Three dams -- in the upper, middle and lower parts of the river 55. Andoma 56. Samina. 57. Hydroelectric power station dam 58. Vytegra 59. Incorporated in the Volga-Baltic waterway, Jocks on the riŷer 60. Megra 61, Vodlitsa. U.

3 pera		Hase－ nue， an 5		ブоәぁфк－ ment 		pacron нодм， micont？
！Inpera	65.5	65.3	1802	4.4	9.3	16.80
4 Crpremua	12.0	－	\cdots	\cdots		$\leqslant 2$
FMrerca	200.11	72.7	3879	3.0	10.0	38.79
\％herka	19.3	14.0	381.6	8.2	10.0	3.61
－Oxtospera	24.4	16.0	210.3	． 2.0	10.0	2.10
－Сом6а	74.9	201.0	685.1	1.5	10.0	6.85
W Parmyca．	45.6	100.8	450.7	4.3	10.0	4.51
，Черван рочна	90.0	65.0	585.6	0.7	10.0	5.86
¢Ouma	37	－	688	\square	\cdots	120
；Bugra	21.2	128.3	130．1	0.2	9.0	1.22
\therefore Illonma ${ }^{\text {a }}$－．．．	21.2	120.8	\＄16．0	1.2	8.5	0.99
	20	42	－	－－	－－	\cdots
\therefore Apmena＂	12.5	117	－	－	\cdots	\cdots
\therefore Bospraza＊	12	17	－	－	\cdots	－
\therefore Hennиса＊	11.6	－	－	T	$\overline{10}$	15
\therefore－Kfceentra（Tamбima）＊．	34.5	112.0	152.1	1.2	10.0	1.52
\therefore वулинта＂	24.3	105	89.2	1.6	10.0	0.89

27 ＊Bo все ати ренй сейчас заходит тольно форени．

Key lo Trole 2：7．Pable 2 2．Hain characteristics of the rivers which the salmon enters by chance or for which entry has not been proved 3 ． siver 4 ．Length，kn 5．Fall，m 6．Catchment area， km^{2} 7．Ratio of lake surface to drainage area，\％8．Specific rate of flow，litres $/ \mathrm{sec} / \mathrm{km}^{2}$ 9．witex discharge， $\mathrm{m}^{3} / \mathrm{sec}$ 10．Irsta 11．Syargezhka 12．Ileksa 13． Nelka 14．Ohhtomreka 15．Somba 16．Ragnuksa 17．Chernaya rechka 18．Oshta 19．Vilga．20．Shoksha＊21．Tambitsa（near Tambits－Nosa）＊ 22．Arzhema＊23．Vozritsa＊24．Nelyuksa＊25．Issel＇ga（Tambitsa）＊ 26．Filippa＊27．At the present time only the trout enters all these rivers．
waters＂．
3．The trout is able to tolerate a higher degree of humification and is found even in peat ditches in which the water is heavily coloured and
has a pH of 6.0.-.6.5 (Pravdin and kornilova, 1949).
Despite the traditional conviction, the trout is on the whole Less demanding on concitions then is the salmon. It is able to breed in rivers which the salmon avoids entering, for example in the upper reaches of the Pyal'mand the Nemina. By virtue of its greater adaptability (plasticity) it is able to form landlocked forms in heavily humified, swampy oxbows (lamby) (transparency $0.6-0.8 \mathrm{~m}$; size up to $200-300 \mathrm{~m}$ long, bottom materigl ooze), which have long lost a comection with the sea, (Chernov, 1935). Thene valueble properties of the trout compel us to consider it at least as attentively as we considex the salmon.

Divergence within the genus Salmo hes had the effect that its svecies have adapted thenselves to the use as spaning grounds of watercourses within their ramge wich differ in their nature, and the trout has even succeeded in occurying lanalocked bodies of water. The high adaptability (plasticity) of Salmo specjes makes them extrenely promising subjects for economic exploitation, especially in Karelia, which abounds with lakes and rivers with the most varied conditions.
II. The Fish Pauna of the Rivers.

Enemies and Competitors of the Salmon.

There has not previously been a specjal study of the fish fauna of the rivers in the basin of Iuke Onega. Lists of fishes for many rivers are given in "The Natural and Economic Conditions of the Fishing Industry in Olonets gubernia" (1915), a report compiled from questionnaires filled in by the population. However, there are great inaccuracies in these lists and although commercially exploited species well lnown to the population are correctly listied in them, there is no mention of such species as the lamprey,
the minnow, the stone loach, the white bream, the miller's thumb, the dace and others. In some instances a local name is given without any explanation. For example, "korpus", which is apparently the "korbitsa", i.e. the dace, is Iisted for the Shuya. The data in this report are therefore in need of verification and correction

Because the scientific studies of recent years have been devoted to the lakes and have soarcely touched on the rivers, little can be extracted from them. The lakes of the Shuya basin have been most fully investigated; we have the most detailed information on the fishes of this river.

Our materials on the different rivers are of unequal value, but they do permit us to maise some comperisons and draw some conclusjons.

The rivers in the basin of Lake Cnega differ significantly in the comocition of the fish fauna and in the relative abundance of its componentis, includire oumeditons and enemies of the salmon mhe diversity of species in the fish fauna is dependent on the size of the river and on its hydrographical and hydrologic features. The smaller is a river, the more impoverished is the composition of the fish fauna. In rivers wich abound in lakes through which there is flow the fish fauna is enriched by limnophilous fishes. The abundance of the pike and the extent of its effect on young salmon are connected with the existence in a river of such lakes in which the pike breeds. The predator forms considerable concentratio ns , which are a strong barrier to downstream migrants Where the spawning tributaries join the river, in the lower reaches of the tributaries and in the outflow of the main river (Malaya (Lesser) Suna -Syamozero -- Syapsya -- Vagatozero -- Shuya -- Logmozero; Upper Lizhma, Elgamka - Lizhmozero -- Middle Lizhma - Kedrozero -- Lower Lizhma ("Kedroreka") -- Tarasmozerol.

The nature of utilization of the river has a considerable influence on the composition of the fish fauna. There is, as a rule, reduction and sometimes total disappearance in the first instance of the most valuable species.

The species composition and frequency of individual species are
given in table 3 only for those rivers which were investigated by us. Since we were mable to make lengthy observations at pemenent stations, it is inevitable that these data will subsequently be corrected and expanded. Thus, it is evident that the sculpin lotus posciloyus, which is known to exist in lake Onega, will be found in the rivers.

The largest number of species has been recorded for the Shuya (25 For the river and 31 for the basin as a whole) and the Vodka (20 and 25 respectively), which have the best conditions for themophilous cyprinids. Such relicts as chub, zone, gudgeon, crucian carp and white bream are found in the basins of both rivers; the catfish, the rudd and the spiny loach are found in the Shuya; the pikeperch is found in the Shuya and the Vodka and is absent: from the other rivers.

The number of species has been reduced in a number of rivers as a result of hydraulic engineering works by elimination of the most valuable species -- salmon, trout, whitefish and grayling (table 4).

The least number of species is found in the small, fast-flowing rivers, which are suitable only for typical rheophilous fishes (the Pacha -10 species; Upper Ifizhma, Elganka, Tuba -- 11 species). Thanks to the presence of lakes through which there is flow the other rivers have a richer fish fauna, but far from the same as that of the Shuye and the Vodia.

From among the fishes which inhabit the rivers we axe primarily
interested in those which are enemies and competitors of the salmon.

1．．．！n．		宕			8	4 4 8	$\begin{aligned} & 10 \\ & \\ & 2 \\ & 2 \end{aligned}$		$\begin{aligned} & i 2 \\ & \\ & 8 \\ & 8 \end{aligned}$	$\begin{gathered} 13 \\ 0 \\ \frac{9}{3} \\ E \\ E \end{gathered}$	4			17 8 8
：$:$ ．．．миャ：	＋	$+$	＋	＋＊	$+$	$+$	1	＋	1	＋1	＋	＋1	$+$	$+$
	$+$	\dagger	$+$	＋1	＋	＋	$+$	＋	＋1	＋	$+$	＋1	＋	＋
：1．．．．．．lcisius．e－－emelt	？	＋	$+1$	－－	－－	？	$?$	$+$	＋	$+$	$+$	？＊	＋	＋
	－	1	－	－	－	－	－	\cdots	－	－－	－	－	1	1
$\cdots \cdot$	－	＋1	＋1	？${ }^{\text {anse }}$	？	$+1$	－	\cdots	－	1	1	－	＋1	$+1$
	？	？	－	＋	1	＋	＋	？	？	＋	＋	＋	＋1	＋i
	\cdots	1	－	－	－	－－	－－	－	－	－	－	－	－	－
	－	＋1	－	－	？	－	－	－	－	－	－	－	＋1	－
	？	＋1	$+1$	－	－＊＊＊	？	$+$	？	？	＋1	＋1	－	＋	＋1
	－	＋1	？	－	－	1	－	－	－	－	－－	－	$?^{\prime \prime}$	？ 0
	1	$+$	$+$	－	$1^{* * *}$	$+$	1	$+$	－	－	－	－	$+$	＋1
－baicr．es rimuld	－	1	－	－	－	－－	－	－	－	－	－	－	80	P0
A ：：dasins－majuch	－	？	－	－	－	－	－	－	－	－	\cdots	－	1	－
	＋1	$+1$	？	？	？	± 1	＋1	＋1	？	＋1	＋1	＋1	＋1	＋

Brain mopus 3	$\begin{array}{r} \text { - } \begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array} \\ \hline \end{array}$				$\begin{aligned} & 5 \\ & 5 \\ & y \end{aligned}$	$\begin{aligned} & \because \\ & 8 \\ & B \\ & \hline \end{aligned}$	管	㜢	$\begin{aligned} & \therefore \\ & \text { 皆 } \\ & \end{aligned}$					
．．．Cobitis taenia－mamoska	－	1	－	－	－	－	－	－	－	－	－	－	－－	－
… Siluras glanis－cosm	－	1	－	－	－	－	－	－	－	－	－	－	－	－
\cdots Anguila anguilla－yrops＊＊＊	－	1	－	－	－	－	－	－	－	－	－	－	$+$	－
．${ }^{*}$ Lota lita condromus－－mamms－	＋1	$+$	$+1$	1	＋1	＋1	＋1	＋1	1	＋1	$+1$	1	＋	$+$
．．pungitius pungitizs－momomka	－＊	－＊	－＊	－	－	－	－－＊	－－＊	－	－＊	－	－－＊＊	\cdots	－
	－－＊＊	－＊	－＊	－	－	－	－＊	－＊	－	－＊	－	－－＊	－－－＊	－
\therefore Inciopma lucioperca－судак	－	1	－	－	－	－	－	－	－	－	－	－	＋1	j
－Perca ilurialits－окувь	$+$	$+$	$+$	＋1	$+1$	$+$	$+$	$+$	$+1$	＋1	$+$	＋1	$+$	＋
\because Acerina cernua－epm	$+$	＋	$+$	1.	＋1	＋	＋	$+$	－－	＋1	＋1	＋1	$+$	$+$
\therefore Myorocephalus quadricornis one－ pensis－porata yetrupexpo－ гал \qquad	－	－	－	－	－	－	$+1^{100}$	－	－	－	－	－	－	－
\therefore Collus gobio－поркаменция	$+1$	＋1	1	＋1	$+1$	$+1$	$+1$	＋1	＋1	$+$	$+1$	＋1	$+1$	＋1

Key to Table 3：1．Table 3 2．Species composition and occurrence of fishes in salmon rivers in the basin of Lake Onega 3．Species and form 4.

Losusinka 5．Shuya（irom the Syapsya to the mouth）6．Suna（from the Kivach
Falls to the mouth）7：Upper Lizhma，Flganka 8．Lower Lizhma 9．Unitsa
10．Kumasa 11．Nemina 12．Pazha 13．Pyal＇ma 14．Zhilaya Tambitsa
15．Tuba（below Egozero）16．Vodia（the whole river）17．Vama 13.
Lampetra iluviatilis－river lampey 19．L．planeri－brook lamprey 20. Acinenser ruthenus－－sterlet＊21．Salmo salar m．sebago－－lake salmon 22．S．trutta m．lacustris－－Iake trout 23．S．trutta m．fario ．．．brook trout ${ }^{000}$ 24．Coregonus albula－－vendace＊＊25．C．Iavaretus lavaretoides－－migratory lake－river whitefish 26．Thymallus thymallus－－Erayling 27．Osmerus eperlanue enerlanus－－smelt 28．Q．eperlanus coerlanus．m．soirinchus－－ snetok（landlocked smelt）29．Table 3（continuation）30．Esox lucius－－
pike 31. mivite mitilus -- roach 32. 1euciocus lenciscus - dace 33. L. cewnlus -- chub 34. L. Lius -- ide 35. Phoxinus nhoxinus -- minnow
 aloumen abimus - - bloak 39. Blicca borma -- binte brean 40. Abrams brama -- brean th. \&. billems -.. zope 42. Carassius carassius -- orucian

 47. Iots Iota amprous -- burbot 48. Eurcitins matius-- ninospine sticicobok 490 gestercstele eculeatue - thresopine stickicback 50. Iucionera luojonerca -- phe-perch 51. Eeroa fluviatilis -- perch 52.
 sculvin 5t. Cottus pobio .-. niller's thamb 55. Vote. The following notations are adonted in the table: t, the fishis conmon and numerous; +1 , combn but not numerous; 1, very scarce, singly; - , not found; $=$, used to exist, kut hes disappeared; ?, possible, may be found; *, enters the nouth; ${ }^{* *}$, present since 1954; *** , descends from the lakes; **** became extremely rare after construction of dens on the Svir'; ${ }^{0}$, may descend from Vodlozero; 00 , present in Lake Oster; $\quad 000$, present in the tributaries of salmon rivers; 0000, present in Lizhnozero but very rare. Where there was no information concernine a fish the colum has been left bzank.

The competitors include young grayling, the dace, the minnow, the stone loach and the eudgeon; this combination of fishes is as a rule found in the same localities as young salmon and is caught together vith them. Owing to differences in biology and behaviour the competitive cavacity of these fishes is not the same. The Eraylin ${ }^{E}$, the pike and the burbot should be regarded as the mair enemies of young salmon in our rivers. However, according to

Tatoalima4
 Greceйн Oncжстого оаса

Koy to rable 4: 1. Table 4 2. Number of species and forms found in the \therefore Ma: Mry in the bssin of Lake Onega jorequency 4. Lososinka 5. $\cdots .2$. (irom the Syapsa to the nouth) 6. Suna (from the Kivach Falls to the routh) 7: Upper Lizhma, Elgamka 8. Lower Lizhma 9. Unitsa 10. Kumsa 11. Nemina 12. Pazha 13. Pyallma 1t. Zhilaya Tambitsa 15. fiuba (helow Epozero) 16. Voda (the whole river) -17. Vama 18. Tnvariably to be found in the river at the present time 19. Was present in the past but has disappeared 20. Enters from the lakes and tributaries 21. Total recorded for the basin.
published data, even such non-predatory fishes as the minnow and the dace may be not only competitors, but also enemies of the salmon and consume its larvae (Mikhin, 1959). Whitefish, ide, perch, pope and roach are common in the pools of the rivers and below the rapids, but these fishes may al.so enter the rapids and there enter into interrelationship with the young salmon.

Whe lamrey anparently innabits all the rivers, with the exception of the upper reaches (Vama, Uneer Lizhma, Blearka). Its Larvae are found both in soit bottons and in shincle beds. There was an interest.ing instance of the discovery of a lamprey larva in a calmon redd in the Syapsya River. No eges were found in this redd and there was a lot of inee bark in it. It is possible that this was a "test" redd in which no eggs were laid because of the heavy contamination of the bottom resulting from logging.

A river lemprey was observed at Chuporog on the Suna on May 26, 1960 keeping in the vicinity of a batch of eggs attached to the undersurface of stones; the eges were fin the mobile embryo stage.

The trout is not of commercial importance in salmon rivers, since it enters them in vexy small quantities. It breeds in shallow tributaries not entered by the salmon, but it is possible that it also utilizes the lower spowing crounds of the salmon in the main river. During the ariver period of existence and during the downstream migration the young of these fishes are to be found in the same reaches.

A number of investigators regard the trout as an undesirable fish in salmon rivers, in as much as it is a food competitor of parr and consumes salmon eges. V. A. Abakumov (1960) found, additionally, that the hybrids which form under natural conditions between the salmon and the trout are inferior in growth rate to the salmon during the (maxine) feeding period.

The lake-river whitefish is common, if not jnvariably present in salmon rivers, but its abundance has been sharply reduced, and it has practically disappeared along with the salmon fron the Suna, Povenchanka and Unitsa Rivers. The sea whitefish of the Shuya appears in the river in July and remains in the pools of the Shuya and the Syapsya and below the rapids until spawning; fish which have overwintered in the river after spawing migrate downstream in

Amsil--Hay, i.e before the salnon larvae emerge from the redd. Young whitefish which have migrated downstrean from the river are caught in Petrozavodsk Bay in duly.-August. It is evident that the whitefish is not an enemy or competitor of the salmon undex the conditions of the Shuya. The Lizinma whitefish approaches the mouth of the Kecrozerka in May aftex having overwintered in Thanmozero, but since jt is not found in the locality in June it is also scarcely a threat to salmon larvae.

The grayling is a competitor and predator which invariably accompanies young ealmon. Its abundance varies in different rivers. The grayling is, perhaps, the fish most sensitive to the effect of logging, since its spawning and snowning grounds are exposed to the effect of the intensive spring logetinge The grayling has disappeared completely. from the Suna. Its numbers were low in e the Kumsa, but since lossing was discontinued its stock has increased rapidly, The grayling is found far more often than young selmon in the Kumsa, Byapsya and shmya Rivers. It is very rare in the Tuba and in the system or the Lizhma, whereas it is the fish which has the main effect in the ravids of the pyal'ma and the Trambitsa and is possibly inferior in abundance only to the minnow. *According to the data of test fishing in the middle of August 1963 the raino of grayling and salmon in groups of underyearlings and yearlings in the rapids of the Fyal'mand the lambitsa was 4 : 1 in favour of the grayling. Although the grayling inhabits the same localities as young salmon, it extends over a greater area. The salmon is more active in search of food. According to the data of A. A. Zabolotskii (1959), the grayling consumes three times as much food as the parr and grows faster., There is a corresponding difference of $2-3$ times in the wejght of coeval young grayling and salmon. At the proportions of underyearlings and yearlings obsexved in the system of the Pyal'man River, the
fish mass of the grayline is therefore 10 times that of the salmon parr. Tt is clear from this that unless the abundance of the grayling (and of other competitors) is reduced it is impossible to increase the productivity of the solmon spaming rivers.

The grayling is an active predator which contimues to feed even When the rivex is ice covered. The stomach of a grayling 850 E in weight and 41.5 cm long which was caught on October 30 , 1963 in the selmon spaming grounds in the Vama River contained 15 specimens of the landlocked smelt: $5-6$ en long. The smelt hed appeared in the river after a strong wind had been blowing toward the outflow. A week before this, at the height of salnon snawning, grayling which had been feeding on salmon eggs were caught in the Vana. The grayling undoubtedly also feeds on young salmon, which are more available in the early stages, down to the underyearling, when the young saimon are less mobile.

The pike inhabits all the salmon rivers, but its quantities vary in relation to the existence of spaming reaches suitable for it. In rivers in which conditions are not suited to the reproduction of the pike (Kumsa, Pazha, Pyal'ma) its abundance is slight.

Because the Kumsa has steep rocky and sandy banks in its lower reaches, where there are salmon spawing grounds, there are very fev pike there and the pike camot significantly affect the young salmon. In other rivexs where the floodplain is subject to inundation (Shuya, Syapsya, Elgamika, Syargezhka) or where there are swampy streams, excellent conditions are created for the spawning of the pike, with the result that its abundance is high.

The pike usually concentrates in the grassy inlets around the river mouths, in the lower pools of the rivers, in places where the rivers are
obstructod and an the lower perts of the ranids, especially wore the ranids are domache The inimence of the pike is inversely proportional to the width of the river since it is a fish which keeps mainly to the banks. In a spawing tributary of alight widh (less than 10 m) a single pike may control the entire wath oí the river bed, as was shown by spinning: the same pike rushed at two trolls cast from either bark. The concentration of the pike around the mouths of the spawning tributaries may be very high Since there are as a rule very fow other fishes in the spawning tributaries, the influence of the pike on the yours shlnon is undoubtedy of decisive importance for the fate of future calmon catches in cuch instances. The population density of the pike may be to sone extent characterize hy the following figures (data for the Lizhna River basin). Five pike between 0.3 ank 1.0 kg in weight were caught in half a dicy in the month of the Sheichuga River in a struch 50 m long where the rivo ic 10 i. wide, wich was 1 pike per $100 \mathrm{~m}^{2}$ of the wiver be , In the reach around the mouth of the Sordiya River, where the river is 10 mwjde , irge pike were seen splashing every 10--15 metres. In the outflow of the Midde Lizh... ${ }^{2}$ up to 22 pike havo been caught in a day with asirgle spinning rod. The young : salmon are more available to the pike during the downstream migration. Artificially reared young salmon released into unprepared bodies of water also become prey for the pike. According to a communication of S. P. Kitaev, who made obsèrvations between September 15 and October 21, 1963 on pond-reared underyearlings released into the Syus'kjeka River (Lake Ladoga), salmon underyearlings formed a significant part of the food of pike caught for a month after the release of the young salmon.

Condjitions for young salmon are greatly worsened by the construction of dams at rapids and by the obstruction of the river bed as a result of logeing. This deterioration is due not only to the reduction of the feeding
grounds, but also to the imonoverent of hanting conditions for the pike The dams and spits at the rapide are refugea from behind which tho pike emerges to hant in the shallows of the river bed inhabited by the young salmono

The doce Es estemely numemons in the rapids of the Vama, Syapsya and Pyal'm Rivers but is not found in the Iifha besin (there are two record-
 no information concoming the interaelationship of the dace Ead the almon in our idivers.

The mimov is evidently to be found in all then whe basin of Iake Cnega. It is noticeably less plentiful in the Tuba and the Itizha then En the Pyal'ma.

In August 1963 we were able to observe the behaviour of a school of minnows in a nool in the Pyalme Revera A school of minows of different ages numbering up to 150 - 200 fish (estimated) occupies an area approwimately $0.5-0.8 \mathrm{~m}$ wide and $2-2.5 \mathrm{~m}$ long. The minows ere arrenged as follows: the largest fish ($6--7 \mathrm{~cm}$ long) are at the head of the school, the underyeanlings are at the tail and fish of intermediate sizes lie between them. When under. yearlings caught with a net darted in front of the school., some of the large minnows seized and swallowed their own underyearlings. This may probably be regarded as confirmation of the predatory feeding of the minnow described by Ve S. Mikhin (1959). In the Bol'shaya River (Baikal) the minnow destroys a considerable quantity of Arctic cisco larvae (Barbarovich et al., 1966).

The gudeeon is found only in the Shuya and the Vodla. The extension of the range of this species and the increase in its population which have been observed for mrobably no more than the last ten years are of interest.

In theix reference mamal "The Lakes of Karelia" (1959) K. I.

Belyaeva and V. V. Pokrovskii wrote: "he gudecon is a very rare fish in Lake Cneza and even then is confined to the southern part of the lake". In 1953 we found the gudgeon in the Ragnuksa, a tributary of the Vodla. Fishermen did not note its apperrance in the Shuya before 1959. In 1961 the gudgeon was already to be caught from the mouth to the Vidanskil rapid, and it was then that the first comunicationsconcerning the appearance of a nev fish unknown to the population were received from several fishermen (proreasionals and amateurs). In December 1961, I. A. Pesnin, the leader of a fishing brigade, took one specinen of the gudgeon from the regjon of the village of Shuya. When the Shuya River was exmined in September 1062 ve caught gudgeon at the Vicianskii rapid in the same localities as young salnon, but nearer the bank, where the current was more gentle (flow rate up to $0.5 \mathrm{~m} / \mathrm{sec}$) and where depth was between 10 and 40 cm , i.e. in the zone inhabited by salmon underyearlings. Thereafter the gudgeon penetrated up stream, overcane the Bol'shoi Tolli Palls (apparently, by advancing along the quieter left branch) and is now caught (in tens by rod and line in the course of:aday) at and above the Yumanishki rapids, but it has not been established whether it has reached * Lake Vagat. In August 1962 a gudgeon was caught for the first time in the Lizhma inlet (taken by the author), where, like the dace, it had not previously been known to the local inhabitants.

These facts are of interest in themselves, and they have the further interest for us that the gudgeon may be a food competitor of young salmon (to the underyearling stage), since the gudgeon is clearly tending to increase in abundance in the Shuya.

The miller's thumb, like the very similar Cottus bairdij bairdii Girard in American rivers (Dineen, 1948); apparently feeds on the eggs of salmonids and is a competitor of the young mainly to the underyearling stage,
up to which tine the young live on the bottom together with the miller's thumb.

The burbot is most pientiful in the Vodla and the Shuya and there are rany suall burbot in the Vama in the salmon spowning grounds a During the spaning geriod of the salmon the burbot consumes its eggse when the watex becomes coldex in the autum the buroot hecomes more active and even such an active swimmer as the grayling is found in its food at this time. Thie suggects that the burbot may possjbly also consume young salmong although we do not as yet have dinect observatione of thise foconding to the observetions of \because. Vladimirskaya (1957), young Athantic salmon were fomd in the winter in 8.8 co burbot stomachs in quantitios of up to 3 in one stomach; Fhe burbot should be regarded as a dangenous predator in relation to young selmons In rivers where the numbers or fishes of no food value are low (Tubes. Iimma), the abuncance of predatoms should be reduced to as ion as possible, since their threat to parr is greater, the lower is the abundance of other fishes. The ideal solution would be to eliminate predatory fishes and fishes of no food value completely from salmon rivers and this is possible in principle by the use of ichthyocides.

In speaking of the enemies of the salmon, reference should be made to fish-eating birds, among wich younc salmon are consumed by the dipper (Vladiminskaya, 1957) and especially by the goosandex, which does considerable damage in the rivers of Canada and Swedon (Elson, 1950, 1962; Jindroth, 1955). Fortunately for our salmon, the numbers of these birds are now very low and they are incapable of having any significant effect on the survival. of parr in the rivers of the basin of Lake Onega.
Utiligation The Effect of braraulic Encineering borics and logeins.

The ceveloment of water use. The interests of different water users come into conflict in rivers and the denands which water users make on rivers are, as a rule, mutually exclusive,

In addition to their use by the fish industry, rivers are used for water transport (including logging), power supny, the discharge of industrial effluents, the discharge of water from drainage systems and for commal and domestic needs.

The stocks of the Onega salmon have been most. affected by the use of the rivers for transport and as a source of power, which began in the 18 th century inconexion with the development of the economy of the region.

So that vico could bo made of the energy of the rivers dams were constructed on them for metallurgical plants (after 1700 on the lososinka, Tivdiika, Vichka, Povenchanka and Tuba Rivers), for samills (in the second half of the 18 th ceritury on the Shuya, Suna, Lizhma, and Kumsa Rivers and later on the Povenchanka) and for flour mills (on the Tuba and other rivers). Hydroelectric power stations were constructed on some rivers after 1900. The construction of the hydrdelectric power station on the Lososinka had no effect on the reproduction of lake and river fishes in it, since they had disappeared long before that time, probably back in the 18 th century because of the dams of the Petrovsk Plant and later the Aleksandrovsk Plant. On the Shuya the dam of the hydroelectric power station at Ignoila cut off the upper spawning grounds of the salmon, but their area does not exceed $10-15 \%$ of the area of rapids utilized by the salmon in the basin of this river. In the Andoma the power station cut off the main spawning grounds, the "Mal'yanovskie rapids" and although spaming grounds have
remaned in the Samina, a tributary of the Andoma, they do not compensate the loss of area which is at least $2 / 3$ of the total area of samon rapids in the Andoma besin.

The Suna is an example of the most serious consequences of hydraulic engineering works for the fish industry, consequences which have admittedyy been nade worse by logeing this river was of great importance to the fish industry in the past and took second place after the Vodla in terms of catches. In 1895-1900 whteíish catches in the suad exceeded 300 centners (Pushkanev, 19130) (tronslator's note. 1 Soviet centner $=100 \mathrm{~kg}$). There is no infometion concerning the salmon catoh in these yearse In 1926-1930 when the Suma Fishery was already on the decline, salmon catches wexe 21-m 30 certners (Kozhin, 1927a; Zborovskaya, 1935). Thereafter there was a sharp reduction; 4 centners of selmon were caght in 1932 and aften that time the Suna salmon and whitefish diseppeareh entirely fom the comeroial batoh. Although whiterish still. enter the river singly, the salmon had disappegred here as a syecies.

Hydraulic engineering wonks on the Suna were carried out in stages.
In 1926, the Sandalka (a tributary of the Suna), which was entered by a large \approx quantity of salmon, was completely damed and as a result a catchment with an area of $1017 \mathrm{~km}^{2}$ was cut off.

The reach of the river below Girvas (65 km from the mouth) became in essence an independent river which approximates to the Kumsa and the Lizhma, which are salmon rivers, with respect to its main hydrographical and hydrologic charactexistics (table 5, based on the data of Grigor'ev and Gritsevskaya, 1959 and of Bersonov, 1960).

The excellent natural regulation of the basin of the Lower Suna could ensure a uniformity of discharge within the year sufficient for the reproduction of salmon and whitefishe However, since the Sune is one of the main Jogeing
winter ways, its regime and especially the regulation of discharge are so detcminod by the interests of logging as completely to exclude the rereduction of lake-river fishes.

Таблица 5

(участок от Гираса до уетья)

Key to Table 5: 1。 Table 5 2. Ni an characteristics of the Lizhma, Kumsa. and Sunda Rivers (the reach of the Sunda from Girvas to the mouth) 3. River and reach 4. Length of reach, km 5. Catchment area, km^{2} 6. Lake area, km^{2} /number of lakes 7. Ratio of lake surface to dränage area, \% 8. . Specific rate of flow, litres $/ \mathrm{sec} / \mathrm{km}^{2} \quad 9$. Water discharge, $\mathrm{m}^{3} / \mathrm{sec} \quad 10$. Lizhma (mouth) 11. Kumsa (mouth) 12. Sung (village of Shushki) 13. Sun (mouth).

Navigation is on the whole poorly developed in the rivers. The use of the Povenchanka and Vytegra Rivers as parts of the White Sea-Baltic and Volga-Baltic waterways is an exception, but the salmon stocks in these rivers had already been adversely affected in the last century (owing to the dam of a timber plant and to overfishing in the Povenchanka), so that the loss to the
fish industry from this form of utilization of the rivers has been olisht.
The effect of locrins The transport of timber by water is the main form of utilication of the rivers in the basin of luke onega, as it is in general of harelian rivers. Fiven quite recently logging was carried on in all the salmon rivers in the basin of Jake Onega. Naturally, therefone, the greatest contradictions axise where the interests of the fish industry cone into conflict with those of Jogging. The cesation of logging on a number of rivers (hizhma, Kumse, muba and lyal'ma) has been due primarily to the fact that the forests have been felled in their basins, and to a lesser degree to conversion to another form of transport (Shuya).

Logging appeared in the rivers in the basin of Lake Onega with the rise of the samilling industry in the first quarter of the 18 th century, but the volume of loceing was slight by comprison with the presont-day volume down to the begiming of the 1920 (1.76 minion cubic netres for Karclia as a whole in 1513, approximetely 3.5 million in 1928 and reaching 9 million in 1961; Grigor'ev, 1961).

Whereas previousiy when the volume of felline was slight logging was \therefore carried out only during the flodperiod, the duration of logging has been extended as the volune of felling has increased and it has become necessary to create seasonal reservoirs.

- The effect of logging was therefore far weaker in the earlier period than in the subsequent years, especially because it was the forests nearest the river mouths which were initially felled and therefore the upper spawning grounds were initially not affected by logging. Hovever, it was already realized in the last century that the fish were adversely affected both by logging itself. (Pushtarev, 1900a) and by substances extracted from the timber (Borzdynskij., 1867). Admittedly, N. Ya. Danilevskii (1875) regarded drift
floating as a positive feature on the grounds that it greatly interfered with river fishing and therefore prevented overfishinge Howevers this is more an exauple of the "cure being worse than the disease". Pushkarev, who investiceted the Vocla 20 years after Danilevskii, reached opposite conclusjonso He recomended measures to himit the harm caused to the fish industry by the timber industry (limitation of the logging period, barking of the logs, controlled operation of the boom, inadmissibility of the dumping of sammill waste in rivers and the construction of fish ways at sawmill dams). It was evidenty Pushkarev who was tho first to formulate the demands of the fish industry on the timber industry. Hovevers, it cannot be said that even one of these reasonable aspirations has been met in the years which have since elapsed. Furthemore, right dom to the present, water-use legislation has not ensured effective protection of the interests of the fish industry which have suffered from the efect of the timber industry.

The development of the timber industry and the simultaneous reduction in the abundance of diadromous fishes compelled many investigators both in our country and abroad to refer to the comexion between these eventse Almost all investigators of fishes and fishing who have worked in Lake Onega refer to the use of spaming rivers for the needs of the timber industry as one of the adversely operating factors. It would take too much space to list these investigators.

Two authors (Stroganov; 1937; Artimo, 1961) doubted whether timber extracts and bark were harmful, but they were not concerned with salmon rivers. Artimo, who observed the development of pike.-perch and pike eggs laid on bark, concluded that the opinion that the bark which peeled off during logging was harmful had been greatly exaggerated. The data of Alm (1923) and of A. G. Gusev (1950, 1952, 1953) force us to disagree with the opinion of this author.
aro other authors, mamely IF. Jumofolt (1931) and N. A, Ostromov (1544, 1947), went even Wurther and asserted that the pollution of rivers by logeine waste vas beneficial. Ostroumov based his conclusion on the fact that the biomos of the benthos was increased on a timber substrate and that consequently the food supply of fishes was improved; he stressed the positive nature of these changes (from his point of view). Without investigating the other influences of loggings he concluded: "Unti.l it has exceeded a certain maximin, logging is a progressive factor in northern rivers". Movever, he did not state what this "certain meximun" might be In the opinion of Ostroumov "Logeing in rivers does not have an inhibiting effect on fishes".

Although an increase in the biomass of the benthos is also to be observed in our rivers (in pools and below ravids, where the bark settles and is washod by sand and silt), we cannot accept the opinion of Ostroum that logging is beneficial, at all events for salmon rivers of the Karelian type. Although sone beneitit is obtained from this by the indigenous fishes of little value inhabiting the pools, it is our most valuable food fishes, salmon, trowt and wintefish, which suffer as a result of logeing.

Many investigators who acknowledge the harm caused to the fish industry by the i:imoer industry, in particular the harm ceused by logging, emphasize some one aspect of the influence, either the obstacle to the migration of the fishes, or the pollution and the deterioration in the quality of the water, or only the interference to the industry.

The first attempt at an overall estinate of the effect of logging was undertaken by Alm (1923); who reached the conclusion that logeing affected fishes and fishing simultaneously in various ways: biocoenoses were moditied,
gawing exourds vere rolluted, a fungal and bacterial flora developed, the quality of the vater wes changed and there was nortality of eges (reaching 92.2 8 in salmon) and fingerlings. Alm concluded: "the effect of logging is direcily proportional to the amount of timber floated down the rivers the duration of loggings the number of dans etce and inversely proportional to the water discharge of the Eiven system" (retranslated, cited from Kozhin, 1929a).

Prom amore other works in which a similar approach is adopted to the study and assessment of logeing, we may mention the articles of I. Fu Prgvdin (1948a; Karelia, the horth liest), G. D. Dul'keit and Yu. I. Zapekina--Dul'kejt (1965; the mountain rivers of Siberia) and the research of A. G_{0} Gusev (1953) on the rivers of Southem Karelia. These publications contain the results of original observations, on the basis of which the authors conclude that logeng is undonbtediy hamen to the fish industry.

Cbservations on rivers in the basin of Lake Onega. The salmon rivers in the basin of Lake Onega have been most intensively used for logging. This to some extent facilitated our observations which were made beginning with 1959. Investigation of the rivers showed that logging had a diverse and \therefore extremely strong effect on the reproduction of salmon, trout and whitefish. The conditions of reproduction of these fishes are worsened in all instances and sonetiries reproduction becomes completely impossible. Logging is regarded as the most economical form of the transportation of timber under our conditions, but no allowance is made in calculations of the cost of logging for the vast damage caused to the fish industry.

The effect of logsing is compounded of a combination of the following
factors: deformation of the river bed; the mechanical effect on the fish; pollution of the river bed; alteration of the water, thermal, ice and chemical
regimes; alteration of biocoenoeses ais a result of tho effect of these factors there is an alteration of tho fish faun affecting its composition and the proportions of the species. Different. species are found to react differently to alteration of the state of the river.

If an attempt is made to distinguish the chief factors among the various factors which modify the conditions of reproduction of diadromous fishes, it has to be acknowledged that the erection of dams (for loge ing purposes and for power supply) has been the decisive cause of the disruption of stocks. The construction of other Lugeing facilities and the pollution of the rivers greatly worsen the conditions of reproduction, but when there are no dams these factors alone are evidently incapable of leading to the complete destruction of stocks of diadromous fishes.

Commercial stocks of the Onega simon are now maintained exclusiveDy by the spawning grounds in the Shuya (below Jake Vagat and in the Syapsya), in the Vanda and in the Fyalma, including its tributary the Zhilaya lambitsa.
V. The Location and Nature of the Seaming and Rearing

Reaches.

The location of spawning and rearing reaches, which is conditioned by the distribution of rocks in the river basin, determines their nature and value and also, apparently, the time of the spawning migration of the salmon (see section IV of chapter 3).

The location of the spawning grounds in the basin of Lake Onega is as follows (fig. 1).

Lososinka. The most suitable reaches lie within 16 km of the mouth; for the whole of this distance pools are an insignificant proportion, less than 20% Information on the distribution of the salmon in this river has not been
proserved; it may possibly have ascended the river as far as Lake Lososinoye (23.3 km from the mouth).

Fign 1. Diagram of the location of spawning and rearing stretches in the bosin of Lake Onega. 1) Jososinka; 2) Shuya, 2a) syapsya; 2b) Malaya (Lecser) Suna; 3) Suna, 3a) Sandalka, 3b) Tivdiika; 4) Lizhma,
4a) Upper Lizhma,
4b) Elgamka
5)-Unitsa;
6) Kumsa;
7) Povenchanka;
8) Nemina,
8a) Pazha;
9) Fyal'ma,
9a) Zhilaya Tanbitsa,
9b) Tuna;
10) Tluba;
11) Vodla,
11a) Vama,
11b) Koloda;
12) Andoma, 12a)
Samina;
13) Vytegra;
14) Megra;
15) Vodlitsa.

Shurae The reaches now in use are in three places: in the Syapsye (between 124 and 102 km from the mouth of the shuya) and in the Shuya itself bejou Iave Vagat (ietweon 24 and 76 and 60 and 20 km from the mouth). Before construction of the hyroelectrje porer station at the settlement of Ignoila (130 km from the mouth) the salmon asoended to Lake Salon' 'yarvi (203 m from the routh), and its sponine grounds were in the rapids of the Kamatsana am (4 kn long) Inking this lake to Lake Suoyanvi, and below Lake Suoyarvi (between 192.7 and 130.0 km from the mouth). In the Malaya (Iesser) Suna there used to be spaming gromds in the midale reaches of the river (between $15 l^{\prime}$ and 143 km from the mouth of the Shuya).

Suna Here thene wore three groups of spawing grounds: in the Tivdika between Krivozero and Sandal, the main spawing grounde between Khizhozero and Lake Sandal ($63.7-06.7$ kin from the mouth of the Suna), in the Sndalka (between 38.2 and 26.3 km from the mouth of the Suna) and in the Suna itself below the Kivach Falls (between 30.0 and 0.1 km from the mouth) The Jower spowning ground (the Nizhka repid) was practically in the river mouth.

Itzlma. The spawning grounds are in the lower half of the Upper Hizhma (between 60.0 and 51.3 km from the nouth of the Lizhma), in the Eigama (between 63 and 57 km from the mouth of the Lizhma) and in the Lower Lizhma (from 4.3 km from the mouth to the mouth). There are two suitable rapids in the Midde Lizhma, the Srednit (Hiddle) rapid (31 km from the mouth) and the Zalomici rapid (28 km from the mouth), but their total area is slight (0.33 ha) and there is no reliable information concerning spawning. According to unverified information, the salmon enters the Syaxgeahra, which flows into Kedrozero, in which there are snall rapids (kareshki) (between 33 and 26 km from the mouth of the Lizhma).

Unitege According to replies to anestionneires, salmon are caught for a distance of approximately 40 km from the mouth, but there are also rapids higher up; the river hes not been investigated.

Kusa. The spawning grounds lie between the mouth of the Oster Kiver and the lower repid (Lakhar'evskii, or Zavockii ; between 15.3 and 2.7 km from the mouth of the Kumsa) and possibly extend for wo to 37 km from the mouth (6 rapids with a total length of 1350 m , an average width of 12 m and an area of 1.6 la), but no higher than the Bugma Falls (38 km from the mouth) since the bottom of the upper rapicis jas quite wenitablen Adult salmon and fingerlinge have been caught below the confluence of the Cster and spaming has been ooserved; there is no informetion concerning salmon catches and spaning for tio reach above the Oster.

Povenchanka. There were spaming crounds between 10 km and 0.3 km from the mouth to a total length of as much as 8 km .

Nemina. There are spaming grounds in the trjbutary, the Pazha (between 46 and 40 km from the mouth of the Nemina) and in the Nemina itself (between 22 and 8 km from the mouth). Because the salmon has never ascended to the upper reaches of the Nemina above the confluence of the Pazha (30 km from the mouth), the logging dam 0.3 km above the mouth of the Eazha does not affect reproduction.

Eyal'ma. The main spaming grounds are in the tributary, the zhilaya Tambitsa (between 30 and 22 km from the mouth of the Pyal'ma) and in the Pyal'ma itself (between 6.0 and 0.4 km from the mouth). The rapids between the mouth of the Zhilaya Tambitsa and the Krivoi rapid (between 17.9 and 7.5 km from the mouth) are unsuitable because of the bottom material. In the Tuna, a tributary of the Zhilaya Tambitsa (it enters the Tambitsa 17 km from its mouth) there are suitable rapids and shallows (kareshki) only for a distance of 4.5 km in the
lowow thind of the xiven (botween 40 and 35 km from tho mouth of the fyal ma), but theix area is very slight. According to inforretion yielded by questionnsires, the salmon sometimes enters tho Kocia, a tributary of the Tuna (it encirs the Tuna 12 km from the mouth), but nothing is known concerning its spamine tore and spawning would scarcely be possible in this streame The salmon does not ascend to the upor raches of the pral na (above the confluence of the Ghilaya fambitsa); only the trout ascends.

Tuba There are foux spoming rapids confined to the first 4.5 km from the mouth, the chief of wheh is the Velikit kanen mado between 4 , and 2.5 km from the mouth). Because the rapids above this reach are unsutable for spewning (blocks, large boulders and rocks), their area bas not been included in the resources of sravimg grounds, although the salmon occasionally ascends to Subozero (15.5 km fom the mouth) ; but this is evidently a 70 oss of direction.

Vobla The spaming grounds of the Vocila selmon are concentrated in the Vama (between 169.5 and 147 km from the mouth of the Vodia) and are now the only spaming grounds in the Vodla basin. Spewing previously took place in a tributary, the Koloda, but salmon hovenot been sean in this river since 1957 because the roloda became unsuitable for spawning owing to the corstruction of logging dams and to intensive logging. The area of rapids in the Foloda is far smallex than in the Vama. There is no information concerning the other tributaries of the Vodja to confirm that salmon regularly enter them and spawn in theme Thexe are no salmon spawing grounds in the Voda jtself, including the Sukhaya Vodla, because of the unsuitable nature of the rapids and the bottom material.

The reference work "Lakes of Karelia" (1959) lists as spawning grounds the Fadun, tho Vodla, Ust'-Koloda, Ostiov, Podporozh'e and the mouth of the Shalitsa, but this is a mistake mhese points are mentioned in the writings of $1 . \mathrm{V}$.

 (1932) cortairs the dinect statement that: "...it (the salmon, -- Yu s. S.) asceas ahove the Faum radids to swan and is cought on route to the spaming grounds at Cstrov, Ust'-Koloda and at catching weirs actually in the padun rapids:"

Andoma. The spawning grounds in the Andoma itself (Haly yanovekie rapias, beween 60 and 50 km from the mouth) have been cut off by a hydroelectric power station dam; syawning grounds remain in a tributary, the Somina.

Vytega. Before 1961 there was still a very small spaming ground below the first dam at the tow of Vytoera, but even it disappeared after reconstruction of the canal.

Lecra. The spaming grounds lie more then 12 km above the mouth; the mbation of the salimon is obstructed by the dam here; he stock is extremely small.

Voditsa. According to the deta of N. N. Fushkarev (1915), the rivex vas entered for spaving by salmon and whiterish, which passed through Lakes liegorskoe and Vodljtskoe, i.e. more than 10 km above the mouth Nothing is now known concerning these fishes and they have evidently disappeared since the river is not included among the salmon rivers protected by the "Fishing Regulations" (1960).

The spaming reaches of the rivers are characterized in table 6, in the compilation of which use was made of the data of S. A. Bersonov (1960).

The bottom material of the spawning and rearing reaches is uniform on the whole: blocks, jarge, medium and small boulders, pebbles, gravel, sand; the spawning grounds are sonctimes silted (figs. $2--4$). The areas of redds

Fig. 2. Kunsa, Berezovyi rapid. General appearance of spawning ground
(A) and example of bottom material (xuler 20 cm long) (B).

Fig. 3. Nomina, Dolgii rapid. View of a portion of the spawning ground (A) and exampe of the bottom raterial (the matchbox shows the scale) (B).

Pig. 4. Suba, Velikii kamen' rapid. Vjew of a portion of the spawning fround (A) and sample of bottom material (B).

$\text { rena } 3$	$\underset{\text { yractia, }}{\text { git }}$ ${ }^{\mathrm{m}}$	Pacyon botim, ${ }_{\text {M }}$			$\begin{gathered} \begin{array}{c} 7, y \operatorname{los}, \\ 9 /(\alpha) \\ 9 \end{array} \\ \hline \end{gathered}$	Моронв:етосте, 4 10
		$\begin{aligned} & \text { bunqane } \\ & \text { yчactia } \end{aligned}$				
/1 Mococmuma	16.0	3.05	3.66	123.0	7.7	80
' 2 Tly (1nдже Barar)	80.7	71.45	96.27	57.5	0.7	22
- Cmer	84.0	14.00	15.72	17.0	0.5	8
- Maras Cyma	17.6	2.42	4.09	23.5	1.3	10
- "Beparma Simmor	11.7	0.40	1.08	35.0	3.0	29
, Emamma . .	18.0	--	$\leqslant 1$	83,3.	4.6	4
	12.2	4.99	5.54	5.0	0.4	2
	4.3	7.41	7.61	29.5	6.9	42
- Y yrmaz	39.5	0.95	3.95	107.0	2.7	
2. Fyraca	15.3	6.61	7.45	42.5	2.8	43
\therefore ITesmua	29.7	5.30	6.35	46.3	1.5	21
,) 170 ma	10.5	0.75	2.32	51.0	3.1	31
\therefore - Іплmma	17.9	8.15	9.22	49.7	2.8	56
	12.5	2.45	2.67	54.0	4.3	48
	7.6	3.00	3.24	33.0	5.1	61
¿. Basa	23.4	52.99	58.14	47.5	2.0	34
2 ККонода	76.3	2.31	12.83	101.0	1.3	-

AM: to $\because 6$ 6e 6: 1. Table 6 2. Characteristics of the spawning reaches of La rivors 30 River 4. Length of reach, km 5 . Water discharge, $\mathrm{m}^{3} / \mathrm{sec}$ C. At stort of reach 7. At end of reach 8. Fell, m 9. Gradient, \%o 10. Lengti of rapids, \% 11. Lososinka 12. Shuya (below Lake Vagat) 13. Syapya 14. Falaya (Lesser:) Suna 15. Upper Lizhma 16. Tlgamka 170 Midale Iizhma 18. Lower Ljzhma 19. Ünitsa 20. Kunsa 21. Nemina 22. Pazha 23. Fyal'ma 24. Zhilaya Tambitsa 25. Tuba 26. Vama 27. Roloda.
are among small boulders and shingle, frequently imnediately adjacent to large boulders and blocks. In one case, in the Fazha, the bottom of the spawning rapids was strewn with flagstones of all sizes, from blocks to gravel. The spaming of salmon on flagstones, admittedly of a slightly different nature, has been described by ?. I. Frivoliney (1962) for the Narva River; there the
salmon were unable to excavate mom os. In the Pacha the bottom material is such that it is quite possible for mounds to be excavated and the accumulation of flags on the stream bed provides an excellent refuge both for the young and for adult fish (fig. 5) .

In the Upper and Lower Iizhma and in the RJgank we observed (June 23-27, 1962 and June 18,1963) that, after emerging from the nest moues, the young salmon remained above silly bottoms close into the bank in the upper layer of the water (down to 10 cm from the surface) where the water was $0.3-0.6 \mathrm{~m}$ deer and where ll white at the surface was $0.25-0.5 \mathrm{~m} / \mathrm{sec}$. In general, the prevailing flow rates in the spawning and rearing reaches are $0.3-1.0-1.5 \mathrm{~m} / \mathrm{sec}$ and the prevailing depths are $0.2 \cdots-0.8-1.2 \mathrm{~m}$, but underyearlings and parr are sometimes also found at lesser depths, as little as 10 cm in the Iruba in the sumer of 1963, a year wen there was little water. A similar distribution of young has boon boomed by G . G. Gaining (195j) in the Solatsa River.

We should pause to consider the role of lakes in the basins of the spawning rivers:and their effect on the regime and value of the spawning and rearing reaches. The quality of a spawning river is determined by the stability of the water regime, by the possibility of silting, by conditions for the existence of predators and worthless fishes and by their abundance, by feeding conditions etc.; all these factors are related to the existence of lakes in the river basin.

Seasonal and annual fluctuations of level, which are responsible for alteration in the size of the spawning and rearing areas, are the most important characteristics. In years when there is little water the water content may play a decisive role, since the freezing of the reads in the winter and the drying out of the rapids in the summer lead to the formation of weak
 of the river and in to who of lra sumace to oranage area. The water-

 -10.3%), the Jower inmm (19.4%) and the Vama (8.8%) However, in the
 rivers), owine to the inoomect use wheh is made of the dams (Kedrozenskaya and Vansaial fro the pint of vien of the interests of the fich industry.

Si. F. Fazia, Babii rapid. Example of bottom material in a spawing roma.

The extent of the effect of vater content as a factor is not the amo in rivers of diffecent size and different natural regulation. In amall rivers with a slight lake area the river bed sometimes dries out comnletely in tho roochos of rapies in years when there is little water. Not only does this Wase tho rapids unsuitable as a habitat for the young, which are obliged to.

Fib. 6. Relatjonship between the area of rapids and water content. A) the rumsa in a year of little water (1960); B) in a year of plenty of water (1062). Both photographs were taken in the finst decade of August.
rove into the mols, but it alco increases theif mortality and even leads to mass mortality (e.g. in the Digemka, according to information from questionaires). In dinectly regulatea rivers of avorage size (ryalma, Humsa) the area of rapide may be practically halved in yoars when there is little water by comparison with the aree in years when there is plenty of water (ijeg 6). In large rivers with a high ratio of leke surface to dramage aree the roduction in the area of the rapids in years when there is little water is relatively slight: probably no more then $20-25 \%$.

Amother positive result of the existence of lakes through which the river flows is that plenkton is carried out, thereby increasing the feeding capacity of the river.

Among the negative results we should include increased tuxbidity, silting and an increase in the pressure of predatocs. The spawne grounds situated below shallow lekes wich are readily subjected to wind mixing (Lake Kandasovskoe on the Shuya, the upper lakes on the Vama and to a lesser extent the spawneng grounds of the fiuba) are in an unfavorable position in relation to silting. In the period between the commencenent of salmon spawning and the freezing of the lakes autumn gales cause silting of the spawning grounds, which undoubtedly affectsthe incubation of the eggs and their survival and may subsequently make the emergence of the larvac from the nest mounds more difficult. The high turbidity in the summer hinders the young salmon in the search for food, since the fingerlings are mainly guided by sight in taking food.

The extent of the effect of enemies on young salmon is determined both by the relative abundance of predator and prey and by the hunting conditions of the predatory fishes, which are influenced by the mutual
disposition of lakes and arming grounds in the river besin, by the devolopment of aduatic vegetation and by onstruction of the river bed. The abundance of the pike is increased in aivers on wich there are many lakes through which the river flows The rise concentrate around the inflow and outflow where there are nomally beds of water plents) ind tie predator forms a berrier for snolts megretig downstrean through the lakes. In this respect the spaming grounds of the Kumsa leve a considerable advantage over those of the Lizhat (which is very similer to the Kumsa with respect to overall characteristios): the spowning grounds in the Funse are located helow the lakes and the aboudance of the pike in the river is very low owing to the lack of suitable spawning grounds for i.t. Another advantage of the Kumsa is that the location of the spewning ground in a compact group in the lower reaches of the river greatly facilitates the carryine out of impovement and conservation works and fish manegenent.

To sum up, it ley be said that of rivers which are equal in the area of the spawning grounds and in water content, the best for reproduction of the salmon are rivers in which the spaming grounds are concentrated nearer the mouth and lie considerably below the lakes through which the river flows. In this case the regulating effect of the lakes is felt, the consumption of downstrean migrants by lake predators is excluded, the feeding capacity of the river is incressed by plankton carried out of the lakes, the possibility that the spawing grounds may be silted as a result of wind mixing in the lakes is reduced and, finally, inspection and positive active intervention by man in the reproduction of the salmon is facilitated.
VI. Frincirles for the Assessment of Spawning Rivers
and Their Renroductive Value.
bhen thome is a neen to as:00s the role of any rivor in the remoduction of tho camon, difficulty will usually be encountored owine to the lack of a Eeneraly acoented criterion, es is eviclent from the extensive Iiterature or the salron lieverthelose, assessment of reoroductive capacity is of practical importance cince it is reproductive capacity which should be the guiding rancinle in tho selection of rivers fon improvement works and fish management; the retum on the cental investment is dependent on the correctness of the choice.

The generally comect rinctige of assossment of the importaxoc of the rivers in relation to size is inapolicable given their present state and the neture of theix usé Gradients and the quantity of rapids axe an indicetion of tine neture of a river, but they do not give an jdea of ite reproductive capacity, which is dopendent on the existence of suitable bottom materiais, and this canot be establishea without a detailed investigation of the river. The quality of the spowing ard growth regions, ioe their reproductive value, is dependent on a comoination of many factors whose effect cannot be quantitatively evaluated.

What is thexefore needed for a comparison of the conditions of reproduction in aiferent riverss in addition to the general considerationset out at the end of the last section, is an objective index which provides an overalil evaluation of the productivity of a unt of the spawning and growth area. The gross return of adult fish per hectare of the spawning and growth area may provide such an index.

The information on catches needed for the calculetion of this index is not always available, especially for rivers from which the salmon has long diseppeared. But even at present the statistics are a poox reflexion of the
real cotches, wion are inveriably considerably higher than those recorded. In the wase of largewscale catching of the feoding whan (as has occurred in Lake Onega) cotches in the rivers give a very apmoximate indication of the role of most of then in the total balance Tt is sometimes completely impoesible to decide to which stock the catcines should be ascribed. For example, the selmon caught in the autum around saluostrov ray belong to the stocks of the Tyal'me, Tuba, femjna, füss and possibly other rivers, whereas there is orgenjeed salmon fiching and recording of the catohes in this region orily in the Fyal'ma Sinilar doubt arises with respect to the salmon from the region of Besov Nos, which may be inhabited by the Andoma salmon in addition to the Voda salnon.

The present catches are, as a rule, a consequence of the state of the rivers, which has been altered as a result of their use mhese catches canot thexefore be used to assess the rotentielities. Hovever, an alteration of catches is not invariably due to an alteration of abundance as is shown, for example, by the Pyal'ma, where the fishing rate has been sharply reduced since 1961. It is clear thet catches alone cannot be a reliable
criterion for assessment of the importance of a river in the absence of an ictea of the alteration in the size of the stocks.

When there is moxe or less reliable information both on catches (which neflect aburdance) and on the spawning and growth area, simultaneous use of both indices will yield the best characterization of the revroductive value of the river. Then, after indices of the relative gross returm have been obtained for rivers of various nature, we shall be able to make an assessment by analogy of other rivers of a similar type for which there is no information on cationes.

The crowt rato of vonce balron in rivers of various nature may also be wed as an frdex for assessment, but its value is Iower since the consequences of differences in the populetion density of the youre may over-
 more expenaiture of labour and time to obtain satisfactory data in this case and this de sonething with is far from invariably possible.

The information on the abundance of stocks needed for assessment of the remoductive potentiality of the rivers was determined from the maximu catches. Such an armoach seems conpletely correct, since the maximm sbundanco choild approximate to some extent to the abundance which the stocks had before the conditions of reproduction in the rivers were altered. The present mean abundance was calculated at the same time.

The maximm retum per 1 ha of the summing and growth area was 20 fich or more in the voile, 25-67 in the shuyd, $35-47$ and $45-60$ in the Sune, 60--75 in the lyal'ma and, lastly, 200 fish or nore in the Lizhna; the mean return was 19 fisin/a for the Shuya and 37 for the Pyal'ma. Unfortunately, It is impossible to make a comperison with other basins, since there are no such estimetes for them.

The number of downstream migrants nay be calculated from the return of matire fish. When allowance is made for the coefficients of natural mortality in the river period, which are known for the Atlantic salmon, this yjelds the numer of porr and, finally, their population density.

According to the data of Swedish investigators (Carlin, 1955, 1964), the return of the Baltic salmon from smolts reached $15.7-17.3-37.6 \%$ and even 41.4% in some instances and was on average no less then $10-12 \%$. There is every reason to expect that the survival of the lake salmon over the feeding period will be no lower than that of the salmon in the sea. The population
density of the nom voes therefore calculated for a retum of 10%, separateIn for the mam an and mean abundance.

According to the calculations of N. Fonikirorov (1959a), the mortality of parr at an age of $1+$ and older should not exceed 16 s: year on average. mortality in earlier stages has been established by the experiments of Necriman, (1954) and west found to be 30% for the age from 0 to $1+$ and on averse (three experiments) 87% for the stages from the larva to the underyearling ot; overall mortality by the spang of the third year was 97% of the initial quantity of larvae.

These data enable us to reconstruct not only the quantity of pax, but also the initial quantity of eggs from the quantity of molts (fig. 7). since the ratio or downstream migrants $2+$ and $3+$ yeans old in our salmon is on average 67 : 33, the quantity of parr (1 and 2 years old - - 1. and 2.) needed to obtain a definite number of downstream migrants (N) should coed tho mummer of the latter by approximately 1.6 times (1.64 N); the quantity of larvae should amount to approximately 15 N and of eggs to 150 N .

The latter circumstance signifies that if mortality over the feeding period is approximately 90% of the initial quantity of downstream migrants (which is on average approximately so in the Atlantic salmon according to the results of tagging), the return of mature fish per pair of spawners will be 3-4 fish, or $1: 1.5-1: 2$ when fecundity is 5000 eggs and $6 \ldots-7$ fish, or $1: 3-1: 3.5$ when fecundity is 10000 eggs.

The mean ratio of spawners and return calculated by us from the data of V. V. Azbelev and B. I. Shuster (1955) for the Atlantic salmon of the Kola Peninsula was $1: 2.5$ (average over 14 years) for the stock of the tuloma River and $1: 2.7$ (average over 11 years) for the stock of the Kolvitsa River.

\because
Fis. 7. Survival of the salmon by stages of the river period. Snolts -... $2.0+3 \ldots=0.67 \mathrm{~N}+0.33 \mathrm{~N}=\mathrm{N} ;$ parr $-\cdots-1_{0}+1_{0}+2.2=0.79 \mathrm{~N}+0.46 \mathrm{~N}+0.39 \mathrm{~N}=1.64 \mathrm{~N} ;$
 mortality. Explanation in text. .

The fecundity of the Kola salmon lies in the range $5-10$ thousand eggs, i.e. the calculated ratios are in good agreement with those actually observed. This signifies that the mean value of 90% for mortality over the embryonic period established by N. D. Nikiforov is not overstated, since mortality in
the subsecuent stages has been exnerimentally detemined and is confirmed by the practice of the artificial rearing of voung salmon.

A quentity of parr should be separately calculated for the spring (1. $-\cdots 2_{0}$) and for the autum ($0+\cdots-2+$), and the population density should be calculeted without the smolts which leave the river in the spring. Toward the autum the number of fingerlings and their density are aproximately doubled by the arrival of underyearlings (1.47N). It may naturally be conceded thet the mortality of pars 1t and $2+$ over the summer will not exceed the mortality over the remainder of the yar, i.ee will not be more than 7% of the 15% for the whe vear. Tharefore, the number of fingerings (0) + $+(1+)+(2 t)$ in the autum will be $(0.93+0.54)+(0.79 \times 0.93+0.46 \times 0.93)+$ $+(0.3990 .93)=2.99 \mathrm{~N}$.

The maximu calculated pogulation density for the autum with a 10% return $17 \mathrm{~m}^{2}$ per 1 fingerling in the Vodia, $12 \cdots-13$ in the Shuya, 7--10 and 5.5--7.5 in the Buna, 5.5--4.5 in the Pyal'ma and 1.7 in the Lizhma; the mean density was $18 \mathrm{~m}^{2}$ cesfingerling for the Ghye and. $9 \mathrm{~m}^{2}$ for the Fyalma. The density of fingerlings observed in the Fyaj ma in jits lower rapids between 1963 and 1965 was around the mean established for this river by caiculation, aporoxintely $10 \mathrm{~m}^{2}$ per fingering, Density is far less in all the other rivers (apart from the Tuba). In the Nemina, for example, there are hundreds of square metres per fingerling; as a result of the practically complete disappearance of the stock salmon fingerlings are extrenely rare in this river. It was only in the Iubas in the Velikii kamen rapids that we were able to observe a high fingerling density, no more than $2 \mathrm{~m}^{2}$ per fingerling, in August--September 1963-1964. However, the density had decreased perceptibly in 1965, most probably because of the effects of uncontrolled removal (the catching of spamers in the autum of 1963 and 1964 and the wide-
sprod practice of catching young salmon), since due attertion was not paid to the conservation of the river.

Fublished data make it possible to compare the rivers in the basin of take Onega with other rivers with respect to the population density of fingerlines. In the Atzantic salnon spawning grounds in the upper reaches of the pechora there is on average approximately $9 \mathrm{~m}^{2}$ per fingerling in the second half of the sumer in places where the concentration of fish is greatest (Vhadimirskayas 1957).

According to the results of an investigation of 11 rivers in the province of Hew Brunswick, there are apmowimately $1.4 \mathrm{~m}^{2}$ per parr (between 04 and 2-) in Cenadian rivers (mison and Kersuili, 1964).

There is at least 1 young salmon, including underyearlings, per 1 m^{2} in the Deugava (Iishev and Rimsh, 1961). According to the observetions of A. i. listene (1962), the concentration of underyearlines and yorrlings (not counting other fishes) reached $0.74 \mathrm{~m}^{2}$ per fish in the Daugava in Beptember 1960.

This corparison indicates that the spawning and growth areas in the basin of Lake Onega are very little utilized. The cause of this is the small nurber of fish spawning, not to mention those instances in which migration to the spawning grounds is completely excluced.

This raises the question of the number of spawners per hectare which should be regarded as the optimum. It has been established from the mean abundance and from the structure of the stocks in the Shuya and the Pyal'ma that the mean density of ege laying in these rivers is 5 eggs per $1 \mathrm{~m}^{2}$. This density cannot be regarded as high, since with a wastage of $90 \% 1$ larva per $2 \mathrm{~m}^{2}$ will remain by the spring, and the density of the fingerlings ($0+-2+$) will not subsequently exceed $0.5 \mathrm{~m}^{2}$ per fish. To obtain a density of $1 \mathrm{~m}^{2}$ per
fingerling 50 eges yer $1 \mathrm{~m}^{2}$ would be needed or $200 \mathrm{~m}^{2}$ of spawing ground per pais of spawners at a fecundity of 10000 egess.

In the absence of a salmon hatchery in Lake Onega the only way of increasing the abundance of the salmon and salmon catches is to intensify the utilization of the spawing and erowth arease Technical and biotic improvement (the elimination of enemies and cometitons), which j.t is casier to camey out in medime and mall rivers, may play a large role in increasing their productivity. The ideal solution would, of course, be to combine these operations with artificial propagation, in particular with the introduction of hatchory young into growth arcas which are beconing depopulated or are woakly poplated, wich would accelerate the fomation of̈ stocks of high abundance. In relation to the stock of the Shuya, where there is overfishing, it is desirabje that in order to impoove the utilization of the areas a quota should he fired of one fish let through to every fish caught and also that protection of the river egainst uncontrollable removals should be intensified.

Ghe importance of a river to the salmon fishery and its potential value are determined at the present time not so much by its size as by the nature and intensity of its utilization. The roje of medium and small rivers in the xeproduction of salmonids is therefore increased, especially aftex logeing is discontinued in these rivers and they can becone fully available to the fish industry. It is quite possible that the improvement and cultivation of these rivers (for example, salmon monoculture) will so increase their productivity as to make it possible largely to compensate the lost part of the resources of spawning grounds.

IGEE CISGA

I. The Ife cycle of the Salmone

The life cycle of the salmon of the Onega population has some distinctive fectures Finstly, in contrast to the Ladoga salmon (Sabunaev, 195), no form similar to the hiemaj race in the Atlantic salmon has be en discovered. Also absent are the stages found in the Ladoga pophation of grilse and especially pre-grilse or post-smolt, in which return to the rivers and spoming occur at a duration of the feeding (marine) period of mosectively it and or. It ds interesting that the me-grilse stage found in rialos and described by Saunders and Honderson (1965) is not know for the rivers of Conada and the basin of the Arctic Ocean, is extremely rare in the rivers of Newfoundand (three authenticated cases in the Jittle Codroy River cited by Saunders and Fienderson, 1965) and in the Baltic (one male in the Iagan River (Sweden) cited by Carlin, (1055), but is fairly common in British rivers (Richardson, 1836; Day, 1884; Hutton, 1949; Shearer, 1963).

It has been found on the basis of long-tem observations on different stocks that the predominant duration of the river period is two years -- in 66% of fish. Downstream migrants 3 years old comprise approximately 33%, and the downstream migration takes place at 4 years old in no more than 1%. No fish have been found for which the duration of the river period is 1 year or 5 years.

The feeding period in the recruits (fish maturing for the first time which are the recruitment of the spawning stock) lasts for no less than 4 years
and no mowe then 9 and is $5-6$ years for the majority The nerentace matio of the age group varies in different stocks and in different years, as will be steted in greater detail below.

Growth in the year of the spaming rigration js erncountered very rerely and as on exception. Fish entering the fiver have a completed annual sone even if the migration is not in the spring but in the autum (pyalma). The explanation for this may be found in the behaviour of the fish. The salmon remains in the estuarine zone of the Fyalma throughout the sumer, but is unable to enter the river owing to the low level. hinen in the esturane zone it does not feed, i.e. it bohaves like a fish which has already entered the river and is keepine to a pool.

Ferales acoount for at least $2 / 3$ of the adult part of the apawing stocke The lack of Iaree meles is made good by their duan substitutes which are precent in excoo ix tio raxide during the mavang poriod.

It is mobable that dware malos are able to take part in spaning more than once. G. V. Wikol'skit (ikkolskii et al., 1947) tells of a dwaxt male $5+$ years old which had a spawning mark on the scales, i.e. which had * spawned in the previous year. However, this erosion could have been caused by an epitheliona, which is a comm occurrence for the Pechora (Vladimirskaya, 1957). We have found fish with destruction on two river zones in succession. It is iniposstible to infer for certain from this exosion that spawing had taken place in the pasit, although epithelioma is also to be found in dwarf moles. This consideration, naturally, in no way rules out the possibility that dwarf males may spown twice ox even three times (for example, successively at an age of $1+, 2+$ and $3+$).

For reasons which are unclear the post-spawning mortality of spawned salmon leaving the river is slight in comparison to that of the salmon in the
sea. Although the proportion of the carryover, i.e. fishes spawning repeatedy, is governed in the first instance by the fishing rate, it is difficult to explain a high percentage of carry-over solely by "weak" exploitation mish with 2 and 3 spaning manks and even with 5 , j.e: fish coming to spawn for the 6 th tine, have been found anong the carry-over Hovever, the carry-oves may disappear completely in the case of heary overfishing: V. B. Sabunaev (1956) also concludes on the besis of observations of the salmon of the Vuoks River (Lete Ladoga) that post-spawning mortality is very slight.

The type of population (as defined by monastyrski, 1953) is not a stable entity. Depending on the rate of removal and possibly on the conditions determining post-mpewning mortality (for example, on distinctive features of the regine of the rivers), a porulation will belong either to the second type, with a considerable promorion of camymover, on my be converted to the first type, in which the swaning stock consists almost entirely of recruits alone. The inird type is possible in pinciple, but only as a rare exception at the present time, only when fishine has been neglected for a long time, as for example in "the Kuito lakes, where the carry-over is a half of the stock and includes old fish which have spamed several times (An Fo Smirnov, 1965).

The lake salmon, which should be regarded as an adaptive relict, has very effective adaptive capabjulities. High adeptationel plasticity is characteristic for all salmonids (Gerbil'skii, 1961, 1965), but among this family it is evidently only members of the genera Salmo and Oncorhynchus which are most eurybiontic and which possess the most perfected daptational mechanisms by means of which they maintain their numbers when the conditions of reproduction worsen. If there has long been an almost universal reduction in the abundance of the salmon, what is responsible for this is not its biology, but its
oxtremely high value, which creates the desire to over-mploit all the fish, and also those fundemental and frequently irreversible changes in the state of rivers which have accompanied the settlement and industrialization of uninhabited territories with their untouched wild life.

It may be stated confidently that were the life cycle of Salmo to be simpler and were the "reserve of strength" to be lower, these fish would long ago heve disappeared as a specjes. Double bonds play a special role in "strengthening" the cycle: dwarf males winch succesefoliy replace adult fish in the spawing erounds and repeated spaming which is not found in salron of the genus Cncorhynchus. The distinctive features of the life cycle in the gents Salmo therefore ensure its species "protection jn time" (Bebshtanskii, 1967), i.e. they enable even very small poplations and stocks to exist.

The life cycle of the selmon falls naturelly into five periods wich include individual stenges of ontogeny (in a slighty different sense to thet of Vasnetsov, 1953 and Mikol'skii, 1965). The stanzas: consigty fin their tum, of staces, the study and isolation of which is far fron complete both in the salmon and in other fishes, as is evident from the literature on embryology, physiology and histology. The periods and stanzas are as follows.
I. River period, from fertilization of the egg to the downstream migrants. Stanzas:

1) embryonic,
2) larval,
3) fingerling (underyearlings, parr),

3a) "neotenic" (dwarf males),
4) downstream migrants (smolts).
II. Feeding period ($=$ stanzar 5), from the smolt to combencement of the spawning migration.

ITL. Breedine period. Stanzas:
6) migratoxy,
7) spawning. These stanzas are understood in the sense in which they are defined by A. .. Smirnov (1965), but the boundary of the period has been shifted: it is more losical to transer the post-spaming downstream migration (dounstream-migrant stana) to the following period。
IV. Recoveny period.

Stenzas:
8) gowntrean-migrant,
9) adaitional feeding, which is not identical to the feeding period, sirce the state of the orgexiom is different and the rates of fetoht increase are also different ond are vexy high in fish wich have syamed and left the river.
V. Perioo of natural montelity ($=$ stanza 10) . The old fish finally die from senility and exhaution of the oxdanism after several spawnines, either immediately in the spaming grounds or during the post-spewing downstrean migration.

Whe greatest mortality in the course of ontogeny is connected with the times of transition from one stanza to another, j.ee at vulnexable monents in the reconstruction of the organism and alteration in ecological requirements. The greatest relative mortality is noted in the course of the embryomic stanza, on transition from the larval to the fingerling stansa and from the downstream. migrant stanza to the feeding period: in the first two instances it may rach practically 90% (Mcorimmon, 1954; Nikiforov, 1959a, 1959b), and in the third 80\% (Parker, 1965).

If the life cycle of the salmon is depicted in a diagram, the "double borms", to which reference has been made, which increase the viability of tho species, are revealed with greater clarity (fig. 8)。

Resistance to comercial loading, to excessive removal, is increased in pomlations with a longer life cycle in which the spowine stocks are formed from fish of several year-classes, the number of which is greater, the longer is the cycle. Differences in the time at which the recrits reach maturity also have a moothing influence. for this reason several weak genorations in succession may still not lead to a catastrombe reduction of the population. Wherefore, consjecrable inertia is a feature of the population dynaritics of the samono Morver, this incrtie also includes a negative pronerty: increase in the abundence of the adult pert of the population when conditions bocome favourable vill be equolly slow.

Fig. 8. Diagram of the life cycle of the salmon. Roman numerals .-- periods in the life cycle; arabic numerals -- stanzas. See the text for oxplanation.

Keyed on figure: A Dearf males … first spaming B o Up to 5 times, females and males C. Second speming D. Generations.

Fhis should be borne in mind, since the life cycle in the onege selmon is apparently the longest of the cycles in the populations krown to us. Succession of generations in the Cnear population takes plece on average onty at intervale of 8-w 10 years. It is after such a period that the effect of return will be obtained it the spaning rivens are improved. However, the return will be accelerated in hatchery rearing which reduces the river period. The selection for fish breading of stocks with a shorter cycle and the selection of spamers in relation to growth rate and the rate of maturation would eppear to be a promjsing appoach which mingt significantly increase the effectiveness of artificial profagation.
II. Habitate of the Salmon.

In the river. A general description of the rivers as a habitat of the salmon has been given in the mevious chapter." Here we shall discuss the distribution and behaviour of the samon.

During the period spent in the river before spawning the adult fish remain in pools and when the weather is hot they omerge into the faster current, in the rapids. In rivers which do not have deep pools and in which the rapids are greatly shallowed in the sumner instances have been observed of spawners burying their head in beds of water plents, apparently in search of shade. The probable reason is excessive insolation (not only overheating as such), which was shown long ago to have an inhibiting effect; at all events on the young (Davis, 1946).

Fish which have spawned and which do not succeed in migrating down-
stream before the rivec freezes over probably spend the winter in pools or above the ranids, since ice jams would nake their presence in the rayids unthinkable。

The habitats of the roung alter with age. During the period spent in the river young salmon form small schools (between 10 and 3 fish) on only two occasions, i.e. after emerging from the nest mound before dispersal over the "fishing areas" and at the time of downstream migration of the smolts. At these times the young have the least chance of concealing themselves when a predator attacks. Schooling is evidently a protective adaptation in these instances, the role of which is regarded as proved for other fishes (atedakov, 1061; Iikol'skii, 1965).

On emerging from the nest mounds the foung remain during the second and third decades of June in small schoole close in to the bank in the uper leyer of the whter ($0-10 \mathrm{~cm}$) . Whe current is unitom in such places, flou rate does not exceed $0.25-0.5 \mathrm{~m} / \mathrm{sec}$, and the bottom is rrequently silted. In August vnecryearlings are solitery. Although they are to be found not far from the bonk at this time, it is now in places with a more lively current and gentle nicks. In the Tuba river underyearlings and older parr were found at the time of the sumer low water (August 1963 and 1964) at a minimum depth of 10 cm ; i.e. close to the bank. Profuse develoment of water moss was noted in the river; the fingerlings may possibly have taken refuge from the bright sun beneath the clumps of moss. According to the observations of 1:. I. Vladimirskaya (1957), fingerlings avoided remaining around vegetation.

Older parr are to be found all over the river bed, but for preference at greater depths and where the current is stronger than in the case of underyearlincs. The largest are to be found in the current where it is livelier. In places where the bottom is uneven the parr are usually to be
found on top of a stone, apparently with the abdomen resting on it. In other instances the fish lie slightiy curled to the side of a stone, completely motionless, in such a position that the current presses them against the stone. Some newly taged and released small fish also behavod in this. menner.

In places with a level botton of shingle and gravel the parr take up position appoximately in the centre of an area with a radius of approximateJy 0.5 m with a depression of the botom in the middle; it is from here that the fish makes sorties after food. If frightened, it departs almost invariably sideways and downard, but returns to its position after some time.

As has been noted by many investigators (HcGrimmon, 1954; Vladimimbaya, 1957; Gaunders and Gee, 1964), parr everywhere reveal amazing constancy of association with one place throughout the sumer. In our experinems on the Fyar'ma tabeed parx were not found more than 50 in from the point of release for a month (Scptember) after release. Young graydine of the same age are everywhere found accompanying salmon fingerlings during the sumaer.

In the fall, in late September--early October, the fingerlings leave the ravids and it is difficult to find sexually imature parx in the rapids. Only dwarf males, which have already reached stage V of maturity by around Beptember 10 (Pyalma) are found in the rapids. Dwarf males assemble in the spawning grounds before the mature fish appear.

Although the wintering localities of the young are unknown, they should be pools, since the chances of the survival of fish in the rapids would be slight during the period of ice jams. . It is possible that this migration should be regarded as a protective adaptation. There is no information concerning the behavioux of the young during wintering and the spring ice run.

After wintering, the fich cutor the opening rapids in tho second hal.f of huxil, as may be assessed irom whet hajoened when the vama dam was closed at this time; salmon fineerlings were lejt behind on the drained bed of the river. A yearline (lencth as deined by Smitt -... ac 7.1 cm weight 3.8 g) was taken by net in the Syapsya in the Perva-koski rapid on April 29, 1961. In Ampil-Way the young advance upstrean and in so doing oocupy Iocalities where spaming has not taken place thus, the rapids of the upper pext of the Vama, where spaming has become impossible owing to the regime of the dam, axe occupicd avery sprince The fingerlines may also entex small tributaries. In the Shuya they enter a stream which flows into the Yumanishki spawning repid; to judge by the cetches of "amateur" fishermen, the concentration of fingerlings in the strean is utimately very highe

Smolts and silvery parr appeer in the lower reaches of the rivers at the end of Fay, Their downtrean migralion from the rivers is apmarently complete towerd the middle of June, since we were not able to find them in the rivers after June 15. After June 20 smolts are already to be found at some considerable distance (more than 10 km) from the river mouths: as far as Khedostrov in the region of Onega around the Pyal'ma River and as far as Besov Nos in the region around the Shala River, From the middle of June smolts are taken in rine-mesh traps ("merezhi" and trap nets) set up in the spring to catch firstily the smelt and later the vendace.

The weight of smolts is usually $15--30 \mathrm{~g}$, and in rare instarces more. A smolt weighing 175 g (a female, not a dwarf male I), which had 3 complete annuli and large growih of the 4 th (3t) was caught in the Lizhma on June 10, 1964; the arrangement of the sclerites in the $3 r d$ and 4 th zones was reminiscent of that characteristic for the feeding period. The stomach and esophagus of the smolt were gorged with insect larvee and, despite this, it took the hook
 large molts aro often found in the Iizha. The existence of lekes in the basin (nemanoter lakos, hizhomero, Eedrozeros Garasmozcro), which not only incrense the feeding cancity of the river, but nay also provide a face fox the partial or prelimnary feeding of the smolts, may be mentioned as a probeble canse. In this respect attention shoula be patid to the local riew that thero is a sowato hizhomero salmon (like the Leko Selctisoe ohmon in the sfoton of the lizhma and the Tilhtozero salmon in the syoten of the Pistes both of wich are in the white Sea basin).

Such inge molts are either very rare or not found at ell in obhex rivers of fake onegan A smolt of similar size caught in the shmo in 1964 caused astonishment anong local fishemen, since downstream migrants are smeln here and are found from a weight of 11 g .

The sholts grow ravally in the lake and their weight reaches 200--500 ef and possibly more by October (1958 data).

Is downstream migration into the lake in the parr stage yossible? Downstrean migrats caucht in the lake were either comple smole or silvery parreith clearly showing transverse bends. We "did not find parr in lake catches. G. V. Pishchula (1951) gives facts of the migration of underyearlings to the sea for Latvian rivers and assumes on this basis that the Baltic calmon generally descends downstrean in the parr stage We know of only one instance in which fishermen took a pari" ("troutlet") in May 1965 around the mouth of the Pyal'ma. Fowever, this instance is in no sense evidence in support of the possibility of such downstream migration. the point is thet when the lower spaming grounds are practically in the river mouth, as in the Pyat ma, parx may move into the zone around the mouth for the winter and then return to the river in the spring, in the same way as from on ordinary
winter pool.
In the lake. The feeding salron is found throughout the lake"... with the exception of the shallovest heavily isolated beys such as syyatukh and Kelten'-6uba, the northern part of Gorckaya Bay and the noxthern vart of Unitskaya Bay, where it is found extremely rarely. Nor are there samon in . the cliff area, in the strait fomed by klimetskil Tsland and the mainland (zhorovelkaya, 19h8).

The following may be added to this genemal description of the distribution of the salmon over the lake. The salmon is in fact extrenely rare in the bays listed above A feeding sexually frature salmon (weight 2.4 kg , a.ge 3+3) with the etomach filled with bleak, was taken on June 3, 1965 in the heavily overgrom, swapy Fatguba Bay (in the northern part of Unitskaya Bay), which is a typical tream shaning fround. Tocal inhabitants state that there have been a further two cases of salmon being caught here in the past (oral commanication from Z. N. Smirnova, Karelrybvod).

There are sone distinctive foatures to the distribution of the salmon in the lake in the course of the year. As soon as the ice breaks away from the shore in the spring the salmon move from under the ice into the opening shore leads. They nemain close to the shore (within $100-\ldots-200 \mathrm{~m}$) and right at the surface, so that the head and dorsal fin show above the water. If there is a return novement of the ice, the salmon in shallow places are unable to move back into deep water because, in the opinion of fishermen, they are afraid of the nojse made by the ice. As a result fish have been pressed into the shore and have perished; this has been noted around Peschanyj. and Derevyanyi.

Although approach of the salnon to the shores in the spring has been noted in many parts of the lake, and not only in the zones around the mouths of the spawning rivers, it has only been arcund Besov Nos that this approach of the
salwon ha been used for spectal and highy succestrul fishine the salmon (both misratory and feeding) dons not usumly remain for more than 15 days ciose to the shore here and is better token from the begiming in finemesh nets (merezi) close into the shore than in those farthex out. hore than 7 centners vexe caucht in 7 days of fishing (between 24 and 31 Nay) in 1963; 5 centners of this quantity wore taken on 3 cays (kay 26-w28). In 1962 the catch was 18 centners, 12 centnens of whith were taken before kay 30 . There was preriously a cose in which 5 centners of salmon were taken in a night. Geetories which pile ur cold waton from the loke are concunve to fishing in this region. There was no fishing around Besov Nos in the sumer since selmon were marly token there.

According to the observations of Fi B , Zborovakaya (19/r8, p. C_{4}), when the water alone the shores hats to above $14^{\circ} \mathrm{C}$ the salmon move out into the orm ince Th a cold spring they reman for longer around the shores, until the beginain of June.

The feeding salmon and spawned satmon descending fxom the rivers reed at this time on spawne smelts (Veshchezerov, 1931; Zborovskaya, 1948)。 In the sumer the selmon feeds on the vendace and is therefore to be found where the vencaco is found and is taken in fine-mesh fixed netso Autumal feeding concentrations of the salmon are associsted with spaming concentrations of the vendace. There is a close correlation between the runs of theso fishes which has been noted by 1. N. Fushlarev (1914a, 1914b) and V. V. Veshchezerov (1931). Autumn concentrations of the salmon are known for the regions of Brusno, Saloostiov and Cape Petropavlovsk.

When the lake is ice-free the salmon keep to the upper layer of the water, from the surface to a depth of no more than 10 m , as has been established by the age-old practice of "garve " fishing and rod and line fiohing; "garva."
fishine was pactised until the lake froze over. In calm clear weather s:lmon may be seen sporting at the surface. The presence of the salmon in the upner leyars of the water explains why the vendace predominetes in its diet, rather then the snelt, which keens to the deeper horizons. We kow nothirg concerning the habitats of the stickleback, which has also been recorded in the diet of the feeding eatmon. Hor do we know where the salmon winter.

Although the pattern of the soales is slightly different in diferent local stocks (ciiferent percentace of occurrence of transitional zones and of epithelionatous erosion), these differences are not so Gignificant as to enoble us to infer from the scales of a salmon caugh in the lake to which river stock it belongs. Admittedly some diference which has been noted in the structure of the transitionsl zones may possibly enable us to meke a tentative juacment of the stocks to which the fish belongs, but this is still in need oi clessification Therefore, materials on the feeding salmon ungacconganied by tacging may be used only for an overall description of the feeding part of the entire population (nutrition, growth etco).
III. The Spawing Hirration and the Factors Affecting It.

It is not known how the salmon is guided in the open lake in the search for the way to the parent river. To judge by foreign research data (Fagerlund et al., 1963; Woodhead, 1963; Andersen, 1965; Sockeye salmona.. 1965), the salmon are guided in the sea by smell, by taste and even by orientation by the sun, and that in the approach to the river and in the river itself they are guided in seeking out their spawng tributary by smell and by taste.

In the zone off the river mouth where the continuation of the river
find can otili be traced, the ran of fich is dobrained by the currents. Wis he been ectabished by dyeng the wher of wivers flowing into Bristol Bay and by observing the movernent of the sockeye in the bay (Sockeye salmon... 1965). Accomine to twe obervations of vo foredemin (1964) on the beheviour of the Atlantic salmon in Fechora Bey, the rum of the walmon is foverned by the dischaxge current. Offchore winds intensity the discherge current as a result of crict and this intensifies the entry of the kthentic selmon into the river. Gonversely, "backing" winds deprive the fish of a guideine, stince the current is lost.
B. Carlin (1055) holds similer views on the effect of the current and the wind on the boheviour of the salmon in the zone off a river mouth,

Our observations on the movement or samon in Petrosavodsk Bey do not eontradict what hes been said above. On entering the bay, the salmon definitely keess to the current of the Bhuya, which hugs the southere shore on leaving Solommoe Strait (Litinskaya, 1960). Selmon traps were erected in the pest all along the southern shore of the bay. Howadays they are placed in the jnlet area on both sides of the strajt, but by far the greater part of the catch is yielded by the traps along the southem shore. The largost catches here are taken when the winds are northerly and easterly. The north wind intensifies the discharge current and increases the entry of fish into the river. The east wind apperently operates in a different way: without blocking off the current it forces it closer to the shore in the region of Peskov which is where the main traps ace installed. In addition, mixing caiuses a slight reduction of trensperency which nakes the traps lees noticeable. A south wind is a backing wind, and a vest wind shifts the current away from the shore, i.e. away from the traps.

In general the wind has a strong influence on the behaviour of samon
in the aroas off river mouths. However, this effect is exerted manly on daily catches (occasionally on catches over 10-day periods) and aoes not alter the eeneral picture of the spewning run $-\cdots$ the number and time of the peaks.

Thore is a very well manfested correlation between the run of the saimon and water content. The most intensive ascent of fish into the rivers occurs during floods (aming and autum); the ascent decreases as water dischares aro reducen and ceases entirely in small and nediun-sized mivers during the low-water period the run mag be renoved in such rivers in the sumer when level rises after rain (Pyal ma and Kumsa) or when there is abrupt discharge from reservoirs (Lizha), when samon from the zone around the river mouth ruch into the strean. In Kondopoga Bay sainon entered on stream flowing from a pows station, the strength of winh was 10 tines greater than the current in the old river bed. Owing to the oxtremely low levels in the sumer
 Rivers (cam and bey-moutin bar) were insurmountable to the salron.

The cecisive effect of the vater content of rivers on the time of the spaming run and on the quantity of spawners entering the rivers is referred to by A. in. Derzhavin (1922, 1953), I. Krussel' (1962) and A. I. Sherstyuk (1958). The conexion between the run and water temperature has been inadequately investigateá, K. B. Zhorovskaya (1935) noted three periods of mass mun with successively lovering intensity in the Shuya salmon. The first run, which is the largest, coincides with a mean water temporature of $7^{\circ} \mathrm{C}$, the miadle mun occurs when temperature is $10--12^{\circ} \mathrm{C}$ and the thisd and smallest run occurs when temperature is $14^{\circ} \mathrm{C}$. "Within each of these periods the run of the salmon is reduced when there is a temporary rise in water temperature".

On the other hand, P.I. Hovikov (1947), wo studied the run of the summer and autum athantic balmon in the Ken' River, concludes that "no relationship is to be observed between the intensity of the run and water temperature".

Our materials do not at mesent suffice for final concluaions. It would apparently mot be mistaken to sugcost that water tomperature within the nomal temperature range plays a lesser role than water content and the wind.

The rote of advance of the balron uptream jn different rivers is apparently differont and is dependent on many factors (on tho ramotenose of the spaming fromas; on the total fall and gradients, on water content, on the existence of logeng etce). Because there have not been any direct exneriments involving tagsing, the mean rate of advance may be assessed from the time of appearance of the salmon in different reaches of the rivexs.

The Voola selmon reaches the Upper Vame (170 km from the mouth of the Voda towerd the nidde of fuly, ines in $2-m .5$ months. In this case the mean rate of ascent $i s 2-3 \mathrm{~km}$ a day with a rise of emproximately 1.5 m .

The Pyal'ma samon appore in the andiay mambitas in the recion of the settlement (30 kn from the mouth of the Pyal'ma) approximately between the 15th and the 20th of May or $10-15$ days after comencement of the man from the lake Here also the mean rate of ascent is $2-3 \mathrm{~km}$ per day, but the rise is -7--10m.

According to tageing data (Thkhji, 1931c), the mean rate of ascent in the Svir' was $1-4 \mathrm{~km}$ per day and the maximum rate was 8.5 km per day (one instance). In the lower reaches of the Kem', also according to tacering data (Novikov, 1950), the mean rate was approximately 2.5 km wer dey; similar resulto were yielded by tagging and by observation of the behaviour of the fish in different reaches of the river (as in our example with the Vodla and the pyal'ma). In the Iower reaches of the Vyg (Gorskii, 1935) the salmon advanced $3-6$ km per day, and in the Mezen' (Deniz'chenko, 1935) it advanced 14-w-19 km pex day No more rapid advance has been recorded.

IV. Tyoos of Snaming fimrations of the Iake Onega Selmon.

the study of sowning migrations has a direct bearing on consideration of the question of localization There are stable differences in the time of the spaning rum of the Lake Onega salmon entering the different rivers (figs. O-niz). This is not connected with menbership of different biological groups, as in the salmon from the sea, in which there i.s a hiemal form and a grilse ("tinda")

The information to be found in the literature conceming the time and gattem of the spaming run of the Lake Cnega salmon is far from plentifui. The material assembled by Ko B. Zbonovskaya $(1935,1948)$ contains a table which incluces half the salmon rivers (eight), but in which the periodswen the run is intensiried are not distinguished.

On the basis of $\mathrm{F} . \mathrm{Be}$ zborovskayats tabie, i: Io Novikov (1957) compiled his om table which, in his own words, contajned "some clariftations". However, the new table contains a number of mistakes not to be found in the originel table: 1) the tine of the mass run for Petrozavodsk Bay and the mouth of the Shala is given as "September and the first half of October" which does not correspond to reality; 2) there is no mention of the autum run in the Fyal'ma, which was known long ago by N. Ya. Ozeretskovskii (1312); 3) the time of the mass run for the region of the Vama dam, as for the mouth of the Shala, is indicated as "September and the first half of October". In fact the salmon appears in the upper part of the Vama from the middle of July and does not advance any further, but remains to spawn where it is. Moreover, it is physically incapable of covering the distance of 170 km from the mouth to the headwaters in the time stated by P. I. Novikov.

Pak. If. Jharnchanocte doga mocoes
 ; с сеsou в P . Badit.

$$
\jmath-1027 \text { r.; } 2 . . .1 n^{2}: r
$$

Fife 9. Intensity of the salmon rum by 5-day nerious as boroentages of the catch over the besson in tho Vocha Rivor.

1 .-.. 1927, 2 -..- 1964.

Pac. 10. ltamenent. मoeтs, xoma rococse mo меслидм $\frac{0}{0}$ от yanoba an ceath n p. Buzas.〕--- 102; r.; ? -- 1030 r .

Fig. 10. Intensity of the saimon run by monthe as nercentages of the catch over the season in the Vodia liiver. $1--1927, \quad 2--1930$.

There follows an acount of all that is known conceming the time of the run from published data and from our own observations.

Lososinka. It is stated in the chronicle of Andrej. Likhacher (1563; cited by M. N. Pravdin, 1915) that salmon and trout are caught throughout the summer in the river ("..."v Lososinnitse lososi i torps vo vise leto")。 It may apparently be considered that this reference to some extent chaxacterizes the time of entry into the river, since in those far-off times the bulk of the catch in rivers was taken with racks of traps installed near the mouth. There is no later information concerning the Lososinka; salinon have long disappeared from it.

Sluya in excollent description of the run wes given by M. B. Zoorovekaya (1935): mpree reriods of ness run are annolly observed in the migrations of the samon into Petrozavocak Bay and into the Shuya River. These periods do not coincide in time in diffecent years, but are revertheless close The first period of the lergest run of the salmon lasts from May 15--20 to June 5-10. The second wise in the intensity of the run is noted from June $10-\ldots 15$ to June $25-\cdots-3155$.

The third ascent takes plece between June 30 and July 10. Single salmon are catight in the autumn."

Cur observations of the Shuya salmon were made in years which differed mancaly in the size of the sun, in wator contert and in temperature conditions. It is noteworthy that the rottern of the run remains constant on the whole, as cescribed by \because. B. Xborovskaya. It was only in 1964 that the run began ton ioys laten then usury and inst the decline in its intensity in July yas not as shaxp as in mevious rears (figo 12); the cause of this is not clear at prosent.

Suna. A descrintion of the salmon run when the Suna was in its natural state before its regulation was given by N. I. Kozhin (1927a, po 227): Whe first mun of the salmon begins imediatciy after the passage of the j.ce, while the weter is still high (in the condition known locally as "scouring" watex). According to statements by fishermen, it is small salmon weighjug 3 to 5 lbse winch axrive at this time. These salnon, wich are known as "Lake Sandal" salmon are distinguished by lighter colouring. The second run occurs at the beginning and in the middle of June by the new calendar. ${ }^{1}$

[^1]on sources before 1918 .

This run cojncides with the spawing of the bleak (known locally as the "salaga"). It is larcer salmon with danker colouring; known locally as the "Suna samon" wich rum at this time mhis run also lasts for 2 - -3 veeks; "Jake Sandaj salmon" are taken together with "Suna salmon". The "Lake Sandal salmon" is no jonger to be found in the subsequent runs. The salmon rum subsequentiy continues interaittently for the whole of the cumer. Whe run begins to intensify at the begiming of September by the nev colenday and the third and wost considerable run takes place between the midale of September and October 15. The selmon in this run are already sparting salmon, since sodmirg is observed eround October 10-15 by the now calendar, or to be more procise selwon with ripe egss are caucht. Salmon ascend the Suna fiver to the Kivach Palls, wich thoy cennot surmount, and they proviousjy cntored the Stridalka River in Large numbers (before 1926)."

Therefore, there were three intonsity peaks to the run in the Suna, as in the shuya; the only difforence is that the third run in the cuna occurred considerably later, when the run had already ended in the Simya.
B. B. Eborovkaya cited observations made when the Sune had aleady been regulated. She wites (1948): "In the greater part of the rivers (of Lake Cnega -- Yu. So) the main run is observed in the spring, in the month of Nay. It is orly in the Suna and lizhma Rivers that salmon are caught jn the river mouths only in the autum, at the and of September and in the beginning of October. In these rivers the salmon does not ascend far upstream to spawr." According to the data of the Suna fishing station for the period from 1959 to 1962, the migratory saimon arrived between August, 20 and October 15, mainly at
the end of hugust ard the begiming of Eeptember.

Puc. 11. NGom zocora n w: Hazb-
 (110: Зооровскил, 1948).
1- у yctse Bozan; z-y Lecona Hoca; 3-y Myponchoro mora.

Fig. 11. Salmon catch in centners in the Shala fishing area in 1972 (taken from hatovbikaja, 19tis).

1 … In the routh of the Voda; 2 -... around Besov lios; 3 -- around Cape liurom.

Fig. 12. Intensity of the salmon run as percentages of the catch over the season in the Shuya River (mean long-term data).

Fig. 13. lntensity of the salmon run as percentages of the catch over the 1963 season jin the Fyalt na. River。

Information from questionnates filled in by old inheatentes who were fishereen confirms the statement of N. I. Kozhin concerning the omine sumer run wich previously took place. Te the spring "Lake Sandall salmon An fact entered the Sondalka and the Thvdika (that this was so is reported by K. F. Kesslex (1868) and F. F. Domachev (1929)), its disappearance after Gydraulic engineering works have been carried out. is understandable since it did not reach these spaving grounds.

Therefore, the pattern of the spaming rum was initially simplified
(the number of peaks in the run was reduced), and subsequently around 1962 the Suna stock finally disappeared.

Limha. The salmon now enters this river from June through October; the main run occurs in August and the beginning of September and is strongly affected by the operational regime of the Kedrozero darn. When the dam is closed the salmon hardy enters the river at all but remains in the zone around the mouth. When there is a sharp discharge of water from the reservoix the salmon rushes into the streane For this reason it is impossible to give a precise
indication of the time when the run is at its peak.
Old inhebitants state that thore vas in the past an even earlier run in May in which the salmon had already reached the dam in the upper part of the Elgamka at the end of May. However, these upper spaming grounds in the Elgamke and the Upper Iimma have long been practically inaccessible oving to the obstacles produced by logging (dams and oustructions) Spaving now takes place only in the reech below the Kedrozero dam; the path to the spawning grounds has therefore been shortened from $50-60 \mathrm{~km}$ to 4 km i. ee to $1 / 12 \cdots 1 / 15$.

Unitsa Amateur fishemen caught several iish 5--6 km from the mouth in September 1963 and several more in Novenber 1962, but approximately 40 km from the mouth The time of the min canot be assessed from these data and there is no information in the literature.

Eumber Accorinie to observations made by a inseries inspoctor, He Fevlov, oren several years, the main run of the salmon ocurs between the second half of July and the begiming of September. There are no published data and no fisheries records.

Povenchanka. H. N. Fushrarev (1900a) has the following to state concerning this river: "Sven now the salmon enters the Fovenchank occasionally, begiming in July (by the old calendar, - Yue So)", and he continues: "Up to 15 salmon are caught in the course of the summer...at the dam neax the sawnill (in the river mouth -... Yu. S.)." As in the neighbouring Kumsa, the mun was evidently not early here.

Nemina. A number of authors give original information on the spawing run of the selmon in this river. N. Ya. Danilevskii (1875): "... the run of the pikewperch...to the ond of June to Feter's Day. At this time the salmon and the taimen enter the bay (Cholmazhskaya Bay -- Yu. So. , and subsequently the Nemena kiver. The run of these fishes continues until.
the autuma.o.". In Di. Zverintsev (1899): "Phair basjs (the bacir of the
 the salmon...". N. N. Pushkarev (1900a): "The salmonoois also caught in Cholmuzhskaya Bay in the autum, and in the Nemina River and in frort of the Cholmakskij Strait in considerable quantity in the springe" V. V. Pokrovskii. (1936): "The mun of the samon into Cholmuzhskaya Bey also ocure in the spring: the man begins between the first and the 15 th of fay, is greatest betwen Nay 15 and June 1 , and ends in September. From Cholmughkaya Bay the salmon ascends the Nemena River.on".

According to replies to questionaires obtained when the river was inspected in 196t, salmon are caught at the begiming of June and in Bepterber in the region of the upper spowning grounds in the tributary, the Fazha. Mo noverent of salron was noted in the sumen; only those fish which had rematned in the pools since tho sming vere caugh.

It may be concluded from the foregoing information that there are two peaks, a sorires and an autumn peak, in the run or the salrion into the Nemira, and that the spring peak is the mein onc.

Pyalrae Io Ya, Omeretskoveki (1812) roports the xun in the spring and atum: "in fence has ben orected jn the Pyalra River at which many witefish, salmon and "toryr"* are taken in the spring and autumn...". For some reason, none of the other authors who refer in their uritings to tho Fyalma salmon say anything about an autum run. It is stäled in the reference work "The Lakes of harelia" (1959) that the run ends in July. Nevertheless, an autum run exists and is well know to the entire local population and not only to professional fishermen.

Karelrybvod maintained an observation point and control nets across the river bed on the Fyal'ma from 1958 though 1964 with interruptions.

[^2]soccrdine to the oboervetions in 1963 and 1564 , the autum run, wich coincides vith a rise of level, begins fron the end of figust and ends by September 20; the bulk of the sainon run betwoen September 14 and 18 . In 1963 more than 100 salmon accumated belon the contarol nets across the river bed on September is and 16. The autum run was weaker in 1964, possibly owing to the absence of on autum flood and the extrenely low levcl of the water, wich was more characteristic of the sumer low weter in a dry year with little water in the river.

Whe spring um lests from the beginning of lay (inmodiately after the ice rmi to the midile of June; the peak is between rey 20 and June 5 and the run js larger than the auturn rune rhe ascent of the river by the salmon coases entirely at tines betwen the soxing and autum runs, but may be renewed after rain as a result of the rise of level. the first salnon of the spring run ameng in the tributwy, the thinga mabitsa, in the region of the sethenent aromd Kay 15-20, Whe patern and time of the run in the Pyat maxe therefore very sinilar to the pattern and time in the Nemina (fige 13).

Tuba. Mhore is no published informatione Before 1964 the salmon was able to ascend the river only in the spring, during the flond. The dam dries up during the low-water period and the auturn rise of level is insufficient to permit of the passage of the salmon, which remains below the dam (observations in 1963 and 1964). A passage which was cut through the dam in the autum of 1964 will facilitate the passage into the river both of the salmon and of undesirable fishes.

Vodia. Several authors give information concerning the time of the run. N. Ya. Danilevskii (1875): Wrhe pike and the salmon begin to ascend from the end or from halfwey through April (old-style calendar -- Yu. So), depending on the year. The salmon run continues throughout the sumner...". N. N.
 hay through fuy"; "eoothe giret selmon amear" in the Vodat in "Nikol'skaya" week, i.e. between hay 1 and 6"; "Both around Fodworozh'e and below, right to the mouth of the Vocla river, there are throe periods of fishing: the spring salmon catch, the attum whitefish catch and the wintex burbot catch." Trap nets were usualy wed for fishing at Podporozh'e from the end of Aprit until the end of hay and salmon were taken in them with other fiohes; it was mainly whitefish and a few edmon winch vere taken in the sumber and only whitefish and bubot in the altum. Fo Vogashey (1931): Whe salmon run in the Vodia. . begins at the time when the river opens or a few days before it...tio V. V. Pokrovisit and is. \mathfrak{P}. Simimov (1932): "It (the satmon -... Yu. Sn) begins to ascend the Vodla River in the spring, frequently before the lake and the lover reaches of the river are free of ice. The run continues throughout hay and hallf of June, after when the sulwon is no loreer teken in the river and only isolated specimens are taken in Shala Bay, There is no autumn rum of the samon hereand. H 。B. Zborovskaya (1935) gives the following times for the mun: start May 1-..-15, mass run May 15-20, end of x un June $1 \cdots-15$. Accoxding to A. A. Zabolotelki. (1936) the peak level on catches in 1932. was between May 20 and 30 . Our obscrvations are in full agrement with the conclusions of pio. Ziborovskaya. The spawing run ends in June, around the middle of tho month, at the section in the mouth of the river. In this respect it is very similar to the first peak of the run in the Shuya. In the following months, down to Septenber, only feeding salmon are caught along the Shala shore, where they are to be found in general from the spring, from the time of approach of the smelt (see figs. $)^{-11}$ based on the materials of $\mathrm{m} . \mathrm{A}$. Veselov (1932) and M. B. Zhorovskaya (1948)).

Andona. Original information is given only by V. V. Veshchezerov
(1931); othon buthors repent lim. Voblowonov notos that there are three salnon ruas to the region of the shore arome the ancom, in the suring, the sumer and the autumn the firct of these is a spaming run (entry into the river), while the other two aro asumed to be feecing migrations. The first run takes place from halmay though hoy, and entry into the river is particularly intensive in the finst 7-10 days. In 1509 the run was recorded frorn lay 29 and lasted 5-.. 8 days. Fishing used to last for $15-30$ davs in the spring and autum during the poriod of the run. The second run is at the beginning of fune -- "It mast be assumed that thas migration is of the neture of a feeding miscation, but it is possible tint some rronortion of the salmon nove directly into the river". "mhe thind run of the samon, wich is also of the nature of a feeding migration, tales place in the atum during the migration of the venciace. st the present time, in connexion with the heaver robotion (since 1926) An the sraval of the ventuce to spaw around Cape fetroraviovsi and the shores adjacent to $i t$, the autum run of the salmon has also disappared."

There have not been any subsequent observetions of the Andoma salnon. The data obtained from the control nets set up acrose the river bed by Sevaprybvod (Leningrad) heve not completely clarified the pattern of the run. Accoraing to replies to questiomaires, there is an atumn run in September, Which is not clearly stated by Veshchegerov, and in the autumn the salmon also enters the tributary, the Samina. Nothing reliable is known concerning the sumer run.

Vyterra. V. V. Veshchezerov (1931): "...between 50 and 70 iish were caught...around the town of Vytegra.o.oin the spring of 1924...". There is no other information.

Nemra. Control nets were stretched across the river bed 3 km from the mouth by Sevzaprybvod between hay 13 and September 25 1964. Salmon and
irout arrived simely botmen ay wnd July f the rein mun was in fonst and the
 aporoxinately 7 times as many lase trout as selmon in the catch (obeervations of Io I。 Rezhev).

Voditge There is no informetion concerning tho time of the run.
Combrison of the time and rattem of the selmon mur in the diffecent rivers in the basin of lake Cnega reveals considerable similarity in sone instances. The following three tyoes of somming man may be distirguished on this besis (figs. 14,55):

1) Egring run with one peak (Voda);
2) soning-autumn run with two peaks (Fvalime Fomina);
3) Spring-adum run with three peaks (the Shuya and, in the post, the Suna);
4) protracted summer-autum rum (Kumsa).

Becanse there is at mesent no rejiable infometion you tho other rivers it is premature to accord then to any of the types, although provisional juabrants may be expressed.

The intensity or density of the run is connected with the type and is dependent on the number of peaks into which the entire run is subdivided. The density of the run is greatest in the Vodia, iolloved by the Fyalma, where the peaks are sharply expressed, and then by the Shuya, which has gentler peakse Thus, almost as many salmon vere caught in five days in the Vodla in May 1927 (between Nay 27 and 31) as in the wole of the following June (acconding to the materials of \mathfrak{F}. A. Veselov, 1932).

The pattern of the run is related to (or coincides with ?) the location of the spawing grounds in all the rivers for which there axe relidable data. This correlation is expressed in the agreementrbetwoen the number of peaks of the mon and the number of groups of spaning grounds and in a less
exrressed comelation between the tine of the run and the remotoness of the spaming Ercunds. It may therefore be sugcoced that the location of the spewning erounds is the cause of the difforence in the types of run in the different rivers.

In fact, the spaming grounds of the Voda selmon are concertrated in the Vodla between 170 and 147 km from the mouth Mo such arrangement exists in the other rivers and it is only in the vodla that there is a short, dense spring run (first type).

Tn the fyalla the main spawing grounds lie in two groups, in the tributary, the ghilaya Tamitsa (between 30 and 22 km from the mouth of the Pyalma) and in the Jover reaches of the Pral'ma itself (between 6.0 and 0.4 km from the mouth). Even here, however, descite the short migratory path, two peaks are clearly expressed in the run. It has been notod that the salmon of the spring run mainly occury the umer spatinins erounds, in the Zhilaya Qambitsa, and that a fev of then even ascend the Tuna, a tributary of the lambitsa, as far as the Koda (up to 50 km from the mouth of the Pyalma)。

Salmon of the autumn run, in which the males frequently enter the river with runny milt, do not succeed in ascending far up the river and utilize the lower spawing grounds, beginning 400 m from the routho

The arrangement of spaving grounds in the Nemina is similax to their arrangement in the Pyalma and there are correspondingly two peaks of the run -- in the spring and in the autum.

There used to be three groups of spewning grounds in the Suna (see the section on the location of swaming and growth areas) and three peaks to the run; the salmon of the first rum were definjitely connected with the most remote spaming grounds and were known as the "Lake Sencall" salmon (Kounin, 1927a; see above). The salmon of the last rum, which entered the river with

 $\because \because$ remine mounds.
1... Mala; $2 a-$ Nemina; 2b-... Pyalma; 3--Shuya; 4-… Kumad

Fis. 15. The type of spaming migation of the salmon and the location of the smaning grounds.
1... Lizhma; 2 -.. Suna.... Seefie. 14 for the key.
ruming sexal moducts, samed in the lowest ranids.
Thene are three main erouns of snowning grounds in the Ghuya and also three peaks to the run anually expressed with great constancy

In the Kumsa the spawing Erounds are eswontially locatod in one group covering 13 km of the lover reach of the rivex and there is hele a protwacted sumenautum run in which no sharp meaks are noted.

It is highly curious that the elimination of grouns of spaming Eromeds (the uner spawneg grounds in the liizhma and the Sune) Jeads to a simalitication of the pattern of the runt the suring run ceased in the Lizhma and the spring and summer runs in the Sune (before the stock disappeered competely).

Aften the hydroelectric power station at IEnoila had out off the smal upoer sooming grounds in the shuya, the samm ceesed ascending to the uner reach of the river (above Lake Vagat), vith only isoleted irctances of wandering,

All this suggesis that there may possibly be "small-scole Jocaltzetion", ioe that within the stock of an individual river there may be smalior grouningis associated with definite spawing groundse Admjttediy, it wold be risky to assert a priori thet, for instance, "the selnon of the second peak is fixmly related to the second group of spawning grounds", but such a possibility must be conceded, esfecially because there are similor examples for other basins. Thus, the sockeye stock in the Bystraya River (Kamchatha) consists of four "substocks" which differ in spaming localities and in the time of the run; instances of wandering are exceptional. The independence of these substocks, which hed previously been established on the basis of ordinary ichthyological analyses, has been confirmed by serological analysis (4aks and Sokolova, 1961).
mis meotion is of grot simesicance and there jo no nood to demonsurte its toriculity be kon wat madticul benofits have been derived from the stuay of intramecios biologicall grouns in the Acinsnseridao (the wod of the laboratory of an Gorbin'skii).

Fhe fins step torards elucidation of this important and extrenely interestinc guestion should be a broady conceived and execated tassing of salmon of different reaks of the run and young selnon in different spawring and growth areas, and also the use of sensitive biological methous (irmuologioal, biochemicel etc..).
> I. Sloration in the Structure of the Stook durinc the Rum of the Eamon.

Althouch alteration in the structure of a stock durjing the run may be an indication of its hetcrogeneity, contancy of structure is not, on the other hend, a reliable indication to the contraxy.

No significant differences in the structure of the population during the run were discovored in the Ghuya from materials for the period 1959-1965. There were slight fluctuations in the nean weight of the fish without any definite trend; H. B. Zborovskaya (1948) reached the same conclusion. The apperent reduction in the number of large fish (and in the proportion of carry-over) in August is due solely to the fact that few fish are taken at this time and that the fishermen keep the best for thenselves.

In the suna, according to the data of H. I. Kozhin (192fa), salmon from different peaks of the run differed significarity in size and colouration (see the previous section); the spring salmon was the smallest at $3-5$ lbs. The possibility of establishing the cause has been lost now that the Guna stock has disappeared; tinere are no old records.

Leroor Gelmon ontor the fral'ma in the autwm then in the smine
 (table 7). This is dae to the fact that the carrymover constitates a greater rroponton in the autum (un to 40 of the muber of mieronts as arainst $20-30 \%$ in the sumes and that there are moxe laree old feneles (athough theee are smallem than coeval nales); in the antum run females acomot for up to 6 - 66 as acanst 67% in the spange rine men weight of reoruts in practically tha same in the siring and the autum, 4.3 man 6 kg; their age composition and mean age (? 3 years) are absolutely the same.

Key to fable 7: 1. Pable 7 2e Veight of salmon entering the Pyalma in the soring and autum 3. Season 4 . Weight, kg 5. Number of fish 6. Weight range, kg 7. Nean weight, kg 8. Spring 9. Autumo

For the region around the mouth of the Vodla N. N. Fushkarev (1000a) and the B. Zborovehaya (1948) note a strong reduction of mean weight between the start of the run and July; according to Pushkarev as much as $5 m-7$ lbs. This
is due solely to the fact that after the migrating salmon enter the river only emall sexually immature salmon remain along the shore around Shala and are cautht there till september.

The same cause was responsible for the reduction noted by V. V. Veshchezerov (9931) in the mean weight of the salmon in the Andoma regjon from $3-\cdots$ ㅇE in tay to $1.8-2.5 \mathrm{~kg}$ in June; in the summer the bulk of the salmon weighed between 0.55 and 2.5 kg (Tikhii, 1931a, the table on p . 11), i.e. were bbyously sexually imature, since the minimum weight of adult fish caught in the spewning grounds i.s 3 kg , according to the data of Veshchezerov (females $\overline{3}=6 \mathrm{~kg}, \operatorname{man} 5 \operatorname{leg}$) 。

In the Vuoksa the mean weight of adult fish increases in the course of the rin from Aprin through October by $2-2.5$ times as a result of reduction in the proportion of grilse (Sabunaev, 1956). It is impossible to use this material on the lerge añount of material on salmon of different popalations from the sea for purboses of comparison because of the significantifferences in biology (erize, hiemal form).

Wis Smentientre of Spawning and Behaviour of The Salmon.

Published information on the time of spawning is extremely sparse and fragmentary becalise no special observations have been made.
K. T. Kessler (1868): "...it does not begin spawning until the late autumn atter the festival of "Pokrov"...The salmon also spawns earlier in the Povenchanka, "already in the month of September." N. I. Kozhin (1929a): "Spawning of the salmon began in the mouth of the Suna Piver on October 25" (in 1927 --. Vu. S.). "v. V: Veshchezerov (1931): "The spaming period lasts up to 20 days, from aproximately September 25--27 to October 14" (in the Andoma -.Yu. S.). V. V. Foknovskii and A. F. Snirnov (1932): "Spawning of the salmon

Was noted for the Sma in the first hare of Cotober. It is interesting to note that salmon hey in the nutum of nox in the live cortanom of the Ust --Suna hatchery of the Karel ior Fish Breading Research Bitation (hiTRS) did not yield eges until Yovemer $16-13$, i.e their sumang was doleyed for a woje month. nhe line of the Sioh in cantivity anorently had a retarding infuence on meturation os the semal zroducts in this casc." B. So Jukash (1939): "Speming is noted in the second half of Cotoker and in the begiming of November at a derth of apmoximtely 1 monot(in the Vama -- Yu, So). H. Bo Zborovskaya (1943): "Spanirg of the samon is usually observed in October and the beginning of foverber. Thus, in the Suna River in 1927 goming took place under natural conditions fron Cotober 21 and was at fis height on October 25, which was, accoring to the observations of fishermen, clighty leter than in other years, since spaming begins, deverding on weather conditions, either before October 14 or fron Cctover 20.

The time of spaming of the almon in different years wee as follows: the salmon began to spam on October 15 in the Suna in 1031 ; in the niidde of October in the Iizhna River in 1932; on October 20 in the Shuya Eiver in 1933; on October 15 in the Shuya River in 1936; on October 13 in the Shuyo. River in 1946.

Our observations in the spawing grounds contribute lattle that is new to clarification of the time of spaming. The rate at wich the wator in the river cools is dependent on the existence of lakes in the river and theix position where cooling proceeds more rapidly spawing begine slightly earlier: end of September-meginning of October in the pyal'ma and the Tuba, middle--end of October in the Vana and the Shuya. Attention was first dxawn to this by K. F. Keseler (1368) in relation to the Fovenchanka. In Encland spaming occurs eawher in the northern rivers than in the southern rivors
(Minaies, 1021).
ie have the follorine ooservetions in our possession. fdult aad dwarf males with ruming milt were found in the fralma and the Tube in 1054 from sectemer 0 ; adult males were caught in the lake, approximately 1 km from the mouth of the Fyalma. Femeles were still in stage IV of maturity at this tine, Spaming occurred after Beptenver 20. In 1965 dwarf males in stage V oi: naturity were found in the fyal'men from Septerber 13. Salmon were seen sportine in the lower spaming ground of the Pyal'ma on September 30. A large redd was found in the ruba on the following day at the lower end of the Velikij. Kamen rapid. There were some ten dwarf nales in stage V of maturity around this reda (eight were caught); there were no traces of adult salnon which had in all mobabinity'ben caught by "amateur" fichermen, traces of wose activity coula'be seen both in the river and along the banks.
nedus nere found in the Syapoya on lovember $1-2,1960$ in the fervakoskj and Kover-porog rapids, but it is possible that the salmon had spawned previousiy, but that the comencement had not been noticed. Redds were noted on October 18 of the same autum in the Lower Lizhma, but, spawning was still not complete since the salmon remaned around the redds in pairs nine ways later there were no females in the spowing grounds and only males remained around the redis.

In the Vama in 1963 spaming was complete by November 1, only males remained around the redds in the rapids, while the females had already left the spawning grounds' (only one fernale which had laid its eggs was found).

Salmon were kept in containers at the Suna hatchery from the third decade of August untill the middle of September. Fggs were obtained on October 18-.-19 in 1959, on October 18 and 27 and November 1 in 1960, on October 13, 17, 20, 23 and 27 in 1961 and on October 22 in 1962. We do not know to what
extent the maturation of salmon in captivity lags behind natural maturation. Redoes may be located in different parts of a rapid (shallow), including its upper and lover ends. Spawner usually takes place at a depth of down to 1.5 m , but a redd was found in the Vara at a depth of approximately 2 m . According to replies to questionnaires, spawning formerly took place in the Sung in the Vidansk rapid at a depth of 2 m and even deeper. Such a depth seems very unusual and slightly too great. However, M. I. Vledimirskaya (1957) notes that there were redis in the Pechora at a depth of down 102 m , and V. B. Sabunaev (1956) even says that the maximum depth for the Vuoksa is 4 m (!). However, the majority of the fish evidently excavate their redis in the depth range $0.5-1.2 \mathrm{~m}$, as may be assessed from our not-verymextensive observations in the rivers. The reaction of the fish to an alteration of water level when summing has already begun is of interest in this respect. At the time when spawning began in the Nama (1963) level in the river was high owing to discharge from the reservoir and the salmon therefore began to excavate their reds practically along the bank. However, the discharge of water proceeded rapidly, so that the salmon were unable to finish spawning and were obliged to move to the middle of the river bed. There were rows of incomplete, essentially trial redis along both banks, which were found to be at too shallow a depth as the level fell and were therefore abandoned. Finally, the salmon moved $5-10 \mathrm{~m}$ away from the first feds and spawned at a depth of between $0.5-0.7 \mathrm{~m}$ and the very middle of the bed at down to $1.5-2.0 \mathrm{~m}$. Such behaviour of the salmon has been observed in the spawning grounds of the Vuoksa by V. B. Sabunaev.

If the reservoir is discharged after spawning has finished, as is more Often the case in the Vara, the reds along the banks dry out; this has been the case since the first years after construction of the dam (Lukash, 1939).

A large number of trial redds may be a result not only of an alteration of level, but also of unsuitable or contaminated bottom material. There were six trial redds in a chain, 1-2 m apart, along a crib in the Syansya in the Terva-koski rapid, where the shingle was mixed with bark; the redd actually used was in the middle of the river bed 20 m higher upstream from the trial redd.

There is in general no consensus of opinion concerning the number of trial redds and redis actually used which mey be excavated by a single female. Because there are few observations (Greeley, 1932; Fobbs, 1937; Jones and King, 1949, 1950; Nikiforov, 1960; Grinyuk, 1963; Eandy, 1963), tinere js inadequate basis for any categorical assertion (e. . " "one trial redd +3 redds actually used").

In as much as the behaviour of the fish at the time of spawning and its choice of site for the redd are determined by fluctuations of level and by the quality of the spawning area, and since either may be highly varjable, it is difficult to expect an identical number of redds in all cixcumstances. The suggestion of M. I. Vladimirskaya (1957) that the Atiantic salmon may excavate between 1 and 7 redds actually used seems quate realistic in our view. There is evidence in support of this from observations abroad under natural conditions and in experimental ponds.

Dwarf males appear first in the spawning grounds before the adult fish arrive. They are essentially in the same place where they have passed the summer; immature parr have already departed to overwinter before spawning begins.

Although large males comprise only $1 / 3$ o \vec{i} the stock, and sometimes
even less (falling to 15% in the autumn mun in the Fyal'ma), there is no lack of males owing to the abundance of dwarf substitutes. Some of the females undoubtedly spaw with dwarf males, the more so because a single female is
sometjmes accompanied by several large nales (up to nine, according to the observations of Young (cited by smitt, 1895)). It is not very probebie that a large male could apawn successively with several females as is usuel in other snecies of fishes, since all the know observations show that males exhibit an attacment both to a redd and to a female.

When several large males apnoach a single femole a contest takes place between the rales in wich the lergest is the winner. K. F. Kessler (1864): "...several males almost invariably accompany the female...they frequently begin to fightsavagely anonesthomselves." Similar observations are cited by V. B. Sabunaev (1956) and V. K. Soldatov (cited from llovikov, 1953). We have also heard tell of this from fishermen who have caught salmon in the spawning grounds. We have not observed scraps between large males, but have seen a large male repelling dwarf males of which up to ten assomble around a redd (they take up position below the redd). On occasion large males are to be seen with wounds along both sides of the body around the dorsel fin. The explanation which fishernen offer for this is that during a scrap the adversaries seize("bite") each other by the back with their hook-shaped curved jaws.

While the large meles are settling things amongst themselves, the female may spaw with a duarf male, without waiting for the victor. The egis in different mounds of the same redd may therefore be fertilized by different males. This is supported by experimental observations (Jones and King , 1952).

In those rivers where the spawning grounds of the salmon and the trout coincide (see below), a dwarf male around a female may be a trout and this will result in hybrid progeny. Females are apparently not very selective and may spawn in case of need wi.th a large male trout, as is indicated by the observations of Young, to which reference has been made above (Young, cited by Smitt, 1895): "...one female salmon was accompanied by nine meles; which were
all caught one after the other, and when the last had been caught, the female returned to the redd with a lempe male trout" (re-tranalated from the author's translation into Russian, retaining the author's emphasis). Furthermore: Most of the small trout usually romain at e respectiul distance belon the redd and seek out eges carried down by the current, but from time to time a dwarf male will sejze the oportunity to tove part in spaning while the partner of the female salmon fights uith a rival."

We have not succeeded in observing the actual act of spewning. According to observations in the Lower Eizhna and the Vama, females forsake the spawning grounds immediately after spawning and only males remain around the redds. We have seen them in the Lizhma in the same places around their redds (there was a single large redd near each male) for two weeks after spawing, after which observations were discontimued. Menzies (1931) also states that in practice only meles may be caught in the rivers after spaming.

After spawine the males are relatively immobile and react weakly to danger, in contrast to their behaviour at other times. It is difficult to say what precisely is resporsible for such a state and for post-spaming mortality. It may possibly be that the modification of metabolism associated with spawning proves to be irreversible in older fish. Emaciation in the usual sense cannot be the cause of their death, since the condition and fat content are higher in males than in females after spawnirg. Dead males driven into the bank and frozen into the ice have been found in many spawning grounds at the time of formation of frazil ice; their gills and mouth were packed with frazil ice.

In contrast to males, females are extremely mobile after spawing and move actively away from the spawning grounds. Many of those who have fished for salmon in the post-spawning condition with harpoons state that it is very ramely that a female car be caught, whereas there is no diffioulty in harpooning males. It j.s possible that females begin to feed while still in the river.
M. I. Vladimirskaya cites an instance in which the stomach of a female caught before the end of spewning contained a half-digested dwarf male. Hoy it not be that some females behave like the pike in consuming their less elusive partners ?

The spawned fish may migrate downstream into the lake soon after spawning, in the same auturm, in small rivers and from the lower spawning grounds of large rivers. However, the downstream migration from the upper spawning grounds involves overwintering in the river, is renewed at the end of April--beginning of May and ends by the third decade of May or at the latest in the first decade of June. More fish apparently perish in downstream migration from the upper spawning grounds than from the lower ones.

To judge by the rate of exploitation and the fairly high percentage of the carry-over, mortality among spawned fish migrating downstrear is on the Whole slight. This is the opinion of V. B. Sabunaev in relation to the Vuoksa salmon (Lake Ladoga).

- Fenales and males with two, three and even four spaming marks, i.e. the latter had come for the fifth spawning, have been found in the stocks of … …a. different rivers in the basin of Lake Onega. The weight of such old fish does not usually exceed 10 kg . However, according to the testimony of several individuals, a spawned salmon weighing 17 kg was harpooned in the Lizhma in 1958. If this is so, it should have weighed at least 20 kg before apawning since, as determined by Z. E. Tilik (1932), the loss of weight in males by the beginning of spawning is on average 14%. It is difficult to imagine how many times this male had come to spawn.

The largest fish measured by the author was a female which had fed after spawning; it had two spawning marks and weighed 13 kg and its body length as defined by Snitt was ac 105 cm . Fish with four spawing marks weighed between
VII. The Structure of Spawning Stocks and Its. Arnual Variations.

The treatment of this question is based on maierials for the stocks of the Shuya, the Vodla and the Pyalma, which have been studied in the greatest detail owing to their commercial importance. Materials on the stillremaining, but small stocks of other rivers are so insjgnificant as to be essentially incapable of providing any characterization; the same applies to materials on the now non-existent Suna salmon.

The first thing which may be noted in the comparison of salmon of different stocks and of the same stock, but for different years, is the dirferencein size, which is best reflected in the mean weight of a fish in a stock (table 8). The salmon of the Pyal'ma is considerably smaller than that of the Vodla and the Shuya.

The mean weight of a fish in a stock is determined above all by the special features of growth, but is additionally influenced by two ratios: 1) the ratio of the recruitment and the carry-over, since the old fish are as a fule larger than the recruits (table9) and 2) the ratio of males and females in the stock, since males are lerger than females of the same age (table 10).

Fluctuations in the ratio of the recruitment and the carry-over may be very considerable. The carry-over in the Shuya between 1959 and 1965 was successively $16.0,19.0,20.0,10.7,5.6,31.0$, and 17.0%. In the Eyal'ma between 1963 and 1965 the carry-over was $35.0,37.0$, and 17%; in the Vodia between 1963 and 1965 it was $30.0,: 50.0$ and 35.0%, but the possibility is not excluded in this case that the proportion of the carry-over has been overstated as a result of epithelionatous erosion wich was taken for a spawning nark. This is scarcely possible in the stock of the Shuya, since such damage is hardly
ever found on the scales of the thuya salmon.

Tаййда 8

Key to Table 8: 1. Table 8 2. Mean weight of a fish in stocks of different years, kg 3. River 4. Shuya 5. Voila 6. Fyolma 7. Note. Data for 1931-1933 taken from M. B. Zborovskaya (1935), data for 1948--1951 taken from \#. V. Prozorova (1951) and from the report "Fisheries Mans. :", (952); materials of Karelrybvod used for the Thuya in 1964--1965 (reports of the Onega Ichthyological Station); no data for the Vodla ind the Pyal'ma for 1931--1962. The figures in brackets denote the number of fish examined.

Fluctuations in the proportion of the carry-over are due primarily to alterations in the fishing rate, but the influence of distinctive features of the rivers on the post-spawning mortality of the spawned fish is not excluded. mortality should be less when the downstream migration is short.

The proportion of the carry-over provides a good indication of alteration in the fishing rate in the case of a number of year-classes of approximately the same abundance. When there are sharp fluctuations of abundarice the use of this index may lead to. incorrect conclusions. Thus, when

Key 'to Table 9: 1. Table 9 2. Weight composition of recruitment and carry m over in the Vodla in 1964 and in 1965 3. Weight, kg 4. Number of fish 5. Weight range, kg 6. Mean weight, kg 7. Recruitment 8. Carry-over 9. Recruitment 10. Carryover 11.*A small admixture of feeding salmon is possible.
the rate of exploitation is the same the proportion "of the carryover will be overstated when a strong yearmclass is followed a year later by a weak yearclass and it will be understated in the opposite case. It will therefore be more correct to determine the abundance of the carryover in each case and to relate it to the abundance of the catch in the year of the previous spawning run. This was done in estimation of the abundance of the Shuya stock.

The ratio of the sexes in salmon entering a river is characterized by invariable predominance of females in all stocks. It was 75% in the Vodla in all three years of the observations (1963--1966). It was 72% in the Pyal'ma in 1963 and 1965 and 66% in 1964. The fullest information on annual
/Табллда 10

	${ }^{4} 110.1$	${ }_{\text {Lic. }}^{5}$		$\underset{\substack{7 \\ \text { cıuma } \\ \text { cad }}}{ }$	Bec, if
6.1	$\begin{gathered} 90 \\ 00 \\ 00 \end{gathered}$	1	- 74.7 -74.5	70.0 69.5	$\begin{array}{r} 4.93 \\ 4.80 \end{array}$
7 ,	$\begin{aligned} & 09 \\ & 0 ¢ \\ & 0 \vdots \end{aligned}$	18	78.3 81.0	73.5 79.0	$\begin{aligned} & 5.40 \\ & 6.16 \end{aligned}$
8.1	$\begin{aligned} & \text { oq } \\ & \text { Jot } \end{aligned}$	$\begin{aligned} & 63 \\ & 25 \end{aligned}$	81.4 87.7	76.2 82.5	5.95 6.87
9 !	$\begin{aligned} & \text { of } \\ & \text { of } \end{aligned}$	24 10	83.1 92.0	77.5 85.25	$\begin{aligned} & 6.20 \\ & 7.70 \end{aligned}$
$10 \cdot 1$	$\begin{aligned} & 98 \\ & 00 \\ & 00 \end{aligned}$	5 2	81.7 89.0	$\begin{aligned} & 76.0 \\ & 83.25 \end{aligned}$	$\begin{aligned} & 5.74 \\ & 7.10 \end{aligned}$
11	85	\geq	87.25	81.25	6.70

Key to Table 10: 1. Table 10 2. Size of males and females in the Shuya, recruits (according to 1961 materials) 3. Age (years in the river and in the lake) 4. Sex 5. Number of fish 6. Jength ac, cm 7. Length ad, cm_{m} 8. Weight, kg
variations in the sexual composition of the stock exists for the Shuya (table 11).

The comparison of stocks by the first fish to mature may be very indicative.

On the whole the weight composition of recruits duplicates what is characteristic for the whole stock: the salmon of the Pyal'ma is always smaller than that of the Vodla and the Shiuy (e.e. $4.59,6.55$ and 6.24 kg respectively in 1963 -- table 12).

7 Примечампе. Цифры в скобках - чнето нсследоваиных рыб.

Key to Table 11: 1. Table 11 2. Sexual composition of the Thuya stock, \% 3. Sex 4. Females 5. Males 6. Table 11 (continuation) 7. Note. The figures in brackets denote the number of fish examined. 8. Mean.

Key to Table 12: 1. Table 12 2. Weight composition of recruits in the Shuya, the Vodla and the Pyal'ma in 1963 3. River 4. Weight, kg 5. Number of fish 6. weight range, kg 7. Mean weight, kg 8. Shula 9. Vodla 10. Pyal'ma.

The salmon of all other stocks, for axample of the Nemina, the
Lizhma and the Suna (in the past), are also smaller than the Vodle and shuya salmon. It is possible that the cause of this difference is to be found in the length of the migratory path. bhe spaming grounds are nost remote in the Vodla and the Shuya and are moreover at a considerable elevation. Because the way to then requires greater expenditure of enerey than in the other rivers, the fish here should be stronger and larger, i.e. the remoteness of the spawning grouncis evidently determined the trend of selection. Moreover, the age of maturity is slightly greater in the salmon of the Vodla and the Shuya, i.e. the increase in their size is due to some extension of the feeding period taken in conjunction with s.lightly fastex growth.

Fig. 16. The course of maturation of the Shuya salmon expressed as percentages of the occurrence of age groups of recruits (mean long-term data). Numbered on figure: 1. Age 2. "Weighted" 3. "Oomposite" 4. Number of fish.

The average course of maturation may be represented in terms of the percentage proportion of the different age groups anong the reciuits obtained on the basis of long-term data. This evens out variations due to differences
in the abundance of different year-classes and in the growth rate in different years. Thenks to the work of M. B. Zborovskaya and Z. V. Prozorova we now have material of this type for the Shuya stock for 14 years.
․:. The average course of maturation was calculated from the age composition of recruits in the Shuya (table 13) as percentages of the occurrence of different age groups. It is noteworthy that both the mean "weighted" and the mean "composite" frequency of occurrence established from the percentage composition for individual years yield practically the same picture: an almost symmetrical distribution is obtained in both cases (fig. 16). Although simila: material exists for the stocks of the Vodla and the Pyal'ma, the sequence of observations is very short (tables 14 and 15).

It is evident from the information given here that the age composition of fish maturing for the first time may differ considerably in different years. It is also apparent that maturation is not so protracted in the Pyalma salmon (no age groups 10-11 years) and that maturity is reached slightly earliar on average than in the salmon of the Vodla and the Shuya.
*
It is fairly difficult to compare the rate of maturation from the parcentage proportions of the age groups. It is far more convenient to use mean age characteristics for this purpose. In this case the alteration in the age composition of the recruits becomes very obvious (fig. 17).

It is possible that the cause of the difference in the age of recruits of different stocks and of the same stock but in different years will be successfully established from the age structure, i.e. by comparing the duration of the river and lake period, which together characterize the living conditions of the salmon in the river and in the lake. Taken in conjunction with the mean weight of a recruit, these characteristics reflect primaxily the availability of food and possibly other environnental factors, i.e. this
approach enables the characteristics of indivicual year-classes to be related to the general ecological backeround.

Fluctuations in the mean length of the river period (vables 16-18) are slight by comparison with the fluctuations in the mean age of recruits. This suggests that the fluctuations in age are due mainly to feeding conditions in the lake. We arrive at the somewhat. unexpected conclusion that the conditions deternining the growth of the salmon in the river are typifjed by greater constancy than conditions in the lake. This evidently means that the availabilisty of food for the salmon in the lake may be subject to very strong variation.

The duration of the lake period of recruits in the stocks in 1963 is given in table 19. All the mean characteristics given above for changes in the course of maturation and in the age structure in salmon of the different stocks are given in table 20, which is a composite table, and in a graph (fig. 18). The lake period of the Pyal'ma salmon was found to be the chortest in all instances. The alteration in the duration of the lake period from 1963 was not uniform: maturation of the Shuya and Pyarmesalmon was retarded while maturation of the Vodla salmon was accelerated. The duration of the river period al.tered slightly and had practically no modifying effect on total age.

Does not the different pattern of variation in the duration of the lake period indicate different feeding conditions, a difference in the feeding grounds of the stocks in the lake? This suspicion is strengthened by the different frequency of occurrence in the stocks of transitional zones on the scales (in 1963: 16% in the Shuya, 48% in the Vodla and 42% in the Pyal'ma) and of epitheliomatous erosion, and also differences in the rate of weight increase (see below).

2 возрастной состав рекрутов шуп (эвз.)

$\begin{aligned} & 3 \text { Yo:n } \\ & \text { nan:nozennit } \end{aligned}$									5 Isteris ры	6 Средий возраст
	5	1	-	\bigcirc	9	10	11	12		
1931--1933	--	9 (fi.2	3 3(65) (40.2)	24 (16.7)	12 (8.3)	-	--	144	7.97
1948	--	1 (1.S)	$21(35.2)$	17 (30.9)	14(25.5)	1 (1.8)	1 (1.8)	-	55	7.93
1949	-	1 (0.0)	(i) (37.9)	(i) (41.6)	30 (18.7)	1 (0.6)	1 (0.6)	-	161	7.83
1950	---	$3(2.1)$:30 33.2	\% 6 (48.09$)$	10 (10.4)	4 (6.3)	-	-	96	7.85
1951	--	30 (0.7)	$1 \because 1$ (32.S)	134 (36.0)	58 (15.4)	4 (1.1)	\cdots	-	373.	7.61
1059	--	20.10		258 (51.3)	151 (30.0)	35 (7.0)	5 (1.0)	-	503	8.36
1960	1 (0.3)	2 (i1.6)	62 (17.4)	143 (40.0)	$114 \times(32.0)$	30 (8.4)	$4(1.0)$	1 (0.3)	357	8.34
1961	-	$10(5,11)$	59 (29.5)	88 (44.0)	34 (17.0)	7 (3.5)	$2(1.0)$	-	200	7.38
1962	-	14 (6. 5)	144 (45.2)	89 (39.6)	15 (6.7)	3 (1.3)	-	-	22%	7.51
1963	-	14(5.9)	104 (61.0)	63 (26.7)	14 (5.9)	1 (0.5)	-	-	230	7.34
1964	-	20 (aic)	174) (50.0)	124 (36.5)	20 (6.0)	4 (1.2)	1 (0.3)	-	339	7.47
1965	-	$2(1.0)$	$81(38.0)$	95 (46.0)	28 (14.0)	2 (1.2)	-	-	208	7.75
7 Beero:	1	113	961	1189	512	100	14		2397	7.85

Key to Table 13: 1. Table 13 2. Age composition of recruits in the Shuya (number of fish) 3. Years of observations 4. Age (years in the river and -in the lake) 5. Number of Iish 6. Mean.age 7. Total 8. Note. Materials of M. B. ZZorovskaya for 1931--1933 and of Z. V. Prozorova for 1948--1951. The distribution of fish by year-classes for 1950 and 1951 was calculated irom the percentage composition. The figures in brackets denote the number of fish of a given age expressed as a percentage of the total number examined in the year (or years) concerned.

	4 возраст (ресине й озорине годк)							$\begin{gathered} 5 \\ \Psi_{\text {ист.70 }} \end{gathered}$	Gредий возраст
ваблюдепии	5	6	7	8	9	10	11		
1963	-	-	24	28	28	18	2	50	8.46
1964	-	2	16	50	30	2	-	50	8.14
1965	4.5	7	26.5	36.5	21.5	7	-	60	7.90

Key to Table 14: 1. Table 14 2. Age composition of recruits in the Vodla (\%) 3. Year of observations 4. Age (years in the river and in the lake)
5. Number of fish 6. Nean age.

Key to Table 15: 1. l'able 15 2. Age composition of recruits in the Pyal'ma (\%) 3. Year of observatjons 4. Age (years in the river and in the lake) 5. Number of fish 6. Mean age.

We need to verify by tagging whether the salmon of the different stocks in fact feed in different parts of the lake. If this is so it must necessarily be taken into consj.deration in the release of downstream-migrants from hatcheries so that uniform use is made of the food resources of all

Таблпца 16
 в стa, Шухи (\%)

$\begin{aligned} & \text { піт } \\ & \text { надлю, ниий } \end{aligned}$				5 Чис:10 ping	$\stackrel{\circ}{8}$ сретиий sospact
	2	3	4		
1948	52.8	43.6	3.6	53	2.51
1949	59.0	39.9	1.1	161	2.42
1959	64.0	34.5	1.5	600	2,38
-1960	68.2	30.8	1.0	443	2.33
1961	67.5	32.5	--	250	2.32
1982	72.6	27.0	0.4	252	2.28
1963	-84.5	15.1	0.4	230	2.16
1964	75.0	24.4	0.6	336	2.26
1965	72.0	26.7	1.3	75	2.29

Key to Table 16: 1. Table 16 2. Proportions (\%) of fish with river periods of different duration in the Shuya stock 3. Year of observations 4. River period, years 5. Number of fish 6. Mean age.

Fig. 17. . Mean age of recruits in the Shuya over a number of years. Numbered on figure: 1. Years 2. Age 3. Number of fish.
$\bigcup_{\text {Tабаниа }} 17$
 Водіы (\%)

(3) roit				(s)	
		3	4		
1973	70	28	2	50	$2.3{ }^{1}$
1964	72	20	2	50	2.30
1965	75	23	-	60	2.25

Key to Table 17: 1. Table 17 2. Proportions (\%) of fish with river periods of different duration in the Vodla stock 3.Year of observations 4. River period, years 5. Number of fish 6. Mean age.

$\text { (3) } \operatorname{roл}_{\text {наблюденй }}$	(4) Peчнопи пернод, годы			$\left(\begin{array}{l} \text { Чпсло рыб } \end{array}\right.$	
	2	3	4		
1963	66	34		151	2.33
1964	56	44		153	2.44
1965	65	35	-	$\ldots 54$.	2.35

Key to Table 18: 1. Table 18 2. Proportions (\%) of fish with river periods of different duration in the Pyal'ma stock 3. Year of observations . 4. River period, years 5. Number of fish 6. Mean age. areas of the lake.

Data on fecundity exist only for the Shuya and Fyal'masalmon. According to the data of M. B. Zborovskaya (1935), the mean fecundity of the Shuya salmon i.s. 12 thousand eges and the range is from 8 to 15 thousand. A

Key to Table 19: 1. Table 19 2. Proportion (\%) of fish for which the duration of the lake period of recruits is different in the stocks of the Shuya, the Vodla and the Pyal'ma in 1963 3. River 4. Lake period, years 5. lumber of fish 6. Mean age 7. Shuya 8n Vodla 9. Pyal'ma.
mean fecundity of 12630 and a range of from 3447 to 23962 eggs are given for the Shuya salmon in the reference work "Iakes of Karelia" (1959). According to the data of Z . V. Prozorova, to be found in the same reference work, the mean fecundity of the Pyal'ma salmon is 5300 eggs and the range from 2196 to 9186. According to cur materials for the autumn run of the salmon in 1964, the mean fecundity of the Pyal'ma salmon was 8155 eggs with a range of from 5355 to 9900 eggs and the mean weight of the females examined was 5.14 kg . It should be noted that the salmon of the autumn run is noticeably larger than the salmon of the spring run (5.2 kg on average as against $4.4-4.6 \mathrm{~kg}$), which is due to the larger proportion of the carry-over in the outumn run. In the reference work "Lakes of Karelial" it is not stated from which run of the salmon samples were taken for the measurement of fecundity, but. it must be thought that it was the spring run.
(2) Нзменении етруктуры возаста реарутов IIуп, Бодлы и Ілтьжы, в годах

Key to Table 20: 1. Table 20 2. Alterations in the age structure of recrujts in the Shuya, the Vodla and the Pyal'ma, in years 3. River 4. Àge 5. Shuya 6. Total 7. River 8. Lake 9. Vodla 10. Pyal'ma.
VIII. Growth of the Salmon in the Lake.
M. B. Zborovskaya and Z. V. Prozorova studied the growth of the salmon by back cal.culation. Conclusions on growth based on our materials are not at variance with what is generally known. There are perceptible differences between fish of the same age which have a different combination of the number of years spent in the river and in the lake: the longer a salmon

Fig. 18. Alteration in the age structure of recruits in the Shuya, the Vodla and the Pyalma. Years along x-axis; age structure along y-axis (7-9, total age; 5-6, lake period; 2--3, river period). \rightarrow
had lived in the river; the smaller was its ultimate size, although the downstream migrants were larger. Thus, the body length as defined by Smitt (ac) of eight-year-old fish was 86.8 cm when 2 years had been spent in the river and 82.3 cm when 3 years had been spent in the river; the corresponding lengthsfor nine-year-old fish were 90.5 and 86.5 cm (table 21). The reason here is thet fish which migrate downstream at 2 years have an advantage of one feeding season.

If, however, we take fish with a different river age but the same duration of the feedine period, no tendency toward faster growth is found in
fish with a river age of 3 years by comperison with fish with a river age of 2 years despite the greater size of the downstieam migrants (figs. 19-w21). The same feature is observed in the group with a river age of 4 years. Growth in the feeding period is therefore not dependent on the injtial sjize, although survival. rate is dependent on it. The ultimate sjize is slightly greater in fish with a lake age of 6 and 7 years than in fish with a lake age of 5 years, although the latter grow slightly faster. This is apparent from teble 22 and fig. 22, in which average data are given for the river period and for a feeding period of equal duration for the groups $2+5$ and $3+5,2+6$ and $3+6,2+7$ and 3+7. Males grow noticeably faster than females (table 23):

This feature was taken into consideration in the compilation of table 21, where an equal number of males and females (13 or each) was taken for the most abundant age groups $(2+5,6,7$ and $3+5,6,7)$.

The practical conclusion which stems from the distinctive features of growth is not an original one: in artificial culture of the salmon transition of the fingerlings to the downstream-migrant state must be stimulated at the earliest possible age -- at 2 yearssand even better at

Data on length increase alone are not sufficient for the assessment of weight increase, which is intensified in the second half of the feeding period, in contrast to length increase. The mistaken view of a number of authors that weight increase is sharply reduced with age is based on a failure to allow for differences in the nature of growth in weight and length,

If the alteration in the relationship between body length and weight is traced in the salmon, it may readily be noted that this relationship is far from linear (iig. 23) and that young fish have a more fusiform body than those
(2) Темп роста (алин сяс, см) муйекого тосося (но обрамному расчнсоено) по материалам 1959 r .

Key to miable 21: 1. Teble 21 2. Growth rate (length ac, cm) of the Shuya salmon (back calculated) fron materials for 1959 3. Number of yeara 4. Age, years 5. In the river 6. In the lake 7. Number of fish.
close to maturity. But thjis signifies that the same length increase will be accompanied in fish of different sizes (ages) by a different weight increase. The graph was compiled solely for feeding salmon which had no spawning marks and which did not mature in the year when the material was collected; fish of the maximum weight (up to 10 kg inclusive) could have entered the river no earlier than the following year.

Such a graph may be used to reconstruct weight increase by back calculation of linear growth.

The weight increase (in kg) in the feeding period may be represented approximately as follows, with heavy averaging (data for the entire

Fig. 20. Growth of the age groups 2+6 and 3+6. Key as in fig. 19. $2+5$ and $3+5$. Age in years along $x-a x i s ;$ body length as defined by Smjet (ac), cm along y-axis.

			50 Oяерый перноп, голы						
2	3		1	3	3	4	\%	1	7
6.5 14.8	5.5 10.5 16.5	\} 15.6	35.4 33.4 33.0	47.1 45.1 43.9	60.7 50.1 33.9	72.1 68.0 64.0	52.5 75.8 74.4	S6.6 32.9	59.5
${ }^{6}$ Crejuниі рост			33.8	45.1	52.0	68.0	78.6	8̇.7	89.5

Key to Table 22: 1. Table 22 2. Length increase (length ac, cm) of the salmon in the river and in the lake (back calculated, 156 fish, 1959) 3. River period, years 4. Mean length of dowhstream migrant 5. Lake period, years 6. Mean length increase.

Fig. 21. Growth of the age groups $2+7$ and $3 \div 7$. Fig. 22. Growth with a feedKey as in fic. 19.
ing period of 5, 6 and 7 years. Key as in fig. 19.
population).

$0+$	$1+$	$2+$	$3+$	$4+$	$5+$	$6+$
0.4	1.0	2.0	3.5	5.5	6.5	7.5

According to our materials, the relationship between the length and weight increase of the salmon in the feeding period appears as follows (fig. 24), The total increase in length and in weight follows a practically parallel course until the very end of the feeding period, after which loss of weight commences in connexion with the spawning migration. Conversely, growth rates (increments of length and weight) vary "independently" of each other: the most rapid increase in length during the first season is accompanied by the least increase in weight. From the third to the fifth season inclusive the rate of length increase remains practically unaltered, but there is rapid increase of weight at this time. Both rates decline after the fifth season, apparently in

- Таблйа 23

2 Тени роста (дниша ае, в ся) сандов и самок шуйского лосося (до обратному расинсленио) по матсрнахмм 1959 r .

3 число лет		$\left\|\begin{array}{c} 6 \\ \text { H1OS } \end{array}\right\|$	Возраст. готы 7									$\begin{aligned} & 8 \\ & \text { पис } \\ & \text { рй } \end{aligned}$
$4{ }^{\text {Pege }}$ gex	охидых		1	2	3	:	5	6	7	s	9	
2		d0	7.4	13.8	35.2	46.5	$63.1)$	76.0	S6.0	-	-	13
		98	6.3	13.7	32.2	45.5	. 57.5	69.5	79.5	--	-	13.
	6	ḋ	6.2	14.0	30.5	44.0	03.0	69.5	81.5	90.0	-	13
		97	6.4	14.1	29.0	11.0	52.0	62.3	74.0	83.5	-	13
	7.1	ठす	7.0	19.0	32.2	43.0	57.0	66.0	80.0	88.0	94.0	13
		97	5.3	14.4	25.6	37.6	49.0	50.0	69.0	77.0	87.0	13
3		J ${ }^{\circ}$	5.6	10.4	17.7	38.8	3.0	63.0	74.0	86.5	-	13
		97	5.6	10.2	47.0	35.4	45.5	59.5	69.0	78.0	-	13
		0°	6.5					63.5	77.0	86.5	91.5	13
		9%	5.1	11.3	16.8	34.8	44.5	53.0	63.0	73.5	81.5	13

Key to Table 23: 1. Table 23 . 2. Growth rate (length ac, in on) of male and female Shuya salmon (back calculated) from materials for 1959 3. Number of years 4. Ir the river 5. In the lake 6. Sex 7. Age, years 8. Number of fish.
tonnexion with the approach of maturation.
The following approach was used for comparative estimation of the weight increase of individual stocks in the feeding period. Mean annual weight increments were calculated from the mean weight of the.recruits and the mean duration of their feeding period. The weight of downstream migrants was not taken into consideration, since its value falls within the range of error in weighing. It was found that the Shuya salmon had the best growth rate, with the Vodla salmon in second place, and that growth was worse in the Pyal'ma salmon for which the mean annual weight increment was approximately 20% less than for the Shuya salmon (table 24). However, even the Pyal'ma salmon grows

Fig. 23. Relationship between weight and body length (ac) in the feeding salmon of Lake Onega. Body length as defined by Smith (ac), cm along x-axis; weight, $k g$ along y-axis.

Fig. 24. Relationship between length increase and weight increase of the salmon in the feeding period. I_{2}-- total length increase, $\mathrm{m} ; \mathrm{Al}-\mathrm{A}$ growth rate (increments), cin/yr; $P_{\mathbf{S}^{--}}$total weight increase, $k E ; \Delta P--$
growth rate (weight increments), kg/yr. Age, years along x-axis; length, cm and weight, kg alone y-axis.
'Te5лй日a 24

 средний вес ренрута, кг; в внанөпателе - средиян продолжнтельность нагулного периода, годқ.

Key to Table 24: 1. Table 24 2. Mean annual weight increase ($\mathrm{kg} / \mathrm{yr}$) of the salmon of different stocks 3. River 4. Shuya 5. Vodia 6. Pyal'ma 7. Including the carry-over; but its proportion was small (5.2% and 15.6%). Mean weight of a recrujt, kg in the numerator of the fractions; mean duration of feeding yeriod, years in the denominetor.
far faster than any other Karelian freshwater fish.
It is at present impossible to say anything definite concerning the causes of difference in the growth of the different stocks. The matter may possibly have to do with different feeding grounds, but there is another suspicion in relation to the Pyal'ma salmon (see below). In the case of artificial salmon culture it must be borne in mind that the Shuya stock is economically more advantageous because of faster growth.
Z. V. Prozorova (1951) noted significant differences in the rate of length increase when she compared her materials with those of M. B. Zborovskaya (1935). She related these differences to an improvement in the food supply of
the salmon due to the decline in vendace and smelt fishing during the war years. However, length incresce ia a very poor indication of the real situation. In such cases it is rore convenient to use the mean weight increase of recruits over the feeding seriod, wich is an overoll indication of living concitions, including the availability of food. If significant differences are found in the weight increase in different years, the year of the feeding period in wich the devietion of grovith (from the lone-term norm) occurred may be established by back calculation, i.e. this deviation may be related to the ecological beckground.

IX. Horbholosical Descrivtion of the Galmon.

An enthusiasm for bionetric analysis without the use of other criteria has jed to the establishment of a multitude of different taxa of rank below the species, ircluding subspecies and forms below subspecies: ("infrapodvidovye"), and this has led to considerable confusion in systematics. A' clear example is the situation with whitefishes, among which up to a hundred subspecies, varieties, forns, races and breeds have been distinguished within the USSR alone. In a number of instances descriptions have been given not only of individual populations, but of their constituent stocks.

There are many grounds for doubting the taxonomic value of morphometric analysis in the study of the salmon. The proportions of the body vary greatly in fish of different sizesand age. In the past this has even led to salmon of different development stages being classified as different species (Richardson, 1836) or to uncertainty as to how to clessify them (Gunther, 1866). There is overlapping of almost all the characters of the salnon and the trout. Sinitt (1895) wrote in this connexion: "The relationship between these forms (between S. Salar and I. trutta) is the same as that between
different age grons and betwoen the sexes" (re-transilated from the author's Russian framiation vith biackets inserted by the author - translator). All these difficulties have been best set out by K. F. Kessler (1864, p. 163). I shall taks the liberty of giving his statement in full:

Wish belonging to this genus (Selmo -- Yu. S.) are subject to very considerable vairiations in body constitution and in colour, variations which are related partly to their age and sex and partly to the properties of the waters which they inhaioit; but, furthermore, imature fish which cannot be separately distinguished are frecuently found among them and these, in their turn, are more or less different from fextile fish which also cannot be distinguished. For these reasons great difficulties are encountered in the identification and description of species of this genus and misunderstandings and contradictions heve frequently arisen between zoologists in this respect; in perticular, fish or different ages and of the same species lave often been classified as belonging to different species."

V, V. Abramov (1953), who studied the development of the spawning colours in Pacifjc salmon, established that almost, al, the morphological characters undergo modification in the post-spawning condition. The snout-to-vent length is, of course, relatively invariable and only the post-dorsal distance and the depth of the caudal peduncle remain. Abramov considers that these characters may be used for the analysis of races and to establish local stocks. However, these three characteristics are evidently too few for such purposes.

This is why morphological analysis must be used very circumspectiy in the study of salmon. It is far from invariably that the test of statistical significance (diff $\geqslant 3$) will reflect the real biological differences which should be taken as the basis.

Furthermore, it is far from clear to what extent ordinary measurement errons are capable of affecting the end result. Accuracy is reduced both in the measurement of the smallest fish (the relative error is increased even when the absolute magnitude of the error is slight) and in measurement of the largest fish (owing to the readjustments of the calipers). The result will also be slightIy different in measurement of the freshest fish (some "spreading" of the fish owing to the mobility of the tissues which yield under the calipers) and in the measurement of rigid fish (muscle contraction in frozen and preserved fish; the "accuracy" of the actual measuremont is higher in such "hard" fish). Since the absolute magnitude of the discrenancy in the means which are comozred is usually very slight, those measurement errors may yield quite statistically "sienificant" differences if the requirement of uniformity has not been observed in collection of the material.

Great doubt attaches to the value of such a choracter as eye aiameter (horizontal and vertical): firstly, the actual masurement of the eyeball cannot be very preaise; secondly, the probability of artefact is very great. The point is that salmon taken from the trap are killed by a blow on the head, as a result of which even if the eyes do not emerge completely from the sockets, the diameter of the eyeball is invariably increased. The orbital diameter would therefore be a far more reliable character since the bone may be measured with greater accuracy (the measurement of fixed points).

Finally, body length as defined by Smitt (ac), which is taken as a standard for comparison, cannot be regarded as satisfactory since it includes the length of the head, which varies strongly with age (especially in males). Only comparison of the snout-to-vent length*(the length of the backbone) can yield a true picture of the variation of phoportions. Americans turned to this standard 30 years ago (Davidson and Shostrom, 1936), but it has regrettably not yet established itself with us, despite the recommendations of I. F.

Pravain (1929; 1949), which have been used by the American authors just cited. By some strange concatenation of circiumstances the salmon has avoided the lot of whiterishes. Roreover, until now there has still not been a detailed morphological description of its lake form, especially at the level of populations and stocks. K. F. Kessler (1863) compares the colouration of the Onega and Ladoga selmon. Mean values of some meristic and morphological characters are given for both sexes combined on the basis of M. B. Zborovskaya's materials in a paper by I. F. Pravdin (1954), but there is no indication of the river oif the stock and no description of the material (amount and the stage of maturity of the fish).

We have at our disposal fairly extensive material for a morphological description of the stocks of the. Shuya, the Vodla and the Pyal'ma (more than 300 fish). Cnly mature migratory fish in stage III of maturity were taken for the measurements. An approximately equal quantity of females and males was taken for the general description (of both sexes), since there are already perceptible differences between them even in stage III of maturity, although it \because was still a long time before the appearance of spawning colours -- the \rightarrow collections were made between May and July. Because it is impossible to make full use of all the material here, certain information which is given (on the Shuya stock, table 25) is of a provisional nature. All that can be stated is that no sjgnificant difference was discovered between the sexes in meristic characters. The apparent reduction of the snout-to-vent length in males (diff $=9$) is due to the fact that males have a larger head. . This is an example of the way in which the accepted standard (ac) reflects actual relationships in an inverted form. It is for the same reason that no differences are detected between the sexes in the length of the body minus the caudal fin (ad), since the head is included in both lengths (ac and ad). The value
obtained for the length ad is in full agreement with that established by D. K. Khaiturin (1965) for the salmon of the Pasha and the Oyata (Lake Ladoga).

Key to Table 25: 1. Table 25 2. Some morphological characters of the salmon of the Shuya River expressed as mean characteristics 3. Characters 4. Both sexes (59 fish) 5. Range 6. Mean 7. Fermales (27 fish) 8. Nales (32 fish) 9. Body length as defined by Smitt (ac), cm 10. Number of branched rays 11. Lateral-line formula 12. Scales alongside of caudal peduncle 13. Gịll rakers per one arch 14. As percentages of body'length as defined by Smitt: 15. Snout-to-vent length (od) 16. Body length minus C (ad) 17. Snout length 18. Forizontal diameter of eye 19. Postorbital

It is at present impossible to make a convincing comparison of the Shuya, Vodla and Pyal'ma stocks by morphological characters. The point is that the actual relationships will be distorted owing to the different sizes of the salmon of these stocks, especially because the indices were calculated in relation to body lengil as defined by Smitt. Reliable comparisons nay be made only when the snout-to-vent length hes been taken as the basis, as has been proposed by I. F. Pravdin.
X. The Possibility of Infringenent of the Reproductive Isolation between the Salmon and the Trout.

The demends which trout and salmon make on spawning conditions differ . perceptibly, as is aiso reflected in the use of the texms "trout" and "salmon" rivers. Should both fishes enter a singie large "salmon" river, their spaming grounds do not coincide even here: the trout breed in the shallow tributaries of the main river, principally in those which join the river not far from its mouth, since the trout (sea trout) in general makes shorter migrations then the salmon. The quantity of trout in large salmon rivers is very small. All these features are to be observed not only in the basin of Lake Onega (and Lake Ladoga), but also in the basins of the Baltic, White and Barents Seas.

The situation may be different in small rivers. In the Pyal'ma, for example, the relative abundance of the trout is very high. Its main spawning grounds are situated in the upper reaches of the main river, to which the salmon does not go for some reason. In addition to these spawing grounds
the trout also utilizes streans which flow into the lower reach of the river, in the zone of the salmon spawning grounds. In years when there is little water and these tributaries dry up, and when not only the spawning of the trout but the entry of the trout into them becomes impossible (as happened, for example, in 1963 and 1964), the trout lays its eggs in the salnon spawning grounds in the mein river. The possibility is not excluded thet hybrids will occur when this happens. How this may occur is discussed in the section on spawning-

It is not by accident that this question has arisen. The point is that the Pyal'ma salmon has some features which cast doubt on its purity as a species. In general, there are refererces to natural hybrids between salmon and trout in many publicetions, especiolly foreien ones. There is an interesting statement in a paper by V. A. Abakumov (1960) to the effect that hybrids have not been found in the large rivers of the Ealtic regior (Dangava, Gauya), in contrast to small rivers in which the spawning grounds are superimposed when discharge is reduced, ine. a situation similar to that created in the Pyalma.

This is a very interesting question and one of practicel importance. A reliable method, for preference karyological analysis, is needed for its solution. Other stocks apert from the Fyal'ma salmon are in need of such - verification. This applies not only to the Onega population, but also to the populations of the northern Iakes (Kuito, Topozero, Nyuk).

I. The History of the Development of the Salmon Fishery and Catches.

Fish entering the rivers are readily accessible even to the most primitive fishery. It is not accidental that there are among the neolithic rock paintings at Besov Nos (2nd--3rd millennium B.C.) drawings of the burbot (catfish, in the opinion of Lebedev, 1960), sterlet, apparently sturgeon and some kind of salmonid. Ihere are also drawings of fishing gear -- a harpoon and a 3-pronged fish spear. A. M. Linevskii (1939), who interpreted these petrogiyphs, also considers that there may be a hook and line, a basket trap and a trap fence. .

The first reference to fishing in the Mnevetskii rapid on the Vodia River is to be found in the cadastre of Yurij Saburov (1496); (cited from Pushkarev, 1900a), in which there is also a reference to the levyjng of quit rent in salmon and whitefish and to the existence of the hamlet of Shuiskii pogost (Shuya graveyard), around which a trap fence was later used for fishing (references in the books of Andrei Likhachev, 1563 and Nikita Panin, 1627--$-1629)$

All the fishing places were re-enumerated in 1563 and a tax was imposed. This is evidently the first statement of which fish species were caught in the fishing places and with what fishing gear, but there is no indication of the size of the catches. Salmon were caught in the Lososinka, the Shuya and the Suna, in the Sancial stream and in Lake Sandal, in Lake Lizhmo (Lizhmozero), in an inlet on the Cherka (Chorga) and in the Sosnovets, in Lake Onega around Klimenetskij Island $\mathcal{I}_{\text {in }}$ in the Elovets, in the Mnevets rapid (Vodla),
in the Cholmozha (Nemina ?), the Pyal'ya (Pyal'ma?), in the Sukhoi navolok (translator's note -- navolok is a dialect word for a shallow lake produced by the spring flood), in the Andoma, the Vytegra and the Megra. Fishing gear: fences ("stakes"), of which there were several in the Shuya ("stakes" are also noted for the Kunsa, Cholmozha, Fyal'ya, Nikema, Suna, Vodla and Andoma Rivers; whitefish nets and harpoons, river and lake trap nets, "trains" ${ }^{1}$ and undoubtedly fish spears, although they are not mentioned.

1 A "train" (poezd) or "belt" (poyas) is a small trap net for catching salmon in rapids.

We do not know the size of the salmon catches or how they were obtained. It is mentioned in the Tikhvin Customs Book that the goods brought to the fair by Andrei Chusov, a leading Olonets merchant, included "...two barrels of Shuya whitefishes, 17 fresh Onega salmon and 17 cured salmon..." (ci.ted by Muller, 1947), but this fact does not tell us much.

Sawmills and metallurgical plants using water power were constructed on a number of rivers in the 18 th century, especially in its second hali. Apart from hindering the upstream migration of fishes, dams can be used to catch them, and this undoubtedly happened at the time.

There is information on fishing only for 1785 , when N. Ya. Ozeretskovskii and G. R. Derzhavincarried out an investigation of the territory almost simultaneously and quite independently. N. Ya. Ozeretskovskii records among the fishing gear "kerevody" ${ }^{1}$, which had not previously been mentioned, and hook and line. He reports that salmon, trout, char, whitefish and pike

[^3]were sold salted in St. Petersburg, that a trap fence was erected in the Pyal'ma where "many whitefishes, salmon and trout were taken in the spring and autumn", and he gives other interesting information.
G. Fi. Derzhavin gives a list of the food fishes of Lake Onega in his "Diary" (Fimenov and Epshtein, 1958) and describes the fishing at Podporozh'e: ".o.before it was forbidden to erect trap fences, there was very successful fishing for salmon, whitefishes, bream, pike, burbot, pike-perch and other fishes; large "muzles" (drag nets) were used for fishing and up to 500 whitefishes and sometimes up to 30 poods of salmon (translator's note: 1 pood $=36$ lbs.) were taken in a day, but now the catch is extremely small." It would appear from what follows that the ban was imposed in 1785 , but the reason is not stated. This measure was apparently enacted in the interests of the developing timber industry and of logging, which was hindered when the rivers were sealed off all across. The erection of trap fences all across logging rivers was prohibited for the same reason in the 1870 s (Pushkarev, 1900a). We may therefore agree with N. Ya. Danilevskii (1875) that logging prevented overfishing at that period and thus helped to maintain salmon stocks.

There is no information on fishing for the first half of the 19th century.
K. F. Kessler (1868) noted a heavy reduction of salmon in the Povenchanka due to the construction of a sawmill.

According to N. Ya. Danileyskii (1875), the salmon catch in good years reached 800 fish or approximately 150 poods at the Pyal'ma trap fence and 30 poods at the Nemina fence; up to 1362 trap fences were erected all across these rivers. The salmon catch in the Vodla at this time was at least 400 poods a year. Danilevskii noted the strong development of fishing with
large drag nets known as "matki" in imitation of the ladoga fishernen. In 1854 drag nets appeared in the Suna, where they replaced the trap fence which previously existed in the river. Their use subsequently spread throughout the entire lake and they became the principal fishing gear for the inshore salmon fishery.

 Keý to Table 26: 1. Table 26 2. Salmon catches in Lake Onega according to data in the "Olonets Gubernia News" (taken from Zborovskaya, 1948, p. 140) 3. Year 4. Catch 5. Over the year, in poods 6. Over the year, in centners 7. Mean annual catch in centners 8. Comment 9. 1876 -"abundant catch of fish". 10. 1879 - "more suiccessful than in previous years".

The first estimates of the salmon catch for the entire lake appeared in the "Olonets Gubernia News"; we have data only for the period 1875-1890 (table 26). The catches recorded for this period are no different from the
catches in the period 1930--1960 (table 27), but what the actual catch was is not. known. Because of difficulties in sale a considerable part of the catch was undoubtedly consumed in the localities.

The establishment of regular cormunication with St. Petersburg by steamboat and the improvement of marketing led to extensive develoment of the salmon fishery. When the salmon fishery was at its height in the 1890 s selmon catches in Lake Onega reached 1000 centners, as may be assessed from the data of II. N. Pushkarev (1900a). The figure given above should be increased because Pushkarev did not investigate such important salmon fisheries areas as the Shuya, Suna, Lizhma and Ancoma Rivers, Chorga and Unitskaya Bays and the region of Cape Besov Nos, but it should evidently not be increased to more than 1500 centners.

Salmon were fished in the following ways at this period:

1) fishing for migratory salmon with large drag nets in the river mouths and with trap fences in the rivers;
2) special types of net fishing ${ }^{1}$ in pools occupied by the salmon on arrival; fishing with "trains" (small trap nets), trap nets and fixed gill nets in the rivers;

[^4]3) harpoon fishing for spawning and spawned fish;
4) fishing for feeding salmon (largely immature fish) in the open lake using "garvy" (large-mesh nets for use in the upper horizons of the water) and "prodol'niki"", mainly along the western shore of the lake around Brusno Island.

[^5]Таблица 26
2 удовы посося в Оиеженом озеро, по даиным «Одонецних туиериских ведоностей» (110 Зӧоровской, 1948, стр. 140)

3 roa	צं, 4			примстание 8
	$\underset{\substack{\text { ma roa, } \\ \text { g nyax }}}{ }$		cpecue- rozoroй 日 47	
1875	1025	169		1876 г. - "улов рыбы об́ильньйй" 9
1876	1196	198	189	
1879	1248	208	${ }^{189}$	1579 г. - «иоже удачпый, чем ире- 10
1880	1173	184		дыдупие годым.
1881	1516	250 199) 223	\cdots
1883	1335	220		
1889 1890	1082 997	178	1) 172	-

Key to Table 27: 1. Table 27 2. Salmon catches recorded in Lake Onega in the period 1930--1965, centners (100 kg) (from the data of Karelrybyod and the Karelian Department of GosMIORKh -- the State Scientific Research Institute for Lake and River Fisheries) 3. Year 4. Catch 5. Over the year 6. Mean annual 7. Note. Data on catches for the period 1933--1940 were taken "from the thesis of M. B. ZZorovskaya (1948).

Trap fences for the catching of salmon and other fishes were constructed in 1895 in the Shuya. (at the village of Nizhnyaya), in the Suna (below the sawmill dam) and in the Shoksha and the Pyal'ma. Trap fences were prohibited in the Nemina from the 18 '0s because of logging. "Considerable quantities" of salmon were caught in Cholmuga Bay and in the Nemina in the spring and autumn; including trout the catch amounted to 50 poods a year. Fish stocks in Cholmuga Bay were reduced by overfishing and pollution of the waters of the bay and its tributaries by the floating of timber which had not
been barked, the amount of which increased every year. The principal salmon catch in the Pral'ma was taken in the spring and the autumn. The salmon run occurred immediately after the ice run, after May 9 (May 22 by the new calendar) and lasted until "Peter's Day" (July 12 by the new calendar). A catch of up to 440-550 fisin was taken at this time with "kalega" nets and a further 90 Iish in drag nets near the mouth. During the low-water period the salmon were "stalked" in the pools and those which had escaped the "kalega" fishing were taken. From August until the late autumn fishing was carried out with trep fences erected near the mouth. In the opinion of Pushlarev (1900a), the salmon was completely fished out in the Pyal'ma, since adult fish and spawned fish migrating dowstrean were not found here: "rhe Pyal'ma Riven is a grave for all the fish which enter it... The present fishing must be regulated."

In 1871 there were trap fences in the Vodia in many rapids above the Mnevetskii rapid (Polyakov, 1873), and they were used for catching fish migrating both upstream and downstream, for example in the Padun rapid.

Although fishing for feeding salmon is highly destructive, it was of the greatest economic importance in the 1890s. Pushkarev wrote: "..garvy Fishing should be regarded as one of the most important types of fishing...". This type of fishing, which constituted the bulk of the salmon catches at this period, yielded between 400 and 1000 centners, on average more than 500 centners (figure arrived at by conversion of the value of the catches given by Pushkarev).

At the beginning of the present century there was a sharp reduction of catches which was noted by a number of investigators (Pushkarev, 1914a, 1914b; Petrov, 1926; Tikhii; 1931a). N. N. Pushkarev (1914b) wrote that fishing with garvy nets had practically ceased along the western shore of Lake Onega and had been halved in other places. . Fishing had therefore ceased in what had once been the main fishing grounds. Pushkarev, like other authors,
does not give precise figures for the catch throughout the lake and there are no such figures from the beginning of the 20th century until 1930. It should be noted that the statistics of catches were never satisfactory.

There is more or less reliable information for the period from 1930 down to the present, with the exception of the war years of 1941--1945. The most significant aspects of the salmon fishery during this period were:

1) the re-establishment of garvy fishing from 1932 in the area of Brusno Islend; this íishing attained its greatest development in the post-war years and has been discontinued since 1958;
2) the use of trap nets in place of drag nets since 1953;
3) the institution of a number of conservation measures in the last decade.

Let us dwell on this last point in greater detail. Commercial and amateur fishing, including fishing with rod and line, has been prohibited in the rivers since 1956; this ban has been confirmed by the 1960 "Fishing Regulations". In 1958 an area in which garvy fishing was banned was designated in the area of Brusno Island. By the new "Fishing Regulations..." (1960) there is a general ban on the use of nets to catch feeding salmon in the lake. The main salmon catch is now taken with trap nets in the estuarine reaches no nearer than 1 km from the mouth. There was no limit on the number of traps before 1964 and this led to overfishing of the Shuya stock (Yu. A. Smirnov, 1964).

The use of trap nets for salmon fishing was begun in Lake Onega in 1948--1949, but these were initially only.shore traps of the Kuban' River type. In 1953 the fishing brigade of A. A. Stafeev caught 70 centners of salmon by the midde of July with a single trap net in Logmozero (Shuyá Rivex). Such a successiul catch enabled the fishermen to dispense with drag net fishing.

The fish industry took an interest in the development of the new type of fishing (Cherkasov, 1953). Since 1955 trap nets have been included in the gear of other fishing brigades operating around Solomennoye. Two types of trap nets are used comercially: two-pot deepwater nets ("giganty" .."giants") and inshore single-pot nets ("fuban River nets"). The number of both types of net continued to increase until 1960 (8 "çiants" and 12 "Kuban' River nets"), after which it remained at the same level. In 1964 Karelrybvod reduced the number of permitted places around Peskov. The traps from Feskov were shifted $1--1.5 \mathrm{~km}$ to the east of the Solomennoye Strait, to Loi Island, but there was hardly any change in the total number. The rate of exploitation was reduced by reduction in the number of traps at the point of greatest concentration of the fish in front of the river mouth (Solonennoye Strait).

Trap nets did not begin to be used in the Shala until 1961; j.n 1964 and 1965 there were 4 of them (2 local brigades each had 2). Salmon continue to be caught about Pyal'ma with drag nets; the local brigade has still not received a trap net.

During the years since Pushkarev's investigation there have only been three occasions (1939, 1940 and 1953) when the salmon catch for the whole lake has exceeded 300 centners. In the last quinquennium catches have fallen to the lowest level over the whole time known to us (table 27 and fig. 25) and but for the ban on the taking of sexually immature salmon in the open lake, catches would have been even lower. This situation is characteristic not only for the lake as a whole, but also for individual stocks. It should be noted that the salmon fishery is now based on the stocks of three rivers -- the Shuya, the Vodla and the Pyal'ma. The Shuya stock is the most numerous. It has yielded catches of between 40 and 140 centners, on average approximately 80 centners (up to 1960) and no marked reduction in the abundance of the stock has been noted over a period of 30 years (from 1932 through 1960).

Fig. 25. Salmon catches in Lake Onega between 1875 and 1965.

Catohes of the Shuya salmon have been divided into three groups on the basis of long-term data: high -- more than 100 centners, medium -- from 70 to 100 centners and low --- from 40 to 70 centners. However, there has been occasion in recent years to distinguish a new group of catches, namely \star "catastrophic" (less than 40 centners), which have been found to be considerably lower even than the mean low catches (table 28). As was to be expected; there has not been any increase in catches of the Shuya salmon in the subsequent years. On the contrary, there was a new decline to "catastrophic" beginning in 1967, which was a consequence of overfishing in 1959--1961 accompanied by a deterioration in the conditions of reproduction.

Salmon catches in the Pyal'ma River are sunmarized in table 29. The sharp reduction of catches in 1961 was due mainly to a reduction in the rate of exploitation owing to the banning of fishing in the river and in the lake within 1 km from the mouth. However, there was heavy overfishing in
2. Уловы иуйсного пососл в Нетрозаводской гуше, ц

*Key to Table 28: 1. Table 28 2. Catches of the Shuya salmon in Petrozavodsk Bay, centners 3. Group of catches 4. Year 5. Catch over the year 6. Mean catch by groups 7. Number of years 8. High 9. Average 10. Low 11. Catastrophic.

1959 and 1960 which should have an effect on the state of the stock in 1967----1970.

Since the end of the last century the main salmon fishing in the Vodla has been conducted around the mouth of the river, in the Shaka district. According to the data of E. A. Veselov (1932), the catch was 992 kg in 1927,

1350 kg in $1928,3179 \mathrm{~kg}$ in 1929 and 4491 kg in 1930 . Wi.th these catches in mind, M. V. Logashev (1931) wrote: "Although the salmon catch has not been reduced in the last three years, it has declined by comparison with catches before the revolution."

The catch in 1932 was either 52 centners (Zborovskaya, 1935) or 70 centners (Zabolotskii, 1936). From 1948 through 1957 catches ranged between 10 and 40 centners and were on average 20 centners ("Lakes of Karelia", 1959). The catches for the period 1955--1965 are set out in table 30.

Key to Table 29: 1. Table 29 2. Salmon catches in-the Pyallma Fiver, centners (data of Karelrybvod) 3. Year 4. Catch 5. Note. The data for 1962-1965 are not representative.

2 уловы лосося в районе Шалы, и

[^6]The salmon catch in the Shala is mainly dependent at the present time on the catch of the smelt. The better are the runs of the smelt, the greater is the amount of attention and energy paid to catching it and the less are the possibjlities for catching salmon. Salmon trap nets are not insialled until the and of lay-begimning of June during the smelt run. However, the mass run of the salmon into the Vodla is already ending at this time and later, irom the second halif of June, it is only feeding salmon which are caught along the Shala shore and then in small quantity It may therefore be that the catches of recent years reflect not so much fluctuations in the abundance of the salmon as the smelt runs. The 1963 fishing season was particularly disastrous (owing to ice conditions, the aburdance of the smelt and organieational failings) and the fishermer had no time for the salmon. The incresse in catches from 1961 is to be exrlained by the use of trep nets, wich nave a higher catching capacity than the drag nets previously used. Very small quantities of selmon are also taken in smelt drag nets. Some of the Vodla sslmon catch (migratory and feeding salmon) are taken around Cape Besov Nos, but feeding salmon from other rivers, for example from the neighbouring Andoma, may be present here. Once again fishing is heavily dependent on ice conditions, which were particularly unfavourable in both areas in 1963. One of. the two trap nets near the mouth of the Vodla was destroyed by ice at the end of May in 1965 and this immediately had an effect on the catches.

T:o judge by the proportion of the carry-over in the Vodla salmon stock, no more than 50% of the fish are caught. The present fishery cannot therefore be regarded as a fictor limiting the abundance of this stock.

In the past salmon and whitefish were the basis of fishing in the Suns and Nomina Rivers. In 1964 the selmon catch in the Cholmuga Bay area was only 1.3 centners (25--30 fish). It has been estimated by N. I. Kozhin
(1927a) that the catch in the Suna in 1926 was $21-23$ centners, and that the salmon catch had been reduced by one third by comparison with the 1870 s. Thirty centners were caught in 1930 (Zborovskaya, 1935), but this was the last consjderable catch: no more than 4 centners were caught in 1932, 4 centners in 1053, 2 centners in 1955 and 3 centners in 1956. Traps were set in the river mouth in the years 1958--1962 to catch salmon spawers: in no year were more than 20 fish caught and in 1962 only 4 salmon were taken, after which the fish station on the Suna was closed.

Like the Suna and the Momina, all salmon rivers apart from the Shuya, the Vodla and the Pyaj. ma have lost their commercial importance. This is evident fron the distribution of catches for the 1961 fishing season by areas of Lake Onega (table 31). The migratory salnon of the three main rivers accourted for 75% (51 centners) of the total catch of 69.45 centners; the migratory salron (Vodia and Andoma) is caught mainly in May around Cape Besov Nos ($850 \mathrm{~kg}, 12 \%$) and in the Andoma area ($280 \mathrm{~kg}, 4 \%$) The migratory selmon of the Suna accounted for $90 \mathrm{~kg}(1.3 \%)$ and feeding salmon from the remaining parts of the lake accounted for 616 kg (approximately 8%).

The restrictions on comercial and amateur fishing introduced from
1956 were the first measures to maintain salmon stocks in Lake Onega. However, it is clear that, given the present state of the spawning resources, these and measures can do no more than halt a further decline in abundance/are inadequate for the restoration of stocks.
II. The Causes of Reduction in the Abundance of the Salmon
in Lake Onega.

Salmon stocks have been brought to their present state by the following causes:

2 Распредедевис удовов досося в Оиеноном озере в 1961 г., кт ${ }^{2}$

3 Necr	4 месяцы							$5 \text { צ:~0日 мa }$	
	v	V	ソıt.	Y 1.1	IX	X	x	$\begin{aligned} & 6 \\ & 8 \mathrm{mr} \end{aligned}$	
8 IIana	1311	513	136	32	-	-	--	1992	28.7
9 Becos Hoc	850	-	-	-	-	-	-	859	12.2
10 Петрозаводская гyєa	615	1200	747	27	-	-	\cdots	2589	37.3
\# गhnosa $\because . .$.	485	43	-	--	-	-.	-	528	7.6
12. Paiior o. हрycro,	-	-	6	-	\cdots	-	-	6 165	0.1
13 Јеливово ...	-	-	-	11	143	11	-	165	2.4
\% Толиуйсков Оnero,	106	49	4	4	62	83	79	387	5.6
15 Суиа . .	-	-	-	--	90	-	-	90	1.3
16 Унmpar гуйa.	-	-	-	--	-	-	-	58	0.8
17 Aддомскиіт p-п	280	-		-	-	-	-	280	4.0
18 Beero	3647	1805	. 893	74	295	94	79	6945	

Key to Table 31: 1. Table 31 2. Distribution of selmon catches in Lake Onega in 1961, kg 3. Locality 4. Morths 5. Catch for Hay--Decomber 6. In kg 7. As a percentage of the total catch 8. Shala 9. Besov Nos 10. Petrozavodsk Bay 11. Pyal'ma 12. Around the Island of Brusno, 13. Lelikovo 14. Tolvuiskoe Onego, Chelmuzhi 15. Suna 16. Unitskaya Bay 17. Andoma area 18. Total.

$$
\cdots \cdot-
$$

1) alteration of the regime of the rivers and reduction of the spawning and rearing areas as a result of the construction of dams for power generation and logging and of the construction of other hydraulic engineering vorks;
2) pollution of the spawning rivers by logeing waste:
3) irrational commercial fishing;
4.) unchecked removals of spawners in the spewning grounds and what is loosely called "amateur"fishing for young salmon in the rivers.

Different combinations of these factors have had the erfect that some rivers have completely lost their role in the reprocuction of the salmon. The resources of syaming grounds have undergone considerable modifications since the last century; not only have the spawning and rearine areas been reduced, but there have been changes in their quality, not for the better.

Greet hern has been done to salmon stocks by irretional fishing, i.e. by fishing for imature feeding salmon in the open leke with gervy nets and long nets ("prodol'niki").
K. M. Ber (1860) worked out principles on which fishing for Caspian diadromous fishes should be based: catching should be concentrated in the rivers, sufficient symmers should be let trough to maintain stable stocks and, finelly, sturgeon and other valuable fish should not be caught in the open sea. He wrote: "I regard it as my duty to warn against extending fishing too far out into the seal, by which he meant that removals of . immature diadromous fishes should be limited. It is not only to the Caspian that these remarks of K . M. Ber apply.

It would seem that the "collapse" of catches in Lake Onega after 1900 should have dictated a cautious approach to the re-establishment of fishing for small salmon. Instead, however, it was recomended that fishing with garvy nets should be intensified (Pokrovskii, 1947; Pravdin, 1954), and this was done.

According to the evidence of N. N. Pushkarev (1900a, 1914b), the average veight of the salmon in the years when the fishery flourished was only $5-6 \mathrm{lbs}$, or $2-2.4 \mathrm{~kg}$. This weight is an indication of the intensity of fishing for immature selmon, if it is bome in mind that the average weight of fishes maturing for the first time ranges in the different stocks from 4.5 to 6.5 kg and is as a rule not less than 4 kg . This explains the sharp decline
in catches after 1900; the industry had exhausted several generations of feeding salmon.

A clear idea of the composition of catches of feeding salmon is given by the materials of F. I. Tikhii (1931a, the table on p. 11) for the area of Andoma Bay where 48 centners were caught in 1929 in long nets ("prodol'niki"). According to these materials, the catches comprised fish weighing between 0.55 and 0.85 kg , on average 2.6 kg (sic), and fish weighing more than 4 kg accounted for only 17%. It therefore follows that more than 1500 of the 1850 fish comprising a catch of 48 centners were sexually mature, i.e. that the quantity of young in the catch was more than 5 tines the quantity of adult fish.

According to the data of P. E. Vasil'kovskii (1927), who visited the area of Cape Petropavlovsk, where salnon were caught with "kerevody" (singlewinged lake nets) from August through November, the usual weight of the salmon in these catches was $2.8-3.2 \mathrm{~kg}$.

There are also similar data for subsequent years. In 1932, when fishing was renewed in the area of Brusno Island, 27 , centners were caught. The average weight was 3.5 kg and fish weighing more than 5 kg accounted for only 8% (Zborovskaya, 1935, table on p. 272), i.e. the quantity of young was more than 10 times the quantj.ty of adult fish: there were more than 700 young anong the 770 fish caught.

In 1958, the year when this fishing around Brusno was banned, young accounted for from 50 to 90% of the catch. Salmon which were feeding in the lake for the first summer were also found in the catch. These fish, which accounted for 13% of the total catch, weighed between 200 and 500 g . The average weight in this year was 2.3 kg .

Such a low mean weight is an indication that all size-age groups are fished with practically equal intensity with this type of fishing. Although doubts nay be expressed concerning this conclusion, it is supported by direct observations. Salmon which could have passed through the mesh are entangled in the nets by the jaws. It therefore happened that garvy nets with 80-millimetre mesh were equally efficient in catching adult salmon and smolts weighing 200 g or more.

Salmon feed in the lake for 6 years on average. Toward the end of the feeding season the eight groups in the lake range from $0+$ to 5 t (lake age); Iish of the oldest groun enter the rivers in the spring of the following year.

Study of the survival of the pink salmon after downstream migration to the sea has shown that 77% of the downstream migrants perish in the first 40 days and that 78% of the remainder, or 18% of the initial quantity of downstream migrants, perish in the following 410 days (Parker, 1965). Out of a total mortality of 95% during the period spent in the sea, 81% of the fish die during the first feeding season.

It is quite permissible to stipulate that all salmon which survive to the end of the first feeding season may reach maturity, i.e. that the *age pyramid" approximates to a column. When the level of reproduction js constant the abundance of all age groups of the feeding salmon will then be approximately the same.

In such a situation each of the 6 age groups in the case of the onega salmon should account for approximately 16.7% of the number of feeding fish (excluding fish which have spawned and returned to feed). In the autumn of 1958 the group $0+$ accounted for 13% of the total catch and 14% of fish which had not yet matured in the area of Brusno Island; these figures are close to
the stated figure of 16.7%.
The mean weight of a fish in the catch is 3 kg only if all the age groups are equally exploited. The mean weight for different ycars which hes already been given ranged from 2.0 to 3.5 kg . This indicates that immature fish accounted for up to 80% on average in the catch of feeding salmon, which is 4 times the number of fish naturing for the following year (the 5 t group and part of the 4 group).

The effect of this fishing may be approximately estimated by comparing catches in the area of Srusno Island and in Petrozavodsk Bay (table 32) and by using the mean weights to convert them to the number of fish caught.
/Табпица 32
2 Ұтовы лосиея, и

Mecro лопа 3	1048.	19.98.	1050 r.	1951 r.	1935 r.	1185 r .	19678.	$10 i 8$ r.	
5									
Район о. Брусно	71	46	85	34	38	27	48	18	46
6 Петрозалодекая туб́a	(i)	7.5	79	86	65	84	100	44	7.5

4. Mean catch 5. Area of Brusno Island 6. Petrozavodsk Bay.

If the mean weight of a fish is taken to be 3 kg for the area of Brusno Island and 6 kg for fish entering the Shuya, we find that catches over the period under consideration, converted to the number of fish, are slightly higher in the first area (1530 fish) than in the second (1250 fi sh). It should be noted that the situation was in fact worse than in our calculations: the actual catch of feeding salmon was higher since the large number of undersized
fish and of fish which had perished in the nets and begun to rot, which is inevitable in such fishing, were rot taken into store and were not recorded. Fishing of this type has been carried on in the Tolvuiskoe Onego area and in other places,' as well as around Erusno Island, but admjttedly on a lesser scale. It is undoubtedly one of the reasons for the decline in catches which began in 1056, i.e. a situation sinilar to that at the beginning of the century. If this fishing hed not been prohjibited, there would evidently now be nothing to catch.

Another adverse feature of the fishery, in this case in relation to the Shuya salmon, is overfishing of the spawning stock, which was particularly heavy in the years 1959-1961 because rather too many trap nets were used, (Yu. A. Smirnov, 1964). In the following years the fishing rate was slightly lower: in 1962 because traps were broken by floating logs and towed rafts of timber, in 1964-1965 because of the liritations nlaced by Karelrybvod on the number of fishing places in the Peskov area.

It must be stated that I. F. Pravdin (1957) warned against the - excessive use of trap nets because these might disrupt salmon and whitefish stocks, but this warning was not heeded. At the same time Pravdin himself (1954) recomended that fishing with garvy nets should be intensified.

In the opinion of V. I. Lastochkin (1959), thel Svir' River and especially the Vuoksa River, in which the spawning grounds are unaffected by hydraulic engineering works, are the clearest examples of the almost total destruction of salmon stocks as a result of overfishing with trap nets. These nets began to be used in Syir!! Bay in 1950. Their high catching capacity led to a rapid increase in the number used, from 9 in 1951 to 74 in 1955. The largest catch, 700 centiners, was obtained in 1952; thereafter catches began to decline rapidy, despite an increase in the number of trap nets, and had fallen
to 66.5 centners by 1957. In 1958 the fishing collectives themselves began to curtail fishing sirce it had become unprofitable. In 1958 the Svir' fish hatchery was itself obliged to organize special catching of spawners (these had previously been taken from commercial catches) and from that time down to the present no more than 10 spawners have ever been caught in a season. The Svir' stock, which vas the largest of all the lake salmon stocks, was destroyed within 8 years of the intensification of fishing, i.e. within the cycle of one year-class.

The salmon of the Shuya River will apparently avoid such a fate since the use of trap nets was here begun later and certain limitations were placed on fishing in 1961 and in 1964-1955. Nevertheless, it is to be expected that the abundance of the stocks arriving at the river mouth in the period 1967--1970 will be extremely low owing to overfishing in 1959-1961. Even after 1970 catches are hardly likely to reach the level of average catches (over the period 1932--1960).

Undex conditions in which commercial fishing is very intensive and few fish are let through to spawn, uncontrollable removals in the spawing grounds do particularly great damage, but unfortunately this cannot be assessed. . Another form of uncontrollable removal is fishing for salmon finger-lings. Tinis made an appearance in Karelia at the end of the 1930 s in comexion with the development of fishing as a sport, became widely prevalent in the post-war years and is still continuing although it is banned by the "Fishing Regulations..." (1960). An approximate estimate of amateur catches shows that several thousand fingerlings of the downstream-migrant size may be caught in a single river during the summer. At its present level this fishing doss at least as much harm as the uncontrollable removal of spamers (Yu. A. Smirnov, 1965).
III. An Estimete of the Abundance of Onega Salmon Stocks.

A rough estimate of the abundance of individual salmon stocks may be given by a "number" scale:

1) the stock has disappeared completely (0);
2) the stock contains less than 10 or 10 fish (1--10) ;
3) tens--hundreds (10--100);
4) hundreds--thousands (100--1000).

Fig. 26. Alteration in the abundance of salmon stocks.
1 -- Lososinka; 2 -- Shuya; 3 -- Suna; 4 -- Lizhma; 5 -- Unitsa;
6 -- Kumsa; 7 -.- Povenchanka; 8 -- Nemina; 9-- Pyal'ma; 10 --
Tuba; 11 -- Vodla; 12 -- Andoma; 13 -- Vytegra; 14 -- Megra; 15 - -
Vodlitsa. Levels of abundance are plotted along the y-axis (a square denotes the abundance in the past and an arrow the present abundance).

A scale of this type may be used to estimate not only the present state of stocks, but also the aiteration in their abundance over the time known to us; this is reflected in fig. 26. When there was no information on the state of the stock in the past its assumed abundance has been indicated by a question mark.

CnIy those stocks wich are nurbered in hundreds--thonsends of fish are of inderencent comercial inportance. There are now only three such stocks, those of the Shuya, the pyal'me and the Vodla. The stocks of the Suna, the Lizhma and the Andoma vere included in this cetegory comaratively recently, in this century, but the first hes completely disappeared and the other two heve lost their comerciel ingortance. Stocks wich have disameared also include those of the Lososinke, Iovenchanha and Vytegra Rivers and probably thet of the Vodlitsa. There is no information conceming the rast comercial importance of the stocks of the Enitsa, Kuasa, Hemina, Tuba and hegra Rjvers; their present numbers are extremely low.
V. V. Veshchezerov (1931) gives a physical estimate of the catch for the Andoma of up to 500--750 salmon in a season. The results of a calculation made by Sevzaprybvod (Leningrad) suggest that this stock has been greatly reduced; only 41 fish were recorded in 1963 (communication of I. I. Ryzhov), - but this is not the entire stock, since salmon also enter the Samina, a tributary of the Andoma, and there were no counting fences in this tributary.
N. A. Borodin (1916) put the catch in the Suna at 220 fish. According to figures given by N. I. Kozhin (1927a), the catch in 1926 may be estimated at 400--500 fish; according to the data of M. B. Zborovskaya, the catch in 1930 (30 centners) was 500-600 fish. In the latter case, as in the Andoma, the whole stock may have numbered up to 1000 fish, since considerably less than the entire catch was recorded and not all the fish were caught.
V. V. Petrov (1925) gives a figure of 2000 fish for the catch in the Lizhma (around the year 1916); the entire stock does not exceed 200 fish at the present time.

It is possible to have more precise information on abundence in some instances when reliable commercial statistics are supplemented by meterials on the structure of the stocks. It may be considered with confidence that the abunazonce of the stock approaching any river has not exceeded 300 fish since 1900. Materials for the last few years enable us to give a quite accurate estimate of the Shuya, Eyal ma and Vodle stocks.

The salmon stocks approaching the nouth of the Shuye in the period 1057-1963 numbered 900--2500 fish with an average of 1700. 1 Between 60 and

1 Translator's note. These figures contradict the statement in the last paragraph in which 300 should pernaps read 3000.
90% of the stocks were taken by the industry and approximately 10% by "amateur" fishemen. Very few fish spawned, especially from 1959 onward, \because when the rate of exploitation in Petrozavodsk Bay reached the limit. The exception was 1962 when the trap nets in the best fishing place ("IJipa") were torn away by logs at the height of the run and were not restored for two weeks. This enabled a large number of salmon, up to one third of the stock, to migrate upstream without hindrance. There are'a number of facts which indicate that the number of salmon entering the Shuya has been sharply reduced from 1959 onward. Salmon and salmon redds have become a rarity in the Syapsya, a tributary of the Shuya. Our search for redds in this river in October 1959 vas frujtless: no redds were found even in those rapids where the salmon always spawned previously. Up until. 1958 inclusive local
inhabitants found dead salmon which had perished after sowning in the Kindasovskoe spawing ground; this was not observed in the following years. After 1960 it became very rare for spawned salmon which had migrated downstream in the spring after overwintering in the river to be caught in Petrozavodsk Bay and none were caught in 1961 and 1962. Mets were specially erected around the mouth of the Shuya at the beginning of May 1966 but only 5 spavned salmon were taken. This information enables us to improve the accuracy of the estimates of abundance.

A counting fence was installed in the Fyal'ma River in 1963 and 1954 although admittedly not for the entire run. On the basis of these data and taking the catch and the wastage into consigeration, the stocks of these years ere estimated at 500-1000 fish (Smimov and Snimova, 1965). Accoring to N. Ya. Danilevskii (1875), up to 800 salmon were taken in the summer in good vears at the trap fence erected et thet time in the Fyal'm, i.e. the abundanoe of the stock in those years was within the same range as at present. Admittedly, we know nothing concexning catches in the more distant past, but they may have been far higher.

According to Danilevskii, the catch in the Vodla was at least 400 poods, which corresponds to 1000 fish, and in addition some of the fish entered the river. Including the catch, the wastage and the proportion of the carryover the stocks of 1962--1965 may be estimated at 500-1000 fish.

The abundance of the mature part of the entire population of the onega salmon in the quinquemium 1961--1965 did not exceed $4--5$ thousand fish; in the following quinquennium the abundance was at least halved.

I. Conservation of Stocks and Regulation of Fishing.

The purpose of conservation measures is primarily to halt the reduction in abundance and not to permit stocks whose numbers have become very low to disappear. This latter point is very important, since owing to the high plasticity (adaptability) of the salmon and its tenciency tio form local groupings, there are evidently no completely identical stocks and each stock possesses a combination of properties specific to it alone Because of this different stocks are of unequal value for intensive artificial culture. In the conditions wich have developed in the Onega basin conservation measures alone not combined with improvement works and artificial culture cannot lead to a significant increase in abundance, especially within a short period, but this in no way detracts from their significance, which is now overriding. The putting of our rivers into order must be begun with the systematic implementation of the main measures for the conservation of stocks and the regulation of fishing. . The following should be included in the conservation measures.

Discontinuation of logging in those rivers where conversion to another form of transport (for example road transport) is possible: firstly the Nemina and the Suna; unfortunately this i.s at present impossible in the Vodla.

The establishment of a working regime of dams which is in accordance with the interests of the fish industry. This applies in the first instance to the Vama dam (Vodla), where discharge of water from the reservoir should.
cease by the end of September and where at the end of Cotober the dam at the head of the Sukheys Voda should be sealed so that the entire discherge is directed into the Vama. In the suring the Vama dim should not be closed before the beginning of the flood, i.e. not before the first of lay, to avoid drying out of the unere reach of the river and the mass death of fish, including younc salmon moving to the umer mpids after overvintering whe rogime of the dan at Shushki (Sune) hes not been established; complete closing of the am for the winter is wermitted there. The question of the Kedrozero dam (izhma), Which prevents the passace of salmon to the upper spewing erounds, bas not so far been solved.

Subtemotization of the exoloitetion of comrercial stocks, nomely

transition to concentrated fjehing with aprowriate rodification of the industry so that the ratio of removals to escapement should in fact be $1: 1$ and not as it was in the Iyalma in 1963 and 1964 where, owing to the continuetion of lako fishing, the actual renovals were 3 times the escapement, $3: 1$ Inis measure will not only ensure ageinst overfishing, but will promote an increase in abundance (long-term experience in the rivers of the Kola Feninsula); because it completely justifies itself economically it is practised in the Atlantic salmon rivers of Murmansk and Archangel Provinces, including the largest AtLantic salmon river, the Pechora.

The principles and merits of concentrated fishing were set out more than a century ago by k. M. Ber (1860). If we wish the rational exploitation of stocks of lake-river fishes and to be certain of future catches we must convert to what is known as concentrated fishing, in which catching is concentrated in the river mouths. When this is done we shall have accurate knowledge of the abundance of the stocks, which will permit accurate calculations of the effectiveness of natural reproduction and make it possible
to keep a check on the state of the entire population. After the abundence of the stocks has increased to the maximum possible for each river, the proportion of removals may be increased. After the maximum abundance for the stock has been reached it is evident that a constant number of spawners Cor a number which varies slightly, in relation to the amount of water in the year) must be let through to spawn; this number will be related to the spawing and growth area and the whole of the remainder of the stock will be removed.

Concentrated fishine is quite feasible at the present time in the Shuya and the Pyal'ma, but needs prior preparation, special traps and strict recording, without which the very principle of fishing is lost. A repetition of what took place in the Eyal'ma in 1063 and 1964 under the guise of concentrated fishing is impermissible.

It is highly desirable that all fish alloved to pass the counting fence should be tagged. This operation will not constitute a large amount of work since the abundance of the stocks is slight.

The suppression of uncontrollable removals is an urgent and pressing problem since the consequences of the catching of spawners in the spawning grounds are particularly grave given the present smallness of the spawning stocks. Major obstacles ("fences") are constructed in the Vodla to catch migrating salmon; there were up to 50 in the reach between Fadun and the settlement of Vodla in 1963. Nets, spinning and harpoons are used in all rivers. We have observed unfinished empty salmon redds in the spawning grounds in the Lower Iizhma and the Tuba because the spawners had been caught.

In the case of concentrated fishing and the calculated escapement of spawners uncontrollable removals will distort calculations of the commercial return in addition to reducing the future catch.

Another form of uncontrollable removal on a larger scale is the catching of salmon fingerlings by rod and line, which is practised both by adults and by children. It occurs in all rivers with the exception of the Vama and in part the Fyal'ma. According to our calculations, this fishing does at least as much harm as the catching of spawners. Tens of thousands of smolts and large parr are caught in the rivers between the spring and the autum; the losses to future cetches from each thousand fingerlings will be at least 5-10 centners.

Imorovement of the Fishing Regulations is necessary because eremies and competitors of the salmon are protected by the total ban on amateur fishing in salmon rivers esteblished by the existing regulations (1960), and this runs counter to what is intended.

In those rivers where no meesures of biotic improvement will be carried out rod fishing and fjshing with live bait (but not trolling !) should be permjtted, but only in reaches that do not provide pools for solmon and Whitefish. This is needed in the first instance to put down pike. Such fishing may be permitted in all rivers before improvement works are carried out in them.

In order to minimize the possibility of uncontrollable removals in salmon rivers, it is possible, firstly, to allocate certain reaches of the rivers (apart from the rapids) on a contractual basis to teams of fishermen and, secondly, to permit fishjng in salmon rivers on only two days a week (for example, on Gaturday and Sunday), which will facjlitate the conservation of the rivers.

II. Improvernent Works.

The purpose of improvement works is to increase the productivity
of spawning and growth areas and thus to compensate the reduction in the resources of spawning grounds. Such operations were until recently impossible and undesirable since there was intensive logging in almost all the rivers of Southern Karelia. With the cessation of logging it is becoming necessary to carry out a combination of improvement works and not merely to clean up the rivers. When deciding on the allocetion of resources for improvement works it is naturally essential to take into consideration, in addition to the natural features of the river, the orospects of its economic exploitetion and the technical potentialities of improvement works.

Because there is no hatchery in Lake Onega the abundance of the salmon may be incressed only by natural reproduction in the rivers not used for logging. It is show by foreign research and exnerience that the caraing out of biotic improvement (the suppression or total elimination of enemies and competitors) may sharply increase the productivity of spawning and rearing grounds.

A number of investigators (Foerster, 1938; Ricker and Foerster, 1948; Blson, 1950, 1962; Allen, 1951; Ficker, 1954; Smith, 1955; Watt, 1955: Horton, 1961) have astablished the high level of losses due to the. destruction of young fishes by predators. Thus, according to the estimate of Allen, the losses of young sea trout (Salmo trutta) by the end of the second year of life reach $80-93 \%$, and in the case concerned (New Zealand) eels are the greatest predator. The only way to increase the productivity of a body of water is to destroy the predators (fishes, birds and mamals) which consume the fish which are of concern to us, and no other measures can correct the position. The experience of Canadians (Smith, 1955) has shown that the fertilization of trout lakes and the introduction of hetchery-reared young did notoroduce an increased yield until the predators (eels and fish-eating birds)
which had consumed the whole of the adidion to the yield begen to be destroged. However, once the predators had been destroyed the yield of the trout increased by 6.5 times at the former stockine density and by 11 times at double the density, although admittedly the growth rate was slightly lowered in the latter case. The neasures for control of redators are fishing out, the construction of insumountable barriers (dams with penstocks for the removal of water) at the riven nead, and the shooting of birds.

The fertilization of Iskes may yield very good results. Thus, the size of domstreammignating red salmon has increased by this measure in Bare Lake (Aleska) and, as a result, survival in the sea was increased and the return rose from 3.26 to 7.89% (IVelson, 1959). rhis measure may be rocomended for our source lekes whicin ane the origin of small spaning rivers (e.e. the Upper Lizhme and the Elgamka). The food sumply of the young vill be increased by ntankton carried out of the lake, wich is very important in the transition to active feeding. An attempt may also be made to introduce young directly into the lakes after urdesirable fishes have been eliminated from ther (chemical means make this an easy matter). However, it must be remembered that overfertilization is far worse than inadequate fertilization, since it may lead to total mortality of the fish as a result of oxygen starvation.

According to the observations of A. A. Zabolotskii (1959), parr are able to grow vell even in small lakes without an outlet, in which they transfer to predatory feeding (on minnows). It might be appropriate to stock some fishless source lakes with the smelt or the minnow in order to provide food of suitable size for parr.

The destruction of undesirable fishes in salmon rivers. will permit of an extension of the use of such a measure as the stocking of the vacated areas with young. Feilures in the release of larvee due to predators have
obliged a switch-over to the release of older young with which, for example, vacated areas in the Gamryroy Eiver were fillod (Smith, 1963); and this stocking has led to a positive result. But in the absence of predators, as is the case above the dam in the Lover River, the release of larvae yields an excellent commerciel return, in which uniform distribution of the lavae over the whole of the suitable area goes hand in hand with success (Iarsen, 1959). It is far simpler to transport and releese salmon as larvae than as older young.

After enemies and competitors have been suppressed in rivers obstacles must be erected to keep these fishes out of the river. In some cases it may aparently be possible to use rotating net drums or webbing of the type used abroad (Isaev, 1962). However, in our view, small dams with a drop of $1.5--2 \mathrm{~m}$, winch are insumountable to all fish except the salmon, will be most effective. It is pacisely because oi such a dam thet the salmon in the Tuba has existed under conditions approximating to monoculture.

Before the downstream nigration of the smolts begins the reaches of
\therefore the rivers below the obstacles must be fished out to remove predators or \because chemical repellents must be used.

The following improvenent works need to be carried out in the rivers of the basin of Lake Onega.

- Rubble, subnerged logs and unnecessary loggine structures must be removed from the river beds. It is an unrealistic undertaking to remove bark from the river bed, since not only are there no machines for this purpose, but none are being designed, and even the raising of submerged logs is carried out manually.

The antting of vegetation in bays around the river mouths and in the
lower reaches, which is needed to worsen environmental conditions fox the pike. The suppression of predatory and worthless fishes. The different approaches which are practicable in different rivers include, for exemple; a) the fishing out of all fishes entering the river betveen the ice run and the start of the salmon and whitefish run, for which purpose the bed is completely fenced across with fine-mesh traps; b) amateur live-bait fishing in the pools; c) use of the chemical method or eiectrofishing for the complete treatment of small rivers.

Spawning rivexs cannot be brought into a proper state unless a specialized fish breeding and improvement station is organized. The principles worked ont by G. V. Niko'skii (1956) for the operation of such stations for the salmon rivers of the Soviet Far East are largely also applicable to the conditions of Karelia. As yet, however, it is not ylanned to set up an improvement station. in Karelia and to carry out improvement of the salmon rivers.

One of the causes of the underestimetion of improvement works is the lack (both in our country and abroad) of precise data for estimation of the possible yield of downstream-micrating salmon per. hectare of spawing and growth area after the improvement of the river. It is therefore not clear to what extent the loss of spawning grounds (and catches) throughout the basin of Lake Onega may be made good by the improvement of the remaining small and mediumsized rivers. It was solely for this reason that improvement works were not included in the "General Outline of the Development of Lake and Pond Fishing in the Karelian ASSR" (Gidrorybproekt, 1964).

The supposed high cost and the lack of mechanization are serious arguments against melioration. The point is that the existing legislation on water use does not provide means of obliging logging organizations to clean the rivers. The results of the mismanagement of the timber industry are therefore
turned into greet losses and great expenditure for the fish industry.
Were the situstion to be cifferent, the expenditure on lisheries improvement would be very slight: it would reduce mainly to biological measures, to elimination of the eneries and competitors of younc sainon and mitefisin. This is quite feasible with the existing methods in small and medjum-sized rivers. The cerrying out of biotic impovement to increase the efficiency of noturel remroduction will therefore be desirable and undoubtedly advantageous in those rivers in which technical improvement is not required or where the amount of technical improvements needed is small.

III, The Fossiole foundence of the Salmon in Lake Onega.

In lookine at the size of the lake, its productive potentialities should not be overestinated. At.the present level of development of the resources of the industry, Iake Cnega camot be regarded as more then a "live container", from which the contents may always be exhausted. It is therefore extremeiy important to determine the maximum quantity of predatory fishes, including salmon, which may be fed on the plarkton-feeding fishes (vendace and smelt, and how intensive vendace and smelt fishing should be if reproduction is not to be disrupted.

It is essential to determine this in order not to allow the productive properties of the valuable predators to be lowered (slowing down of growth and maturation which will lead to an increase of the feeding ratio). This will occur if the abundance of predators is excessive with limited food resources, i.e. if the food supply is inadequate. Such a feature has been observed in the breeding of trout, not only in the system of small lakes of the Solovetskie Islands (Gul'el'mi; 1888), but also in fairly large and productive lakes of New Zealand (Percival and Burnet, 1963).

How many samon may be fed in Lake Orega? Unfortuntely, we are unable to give a clear answer besed on a knowledge of the abundance of plankton--feeding fisines. However, a knowledge of the changes occurring in Lake Onega Qoes permit of an ppoximete estimate of the nermissible abundance of salmon based on fisheries data. This figure may possibly turn out to be understated, but in this case understatement is less risky then overstatement.
mhe following remerks should be made concerning the rlemed catch in the General Outline (2000 centhers)。 This figure is not supported by calculations on the food resources. It is anorently overstated, at all events. for the oresent condition of the lake.

The point is not only thet there has been no increase in the abundance of the vendace and the anelt, wich are the food of salmon and other valuable predators, since the end of the last century, ise since tio time when maximum salmon cetches were fixed. in. i. Fushkarev (191ta) noted such a heavy reduction in venaace catches that the vendace fishery had become unprofitable. Complaints by fishemen of a reduction in vendace catches had earlier been noted by K. F. Kessler (1868) and N. Ya. Danilevskii (1875).

In addition to the disappearance or reduction of some stocks of vendace and smelt, there has been a heavy increase in the rate of exploitation and in the catches of these fishes throughout the lake by comparison with the last century and a corresponding reduction in the proportion of them available for predators. However, it was noted as long as 50 years ago by N. N. Pushkarev and slightly later by V. V. Veshchezerov that salmon catches were dependent on the ebundance of the verdace.

At their present low level of abundance salmon do not experience lack of food, as is evident from the growth rate and the time of meturstion. However, the existing food resources will be inedequate with the present trend
of the industry for a tenfold increase in the fish mass of the population. The following facts are indicative of a reduction in the food resources oî predators.

1. The vendace stock in Kondopoga Bay has been destroyed by effluent discharged by a pulp and paper combine (catches reached 1000 centners in the past).
2. Thegentry of the smelt into Petrozavodsk Bay has been reduced in recent jeare owing to its pollution. The vendace, which was previously plentiful here (Fushkarev, 1900a), has practicaily disappeared.
3. The vendace stock in the area of Velikaya Bay has ceased to be of comercial importance (according to the data of Karelrybvod, pre-war catches were mone than 2.5 thousand centners); overfishing is a possible cause.
4. Dine abundance of the southern vendace stock in the area of Cape petropavlovsk has been reduced, aprarently as a result of overiishjng: the catch, which was of the order of 3000 centners in 1898 (21000 poods: Eushkarev, 1914a), fell to 1000 centners in 1934--1935, 943-… 233 centners in 1956-1961, oniy 97 centners in 1962 and 170--650 centners in 1963-1965. The assumed canse of reduction in the abundance of the stock in recent years is the heavy silting observed in 1961 and later as a result of the dumping of bottom material from dredging of the Volga-Baltic canal:
a) the increased turbidity greatly impeded fishing;
b) the increased turbidity may have forced the vendace to alter the usual paths of its spawnihg migrations.
5. Removals of the vendace and smelt have been increased.
a) According to K. F. Kessler (1868), vendace catches at Tolvuiskoe Onego (the main fishing ground) did not exceed 15000 poocis +1200 poods of vendace roe $=2600$ centners; in 1870-1871 (Danilevskii, 1875) the catch was

4800 poods of veridace +400 noods of vendace roe $=830$ centners. In the veriod 1948-1951 catches in the same area raned between 3212 and 8366 centners and were on average 5300 centners. Therefore, the average catch of these yours was more than twice the record catch in the nast.
b) Nerezhe (hoop net) fishing for the smelt in the Shala area, which was begui in the 1090 , we initially carried out on a snell scele limited to the needs of the fiskermen and the not-very-numerous locel porulation. the 102$\}$ catch of $\{26$ centners vas regerded as extremely successful: the cmat "asked to be caught" (Lagashov, 1931). In 1948-1951 the smelt catch in this area vas 1572--2286 centners, on averace 1940 centners, or 2.3 times the former record catch. In 1962-1965 the catch by the fishing brigades of the fich conbine alone varjed between 1890 and 3270 ceatners, on average 2500 centners, or 3 times the catch in 1928.
c) A similar pattem is also observed in the southern part of the lake -- in the Petrowalovek, Vytegre and Andona fishing grounds. In 1928 the catich here was only 600 centners (Veshchezerov, 1931). In 1948-1951 catches ranged from 1572 to 2845 centners, on average $\dot{2}^{4} 400$ centners. Smelt catches in this area were even further increased in the subsequent years: in the period 1956--1965 they were between 2669 and 5324 centners, on average 3700 centners.

Such an increase in the smelt catch is characteristic for the lake as a whole. The smelt catch now exceeds the demand: a) the demand of the population is low; b) far less is required for canning and other forms of processing than is caught; c) state fur farms prefer sea fish because it is cheaper.

By continuing to fish for the smelt on the present sale we are
reducing the food resources of more valuable predatory fishes -- salmon, trout, char, pikermen and viitefish (a facultative aredator). The economic expediency of continuing such fishing is doubtrul.
6. Special fishing for pope (with "mutniki"), which was earlier mactised, has lons been abanoned since it is commexcially unprofitable and forbidden for the nopulation. According to avajable observations (Fokrovakit, 1953), the abundance of the vendace may be largely limited by the pope which consmmes its eges in the spawning ground.
i.e are, therefore, faced with the disappearance or sharp recuction

Of a muber of stooks of the vendace and with fishing for it and for the smelt which is cxtrerely intensive by comparison with the last century, i.e. with an overall reduction in the food resources of predators. Although, on the other hand, the abundance of gike-perch, burbot, char, trout and wintefish has been heavily reduced, we cannot be certain that the food resources thus "freed" wi.1. make it possible to support a salnon stock which will equal in fish mass the lost catch of gredators. Given the present trend and rate of exploitation in Lake Onega there are therefore no grounds for counting on a salmon catch of 2000 centners, especially because such catches are not known even for the best times in the pest (tables 26 and 27; fig. 25).

A very rough calculation may be made of the food (smelt and vendace) needed to obtain 2000 centners of salmon. The food ratio for the salmon has still not been established. In rainbow trout reared on fish meal the food ratio ranges from 5 to 7. It should undoubtedly be considerably higher in the salmon (longer feeding period, expenditure of energy in the search for food) and at all events at least 10. Therex̂ore, to obtain stable salmon catches of 2000 centners at least 20000 centners of smelt and vendace should be left annually for the salmon. In additjon, some quantity of these fishes is essential for
fishing, for other predators and, finglly, for reproductione What part of the smelt and vencace ponulations should be left for renroduction to prevent a decline in their abundance has not as yet been established. But even were this to be known, we could not give clear recomendations on the reconstruction of the ifshery. The point is that no attempts have hitherto been made to estimate the abundance of stocks of plankton feeders in Iake Onege and the extent to which they are exploited by the industry.

In recent years $(1953-1965)$ the industry has taken betweer 10.3 and 16.5 thousand centners a year of vendace and smelt combined (table 33), on average approximetely 15 thousand centners. Food ratios may be used to make an admittedly very amproximate estimate of the proportion of these fishes which will remain for predators. The vendace and the smelt are consumed by salmon, trout, char, burbot, pike-perch end to a lesser extent pike, rexch and whitefish. The last two species heve not been considered in examination of catches of predators, The catch of predators was 2874 centners in 1930; between 1953 and 1965 catches ranged from 1274 centners to 3887 centners (teble 33), on average approximately 2300 centnexs. The last-mentioned figure should be increased to 2.5--3 thousand centners to account for the developed amatelir fishing and the wastage of catches. If $1 / 3$ of the stocks escapes being caught, the total fish mass of predators may be estimated at 4-5 thousand centners. With a food ratio of $10,40--50$ thousand centrers of piankton feeders are needed to support such a quantity of predators. Unfortunately, no estinates have hitherto been made of the remaining reproductive part of the stocks: It may be assumed that at the present rate of exploitation of the vendace in the main fishing grounds, Tolvuiskoe Onego, no more than $1 / 3$ of the stocks approaching the spawring grounds avoids being caught. The situation is apparently the same with the smelt in the Shala area.

Соотношевде дланктофагов и хищнннов							
	1953 r.	193: r.	1953 F.	1956 r.	1937 r.	19:88.	$19: 3 \mathrm{~F}$
3 Ойциі̆ улиов по озеру, ц	21140	26040	21686	25378	18906	21120	22240
4 Э.ов рапупки и нирюш-	13922	165.37	12851	16801	12512	14034	14255
5 Hons panymen и корян-							
6 кия в удове, "о	66 3147	64 3410	59 3887	65 2945	66 2027	66 2331	64 1935
7 Ornошенде ॠова хиннинив к ynoby nametoqnarob, $\%$.	23	21	30	18	16	17	14

8 Табтмиа 33 (продолжение)

	14.1.) r .	1961 \%	1962 r.	1963 г.	190' r.	1963 r .	(¢)
З Общий уов ио озеря, п.	17190	16335	10600 ?	20371	15838	1864	$\underset{\sim 20}{\sim} 20$
KH_{4} म • • •	13429	12974	15100	13969	10283	14160	~ 15
5 To:m panyani и норниткif b ygore, 0%.	7.5	79	77	79	65	76	$\sim \sim$
6. Fros хнциmion, if...	1274	1755	1739	1807	2018	1708	(i) ~ 2.3
7 Отнонение уаива хициинов hi youby n:tankreqaгов: \%	9	14	12	11	20	12	- 15%

Key to Table 33: 1. Table 33 2. Structure of catches throughout liake Onega. Proportion of plankton-feeders and predators 3. Total catch throughout the lake, centners 4. Catch of vendace and smelt, centners 5. Proportion of vendace and smelt in the catch, \% 6. Catch of predators, centners 7. Catch of predators as a percentage of the catch of planktonfeeders 8. Table 33 (continuation) 9. thousands of centners 10. Means.

If the "avoidance" is extended to $1 / 3$ (i.e. approximately 7000 centners) of the catch of vendace and smelt throughout the entire lake, the
annual balance of gross production of plankton-feeders appears as follows: 40-- 50 thousand centners are consumed by predators (natural mortality); 15000 centners are removed by fishing; 5--10 thousand centners remain for reproduction; a total of 60--70 thousand centners is the annual "turnover:" of. plankton-feeders.

Is a considerable increase in the abundance of plankton-feeders possible, for example to 2--3--5 times the existing level? There is as yet no answer to this question, primarily because we do not know the extent to which plankton feeders are supplied with food and whether there are "free" resources of plankton. There may be randor causesfor the reciprocal relationship observed between vendace and smelt catches (fig. 27). But, on the other hand, we know that such a pattern may characterize competitive relations when the food resources are under pressure.

On the basis of all that has been said, we should not plan to obtain a gross return of salmon (catch + number of fish for reproduction) of more than 1000 centners a year, at all events not until the food resources have been clarified.

A relative excess of feeding salmon with limited food resources may lead to an undesirable deterioration in growth and to retardation of maturation and, consequently, slgw down the rate of return, the recouping of resources expended on fish management. However, if the food resources are subsequently found to be adequate, the number of salmon could be increased.

In order to make better use of the food resources in the lake the abundance of other salmonids (trout, char and whitefish) should also be increased. The most desirable and suitable whitefish are lake-river forms which are readily accessible for fishing and whose abundance can be regulated. There is no clarity concerning the possible (or maxinum permissible) abundance

Fig.' 27. Relationship between vendace and smelt catches in Lake Onega. Continuous line --. vendace, broken line --- smelt.
of these fishes. Solution of this question depends on what will be accepted as the optimum structure of catches throughout the lake. In addition, as in the case of the vendace and the smelt, it is not clear what part of the stocks should be left for reproduction if we count upon natural reproduction.
IV. The Fish Hatchery and Natural Reproduction of the Salmon.

The need to construct a fish hatchery to maintain and restore stocks of the Onega salmon was already apparent more than half a century ago (Pushkarev, 1914b, 1914c; Borodin, 1916). This need has now become even more acute. The profitability of salmon fishing under present-day conditions is confirmed by the calculations of GosNIORKh (State Research Institute for Lake and River Fisheries)(Khalturin, Leizerovich and Yandovskaya, 1965) and by foreigh experience (Carlin, 1964).

The construction of a hatchery and conversion to the artificial propagation of the greater part of the population while making simultaneous use of the rivers (spawning and stocking) will make it possible to resolve a number of difficulties and holds out tempting prospects.

To begin with, it is only in this way that the number of fish may be increased in a short period to the desired limits (in conformity with the food resources). Secondly, the size of the removal (catch) increases, and in the case of hatchery propagation alone becomes practically equal to the return, since a small quantity of spawners is needed for reproduction. Thirdly, by annually releasing a regular quantity of standard downstream migrants it is possible to count on obtaining more stable catches in the future, since the fluctuation in the yield of young in years when conditions differ, which is a feature of natural reproduction, is excluded. Fourthly, selection which will subsequently increase the efficiency of fish culture becomes possible. Fifthly, if more young are reared than are needed for Lake Onega they mey be introduced into other suitable bodies of water. Finally, the construction of a hatchery will make it possible to use vacated growth areas in those rivers where the salmon stock has disappeared or is on the verge of disappearing. In this case previous preparation will be necessary (destruction of enemies and competitors), after which such rivers (mainly small and medium-sized rivers) may be stocked even with larvae, quite apart from older young. This form of combination of hatchery and natural reproduction will be particularly desirable if the contribution of hatchery propagation to the maintenance of numbers is not overwhelming, for example if initially there are insufficient growth areas (ponds) or insufficient food for the production of smolts.

Even were we to be able to replace natural reproduction completely by
hatchery reproduction, there would be no justification for refusing to use the rivens. The task of fish management is to make effective use of bodies of . water and not to leave them in a chaotic state.

At the present time natural reproduction can do no more than maintain the population of the Onega salmon at the present low level and we cannot count on an increase jn catches. Moreover, catches will be extremely low by the beginning of the 1970 s and even in the subsequent quinquennium they will not xise above the mean. Every measure must be taken to conserve the stocks which still exist so that there should be materjal for the hatchery when it is constructed. The salmon of the Shuya River and the autumn salmon of the Pyal'ma River are most suitable for propagation. The salmon is the most valuable and fast-growing of the lake predators. Accelerated hatchery rearing of smolts, i.e. reduction of the river period, is one way of hastening the return and recovering the investment. The selection of fast-growing and maturing forms is another way wich is also unthinkable without hatchery propagation. Should a fish hatchery be constructed and begin mass propagation of the salmon by 1975 a commercial return will be obtained by 1985 and the size of the catch will depend on the intensity of fish culture. Irrespective of the prospects for the construction of a hatchery it is essential to proceed with improvement and intensify the utilization of the spawning and growth areas, since for the next 15 years at the very least the catches will be provided exclusively by natural reproduction and their anount will be determined by the state of the resources of spaming grounds.

B3610greghy

A. fuccian yabiantiona

Ifemsletors note The case of use the tithes in this list hovo hean rebswmed in linglidh shphabetion owder ot the author of ach titla (finse authos, if more than one). The following forinala, ococsional publicationd and pobliching housos are given in twanditorated form.

At -achapariad Russtan headery of seiences
AN SASE - USSR Acadery of Beiencos
Byull. xyon. khost - - Tisherises Buldotin

G0X - . Stato Dydrological Ingeitute

Goa, ied. KF Bis Stato Iubl. Bouse of the Karelowinnibh sas
Gos. Hopha .an state leg. Tust. for Lake and liver tisheries
Tmvo 及akinke ikhtjol. lab. - Bull. Naku Ienthyological Lab.

Iav. Min. genled. i got. dnushchesty - Bull. Min. Agricultare \& Stete lande

Tev. N. -i. ikhtiol. inst. - Bull. Ichthyological inom. Trust.

Inv. Otd. prikl. ikhtiol. - Bull. Dopt. Apmlied Ichthyol.
 Johthyol. \& Efishery Resemrch
 Statiom
 -Union Rea. Inst. for Luke \& Kiver Jisheries

Karelrybvod - Karelian Fieneriec Trust
Karelt'sk n-i. mbokhoz. st. - Karelian Pisheries Ree. Etation
Kargonixiat -. Karelian intate Eublinhiag Mouve
KF otd. Witonk - Karelominnsh Division dul-Union Ses. Inet. for Lako \& Rivar tieherios
Hoz. Se-z. Fraya - Tomony of the Hortheastern ?emritory
Lendrakaya pravda -m Lenin's tiruth (Repubiican newspaper)
Leninekoe zmayy - Lemin's Banner (Requblican newapaper)
 tho Northeza Basin
wiv -... Hoseow State Tnivenaty

 Bootaty and Chion Admandation Por Reservationk, zoole divo
 Tnet. for hake f Hiver Fisherion
Hauk - Letence Pubiching Houce
010n. Eub. zeustra - Oloneta Quborniya Zomsto (elected rusal council)
Olon. Eh. -- Oconional laners on the olonets Gubemiya
yer tipu Mor min. - Fotertof Printing Works of the Naval Miniatry
Kybu. Khoz. -... The PLan Inanatry
Eybn. khoz. Karelii - Whe Karelian Mish Induatry
 Tess. Inst. for sea Fhtheries \& Oconography
 aegtom

Mr. Boredinely biohe et. Eransactions Borodino Buological Station
 Neas Tnst. for teke tr liver Tirherien

 of Soiences

Tr. Leningx. obl. po iznoh menth. kraya - Inanssotions Lemingrad Regtonat Tervitorins Eudien (? Eociety -. roference defoctive).
 hessearch tnstitute
Tr. Olongte mauch ekspeditsil - Dxanactions of the Olonets Soientific Expedition
Tr. Rechoro-11ychskogo gos. mapovedne.... Transsetions Pechoram-IIych itate Eeservation
Tr. VWath - Transactions Ali.union Res. Inst. for Sea Figherias and Oceanography
Ta BrI ... Contral ofitice of fechmion Triomation
Uch. wap. KF gos. univ. - Sciontific Amols Farelominnigh State Univ.
 Hertzen Stato Dedagogical Inote, Leniugrad
Uch. zap. Wgt Scientific Aanals Moscoin itate Univ.
Voh. zay. Fetrowavodek. goze univ. .m. Soientific Amais Petromavodak State Dniv.
Veatn. Karelo-Hurwensk, krrya -m Joumal of the Kerelo-Murmand Territory
Vestn. Inti-. Joumal Keningrad state Univ.
Veatin. Ne-i. inst. omorn. i rechn. rybn. khoz. - Journal Res. Inet. for Lake \& River Eisinaries

 No 1.19%.
 zapo mussk. geogro obshoh. Amals fussian Geogro Soen Zhuris. hin narodn. prowemhoh - - Jowmal of the ministry of pducation

 Absamov, V. V. Admptive charractern of adult balmon of the gemuf gecongyachus
 1953.
 * Rybne khose. No. 4. ppe 21--2e, 19e5.

Raknheankid, E. Lu Rologiya molodi gorbubhi i kety v busireinakd avrentacra i. Helogo moret. (Eeology oz young pink anluon and chum gatmon in the Bexante and White Boa basinojo futhor! a abritract of candidature thesis, wo. 24, Moscow, 1967.
Barbarorich, Zu* G*, G. Ho Hisholovioh and V. H. Bhabenove the use of an glactria zonce at the Baltaberatak Intchery to confine Army (aiseo). spminexs and for minnow control. Ins Vtoroo sovodider nolodyry nuwh. mabotnitov Gooltonkh, fex. dokl. (2na conference of young
 abstr. of procel, Leningrad, pe. 7-9, 1966.
Belyaeva, K. I* and V. V. Pokrovakil. Lake Onega* The noneoxploited. Itshos.

 1860.

Bersonov. S. A. Vodnoenergetichamikit kadactr kare2'skoi ASSR . (IWe water
 Fiver Jeningrad, 1960.

Birman, I. D. The time of amulus formation of the sodee or Pectite salforn
 Ho. 5, 1960.
Biske, (i. S. Ohatvertichnye otlozheniya i geonorfolosiva Karelil. (Cuatemary depogits and goomomhology or Farelia)" Karel. filiai AN SKSt, OOS. Ixd. KASMA, pi- 305, Vetrozavodnk, 1959.
Borodin, N. At the Guna fishory in connoxion with the quastion of deatmacticn of the Xivach waterfall. Vestn. whoprayshl. . No. 10, pp. 511-520, 1916.
Bormayskil. A F. Natural history notes from a journay shoodin Olanets 3uberniya. Journ. Min. marodn. prowveshch., 5t. the, ppe 606-670, 1867.

Cherkasofy A. If Kake wider us of trap nets. Lomitikoo andigu, No. 167. pi 3, July 22, 1953.
Chernov, V. K. Remile of mydrobiologionl investigaxion of the sum, ghay

Chernoy, V. K. Mesulta of a plytohiological atudy of the Vodla River. Ir. Borcain. bial. eto, Vol. 6, No. 1, pp. 95-102, 1932.
Chomor, V. : The trout in shall laker aloug the white Sea corct. Za mon. induatriyt Bevari, No. 6. pp. 41, 1935.

Ta: Tealedovandya o sontoyanin myolovatva v kossijo (Reachteln

 Vo3. 20, 3m 312-323, Leninerad, 1935.

 The Tr. honf po vopr rybu. kauz. Crocoodings of a oontowonce on

Dowhavin, C_{0} Re Concernixe the bamise of the exaotion af wathine fencos to
 Grota. (collected work with commentary by Ya. Oxot), Vol. 7, p1. 55, AN, Bt. Peceacburg, 1872.
Domacher, F. F. The lakes of the aroa eact of labe onega. A fianories atudy.
 pqmadouingrad, 1929.
Duldent, G. Wm and Tu. I. Zapokina-DoIrkeit. Concerning the affect of logetrg on the figh faumatameil moutain rivers of siberia. Int Tez.
 Soctety, tat congreas, abstr. of proo.), pp. 6m-7, MGU, Hoscou, 1965.
 pink salmon. Vopx ikhtiol., Vol. 2, 10. 4(25), pp. 740-442. 1962.
 nuberait. (Naturul wal egonemio conditions of the fish inductry in Olenets suberniya). Izd. Olon. gub. zematva, pp. 135, Potrozavodak; 1915.

Evropeitseva, F. V. Besulte of exparimantal studies on the zevinus of the yrough of food fichess the latonerbk itstohany Veatn. IATH, No. 8, ppo 101-109, Leningrad, 1950.

Galkin, G. G. Siology and noryhological foaturee of young melnon under natumal conditions and when reared in phate. Tav. Yeas. n.-i. Inet. owemn. I twehne rybn. hhoz-va, vol. 36 , w, $76-35$, Trashohepromiadet, Nascow, 1965.
 (Coneral outifne of the developmont of late and river fisherien in the Karelian Agsk), Bk. 2, pp. 288-307. State Plamins and

Gerhilakil, th. The The mein blologicel features of ealmonids as the basia of manuro on their roproduction and acolinatoinstion. Ins Ieze. dotcl. Sow heh po vopr, losoacvogo hoa, 15--17 noyak. 1961. (Cont. on agpects of the saluson incustivy, November 15-17, 1961, abitre or proc.), p. 7. Leningrad. 1961.
Gerbile ekij, $\mathrm{N}_{\text {. }}$ de The theory of the biologicel progreas of a syecien and its application to tha Plen industrym In: Tooreticheskie omovy rybovodetive. (Theoretical principles of fieh wangemant), pp. 77-84. Nauta, Hoscon, 1965.
 biology of the miwon. Tr. Karel. $n_{0}-1$. xyboichome ate, Vole T_{0} 25: 173-225, Laningrad, 1935.

 Temanexad, 1959.

 Humwumb: 196..
Gritsevaryt, G. L. Bog and Lako oondtiond in southom Kexeliaz sox oxmpilied by the basins of the suma dud shaya Riverwe The Kavel. ©lim dij. iN
 ment and Watar Hoonory of kareliz), pp 60-72, Petrokevodek, 1964.
Gmmor, Yu. A. and G. N. Uotinov. Jand is the Himhit Vye River near the town

 the setentitic cometa studying the White sea and innave vaters of

 Smi gashe beh. azoveta po prodame bolago motya i madre vodomove Tavelit. (6ith bession of the nalentific oouncil tudyiny, the white
 pestrogavodsk, 1966.
 pp* 216-221, Jomingrad, 1950.
 ob'tertory (the eqfect of logging on the environmental oundtion of fishes and thein food iters). meais tor the degroe of anatanta of
 and Mwa sishers, Loancrad, 1092.
 obet eltove (the effect of Logetag on the envinombential conditions of filuhes and thair food items). fiathor's abotr. of endidature theris,
EAde ph. 11, Patroasvodsk, 1953.
 and the conservation of Pish stocks in the United States), ppo.43, foscow. 11962.
 the Furopenn areas of the USGR), ppe 312, MNU, 1957.
Keasler, K. Opibanie ryb, kotoxge votrechayutgya v vocakh S.-peterburgakoz gubemil. (A desoxiption of the fishes to be found in the waterw of

Kenslox, k. Fiaterialy dlyo pozneniya Onezhsicogo ozern i Oboneshakogo kraya,
 Onaga and the texyitory around Onega, mainiy zoological). Gupplement
 Fpo 145, Bt. Petereburg, 1868.
Khalturin. $\mathrm{D}_{0} \mathrm{~K}$. The importanioe of mowe taxonomic oxiteria of eximon. Dokl.

 p\% 48-5y, Lentugrad, 1066.

 ges. $10-11$ and No. $10,27,23-\cdots 5,1966$.
 Kavelo-mumansk kraya, ho. 1 (129), пр. 21-m22, 1926.

 danngract, 19"7a.

 pial. mithtiol., Vol. 10, w. 1, ppw 210-231, 1929a.

 1029 c.
 on tha chembal componition of woter. mom. i statict. Karelia, 10. 2, pp. 33-100, 1928.
 Biologiys vmatr vodomov prdbatitht. (Mology of the inland waters
 inlend watexe of the Beltite reston), pre 10g-107, AN 59sti, Moseow, isnimerad, 196.
Kuching, Es. S. Haterials on the nalmon flenery and the biologh of the andmen in tho Lage Dives. Iuy, momah, yol. 21, Iw. 157-174, 1939.

Lastcobin, V. In Gb uvelichenil mapasoy prokhodykh losocevykn mby rodcemakn Leningredskod oblumt. (Concerning an increaso in the stoches of migratory galmonda in bodiee of water of Lentugxad

Lebedev, V. Dh Ereanovodmare chetvertichnaya ikntiofama eviopeiokoi ohasti
 VSTR) , pI. 402, HGU, 1960.
Lepin, L. Ye. Fect recources of the Karelo-finnien GSR and prosomots for thatr

 scientific aceting on the work of tho manch for $1935-1954$ a asta* of proc.), we 1-5 5, Fotrowevodek. 1955.
 Karelian hesp); Roscow: 195?.
 1p. 190. Kergusiwhat, Fotrowavodsk, 1939.
 the Baltio malmon. Mro No-i. inst mybn. khome Latvish, Vol. 3. \%No 5-103, Rign, 1961.
Litinsiayn. i. D. An attompt at the caloulation of curreate in a body of

 Petrogavodist 1960.

 Lonisherad, 193 ?

 Lenamerad, 1939.

Holyavin, A. He A geologiond and byarological ontline of karelia and a
 mp. $141-213$, Petromerodak, 1947.

 problems of the inlind waters of harelis wad the Betwio region and
 mo 102- 104, Petrozevodsk, 1062.

 (Scientitle confexence on tho cecasion of the 25 th arndvergexy of

Mel'nikoza, N. N. the biology of the Atlentic salucan in the Vaxeugh MiverInve vigonk , vol. 18, th. $80-03$, 1959.
Mithin, V. S. Ftehes of the Varaga Hivor and thain interrelationahip with

Mitans, A. R. Gone matorials on tho biolagy of yous amanon in getvian civera,
 of a confe of roung spocialiste of the Timbuis Reseapeh Thatitute, Intivian Nationd Leonoaic Councill. pp. 41--45, Rican, 196.

 (Heport meeting of the Baitio PHahories Nescarch Thstitute, dustr. of proou), po. 16-28, Miga, 1065.
 ointhchim voparosam inchtiologid. (The typos of apawing populationa in firhes. Studies on conerva acacote of ththyology), $12.295-305$, AN KSSR, Hoscow, Leningrad. 1053.
Honich, f. A. in experimental andysiof of the temperature adaptatione of fich corbayos. Uch. zape Ianingre ped. inst. in. A. I. Gartamm, Vol. 110, 2 : $105-120$, Lemingzod, 1955.
Hyvilar, A. B. Deherki po istorii Kemelii v 16 mol wV. (Studiea on the histoxy of Merelide in the 16th and 17th contuxiabl, pp. 5m- 776 , GeS. fode Kf sisk, Petromarodak, 1947.

 (6x3non), 19. 36, Hoscow. 1959.
Nildiforove N. D. Obervations on the apaming of tio hthatic endmons
 1960.

 195.

 upy yo zapovedno, vtd. zooh, No. 6 (21), 104\%.

 nomi. zybolhoze bt., Lenamgrad, hoseow, 1932

 ppe 24--ё7, Detrozavodisk, 1950.

gex.... Petrozavodak. 1057.
 SevernoL Driny, Dyonegty axd sykily (logrging on the fish inchastry of the Nonthom Mrina, Wychegda und (Aypola Rivers). Thesta for cha degrec of dandicate of biologicul

catrounov, *i. A. The infortance of logethe in the fish madustry of the rivers of the northerm plains. Dokl. AN gach, Vol. 56, No. 1, 31) $87-\cdots-89$, 1947.
 observation roint for 1964) (complead by k. W. Surmova), 30 typew setist pages with illuetrations, wetrozavodek, 1965.
Otchet onemehogo nablyudatel'nogo punita ag 1065 E . (ioport of the unoga observetion point for 1965)(complied by l. 月. Snitrova) ; 30 typem acrint papes, Fetrozavodas, 1906.
Ozera Karalli. (Lukes of tarelia) (a reference mamal), Gos. tida. Kngm, Petromavodalk, 1959.
 Filateg I2'penyu. (A jowrney over Lokes Ladoge who onega and atoma Hake Ilmon'). pp. 559, Akea. nauk, Bt. Poterwinurg, 1812.

 1020.

 Fisen, potromavodeln, 1058.

 pp, 41-71, Ieningrad, 1936.

 Laningend, 1939.

 1947

 Petrozavodsh, 1053.

 ppo 32-82, leningrad, hoseow, 1920 .

 pe 1-145; 1929.
 3rd edition, pp, 245,160 , Leningew, 1999.

 $2 n, 760-84$, petroanvodac, tohka.

 petrozavodeli, 19h6b.
Prevain. I. W. Abyects of ichthyolocical resgarch mothod. Ixw. kf nowio buzy hin sise, Ho. 4. pp. 31--42, petrosevolick, 1949.
Fxavdin, 3. F. The bxinnon (genus gatoo) of bodien of water in the rarelo-
 KH 6nk, Petrocavodak, 1954.
Fravita, I. F. The reatoration of fleh stoob --. a matten of phbic inporbance. Keninekaya oravda, pe 3, Haroh 13, 1957.
Pavdin. I. T. and V. F. Komilova. the brook trout in the twibutaries of idee

 OIon. rub., vol. 4; No. 6m-7, pp. 116--126, jetrocavolak, 1914.
 No. 5-8, рр, 110-120, Petromavodak, 1915.

Mrand. (Fibhing regulations in flehad bodies of vaton of the northwestern region of the RGFSR). Regulation No. 1901 condituod by decree of the council of ministers of the Ramen deted October T, 1960.

Privol'nev, 等 Wh the Atlantio salmon Sishery in the Kova and Kerot Bivers.
 pp. 64-m90, Petrowztodsk, 1933.
privolinev, T: I. The nature of the aslmon spaning grounde in the Narvo Eiver Mauch -twha* byull. GomIORKh. No. 15. pp. 25-26. Leningrad, 1962.
Promyslovye karty 1 than rybolchozyalatvennogo osvoeniya Onewhskogo ozera. (Fisheries mapa sad a plan for the exploitation of lake Onega by the fish industry). KF otd. VNTonkh, Petroxavodak, 1952.
Prozofova, Z. V. The gelmon of the Shuye River in the basin of Lake Onega. Tr. Karelo-Finsk. otd. Vaes. n, -1 . inst. ogerg. i rechn rybn. khoz. (WIONKh). Vol. 3, pp. 396-405, Petrozavodak, 1951.
Fuehkarev, N. N. Rybolovetro na Onazhskom ozere. (Fiching in Lake Onega). Report of the Ministry of Agriculture and State Lands, ppe 260, St. Peterwbure 1900 a.
Fushkiay, N. N. The Shala Fishery in Lake Onege. Vesting ryboprome, No. 1, pp. $40-41$. 1900\%.
Pushlearet, N. N. The general nature and neede of the prosentidiny fish industry
 Nos, 5 and 6, pp, '1-mis, St. Petexsburg, 1901.
Fushkerev, N. N.: Chyaiographic data on Lake Onega, friformation on its fiah fauna and the origin of the faume. Olon. ab. "No. 4. pp. 131-199. Petrozavodsk, 1902.
 in Lake Onega, In: Parayatn. kn. olon. gub. na 1908 g (Memoriml Volume of Olonots gubernia for 1903), ppe 307--326, Potrosarodek. 1908:
Fubhkarey, N. K. Meabures to increase fiehing in Lake Onagm, Veatn" 010n. gub. zentra, No. 23. pp. 5-7. 1913a.
Pushbarev, N. N. The fishery in the motith of the Suna River. Veetr. ryboprom, No. 9. pp. 236-242, 1913b.
Pumhkarev, R. N. Some measurem to increase fishing in Lake Onegn. Inv. Obsheh. isuch. Olon. gub. Vol. 3, No. 1-2, $\mathrm{pp} .86-90,1914 \mathrm{a}$.
Fushkarev, N. N. The Fish Hatchery at Petrozavodak. Izp. Obsheh, izuch. Olon. ryb., Vol. 3, No. 4, pp. 229--236, 1914b.
Eushkarev, N. N. Conceming the Fish Hatchery at Petrozavodisk. Veatn. Olon. ryb. memstra, No. 1, pp. 17--19, 19140.
Pushkarev, N. K. Immediate fish managemont teaks in Clonets gubernia. Ins Tr. Soveahoh. po rybovodstru pri Dep. zemler. 1913 g . (Proc. of a fish management conf. of the departmont of agriculture in 1913). pt. 2, No. 1, pp. 133-146, Peterhof, 1914d.
pushkarey, N. N. Some measures to increase Pishine in Lake Onega. In: Tr. Soveshch. po rybovodstvu pri Dep. zemled. $\downarrow 1913$ s. (Proc. of a Fish mangoment conf. of the departzent of agriculture in 1913) , Pt. 2, No. 1 , pp. 147-153, Peterhof, 1914e.
Pushkarev, N. N. "Msnall" lakea through which rivera flow and fishing in them in Lodeinoe Pole uyezd. Izv. Obshch. imuch. Olon. gub., Vol. 6, No. 5-8, pp. 1--59, 1915.
Pushkarev, N. N. Fishing in the northwestern province. Khoz. $\mathrm{S}_{\boldsymbol{*}}-\mathrm{Z}_{\mathrm{w}}$, No. 6m-7, pp. 1--12, 1927.

Rachakov, D. V. Teatures of the defensive behaviour of achools of various peltagio Rishesi In: Voprosy okologit zyb. (Problens of fish ecology), pp. 47-71, AN BKSR, Noscow, 1961.
i!
Sabunaev, V. B. Observations on the salmon of the Vuoksa River. Tav. Vase n.-i. lnst. oxemn. i rechn. rybn. khoz. Voi. 38, pp. 85~-94, Leningrad, 1956.
Bheratyuk, A. I. The Iinh faunk of the Luga River bagin. Uch. zap. Leningre gos, ped. inst. im. A. I. Gertsena, Vol. 143. pp. 71-83. Leningrad 1958.
Shnitnikov, A. V_{0} The present phase of moisture conditions in the Ladoga basin and ite probable subsequent development. In: Tez. dokl. ni natch. Konf. po problemam onutrennikh vod Karelii i Pribaltiki
 problems of the inland waters of Karelia and the Baltic region and their economio exploitation, abatr. of proc.), ppe 16-18, Potrozavodmic, 162.
Smimov, A. 1. The spmaning stanca and its speaific foatures in the development oi fishem. In: Teoraticheskie osnovy rybovodstra, (Thotretied principlee of fiah management), pp. 147--154, Napks; Moscow, 1965.
Smirmot, A. F. Fishing in Byamozaro. Tre Karel'sk. gose ped. inst., Vol. 1, No. 1, pu. 127-170, Bor. biol., Petromavodsk, 1939.
smimov. A. F. Biologicmi and systamatic features of the ssinon of the Kuito Taken' Tne Tox. dokl. na 5 -i sess. Voh. soveta po probleme
yse Belogo morya i mutr. vodomov Karelil. (Sth veeting of the
 Karelim abstr of proc.), pp. 29-30, Petrozavodsk, 1965.
Smimov, Yu. A. The biology of the Shuya salnon stock of Lake Onega and the state of its stooks. Iev. Gon. no-i. inst. oxem. i rechn. rybn. khome, Vol. 57, pp. 217--222, Leningrad, 1964.
Smirnov, Tu, A. Fish managamont, conservation and juprovement in salmon gpmening riverw. Voh. zap. Fetrozavodak. gus. univ., Vol. 13. No. 2, pp. 136-140, Petromavodak. 1965.
Smirnov, Yu. A, and M. N. Smirnova. The biology of the Pyal'ma Fiver salmon and ite atooke. In: Tow. dokl. nauchn. konf. Inst. biologii. (Scientifio ocnf of the Institute of Blology, abstr, of proc.). ppe 123-124, Fetrommodak, 1965.
Sovetov, S. A. Onexhakoe ozero. Opyt fizikomeograficheekol monograilil. (Kake Onega. Draft for mphysiogxmphic monograph). Pgrof tip. Hox: mine pp. 1-464, 1917.
Stroganov, N. 3. The phyeiolagion effet of products extracted fron timber and timber deces products on river fishee. Uoh. zap. MHO, No. 9, op. 46-72, Moncow, Leningrad, 1937.
Svetovidova, A. A* Materimis on the biology of the feve salmon. Zool. zhurn. No. 3. pp. $470-480,1941$.
Tikhil, W. I. A genernl reviow of resoaroh. Izv. Leningy. no-i. ikhtiol. 4, inst. Yol. 12, No. 1, pp. 4--28, Leningrad. 1934 .
Tikhii, M. I. Experimentes on the holding-back of the Svir' salmonids fox breeding purposes: Izv. Leningr. no-i. ikhtlol. Inet: Volv 12, No. 1. pp. 29-52, Leningrid, 1931b.
Tikhit, M. I. The tageing of kalmonids in the mouth of the Sviri River. Igv. Leningr. ne-i. ikhtiol. inat., Vol. 12, No. 1, pp. 53-76, Leningrad, 1931c.

Tilik, Z. E. Alteration in the chemical composition of the fleoh of Syirt galmon, in connexion with the spawning aigration Tepo Vseg. n.-i. inst. ozern. i rechn. rybn. khoze. Vol. 14 , pp. $133 \mathrm{~m}-148$, 1932.

Tsimbalenko, L. I. Ukazatel' vnutrennikh vodnykh putet. (a gezetteor od Inıand water courses), Vol. 2, pp. 942 . Peterhof, 1918.
Ustinov, G. W. Chameteriatics of jamaing in the rivers and weservoine of Karolia. Tez. dokl. na seasil Ueh, soveta po problene Belogo norya i unutr. vodoenor Karelif. (Moeting of the seiontifico council Btudying the White Sea and inland waters of Karelia), No. 2, pp. 74-75, Petrozavodsk, 1964.
Ustinov, G. N. The icing and thermal regime of the Shuya River and ite tributarian. In:tex. dokl. na 6-i sess. Uch. soveta po probleme Belogo norya i mutr. vodoomov Karelily. (6th meeting of the scientific council studying the White gea and inland waters of Karelia), pp. 123-124, Petrozavodak, 1966a.
Ustinov, G. N. Some effect of frasil ice on the activity of fishew. Int Tez. dokl. 13-1 nauchn. konf. po izuch. vnutr. vodomov
Wis. Fribaltiki $\%$ Talline. (13th seientifie conf. on the inland watern of the Baltio region at Tallin, abatr, of proc.), pp. 181-182, Taftu, 1966b.

Vasil'kovskii, F. E. Excursions to the southern shore of Lake Oneg. Ir. Lenn Leningr. obl. po izuch. mestn. kraya, Vol. 1, pye 89-96, $\%$ Leningrad, 1927.
Vasnétsov, V. V. Etapy razvitiya kontistykh ryb. Ocherki po obshchim voprosem ikhtiologii. (Dovelopment stanzas of teleost fishes. Studies on ganeral aspects of iehthyology), pp . 207--217, AN SSSR, Moscow, Leningred, 1953.
Vernidub, M. F. Ways of increasing the effectiveness of tho incubation of salmonid and coregonid egge in the light of ambryplogionl datad Vestri. LAT, Ho. 8, pp. $93-100,1950$.
Vornidub, H. F. Acceleration of the embryonic development of salmon and ite significance for reduction of the time needed for the rearing of young to their tranaition to the downstreammigrant state. In: Tex. dokl. Sovesheh. po voprosam lososevogo thoz. 15-17 noyab. 1961. (Conf on aspecte of the salmon fisheries, November 15-17, 1961, abstr. of proc.), pp* 55, Leningrad, 1961.
Vernictub, M. F. Eixperimental juetificetion of the method of accelerating the embryonic devolopment of ealmon. Sb . nauchn. fil. WNIRO, No. 12, pp. 3-5. 1964.
Vaselov, E. A. A brief outline of the Shala Fishery. Tr. Borodinek. biol. st., Vol, 6, No. 1, pp. 62--85, Leningrad, 1932.
Veselov, E. A. and V. M. Korovina. Fisher of the Vodla Kiver and Shala Bay in I wke Onega. Tr. Borodinsk. biol. at., Vol. 6, No. 1, pp. 26-60, Leningrad, 1932.
Veshohozerov, V. V. Fishing in the southern and southeastemparts of Lake Onega. Izv. Leningr. n.-i. ikhtiol. inetrevol. 12, No. 1. pp. 770-114. 1931.
Vinogradov, N. N. Fiah catchee in lake Onega four centurien ago. In: Rybn, khoz. Karolii. (The Karelian Fisheriea), pp. 213-217. Leningrad, 1936.
Vladimirekrya, K. I. Atlantic aalmon spawning grounde in the upper reachet
of the Pechora River and measures to inorease theis procuretiftey.

Yankovakeya, Lu A. Conceming the nature of the "tranaitionial" ring in the Nava salmon. Uch. rap. Leningre gos. ped. inst. in. A. I. Gertsena, Vol. 179, ppe 191--202, Leningrad, 1958.

Zabolotekii, A. A. Fishing in the Eoutherm half of liake Onega. In: nybne khoz. Karelif, No. 3, Karel'sk. n.-i. xybokhoz. st., pp. 91-m15, Leningrad, 1936.
Zabolotskil. A. A. the benthos of the Fodoherem River and ita role in the nutrition ox young Atlantio salmon. Izt. Vses. n.-i. inst. ozern. i rechn. khoz. Vol. 48, pp. 44m-64, Hoscow, 1959.
Zake, M. G. and M. M. Sokolova. The ostablishmont of differences between inaividual stocks of the sockeye by the precipitation teats. Dokl. AN SSSR, Vol. 139, NO. 6. pp. 1491--1494. 1961.
Zborovakaya, H. B. Materials on the salmon fishery and the biology of the
 pp= 257-280, Loninerrad, 1935.
Zborovakay, M. B. Fishing in the northwestern region of Lake onega. In: Rybn. khote Karelii, No. 3, Karol'ak. ne-1. rybokhoze at., pp. 73-90, Leningrad. 1936.
Zborovakaya, H. B. Losos' Onezhskogo ozera. (The animon of Lake Onega). givery Thesis for the degree of eandidate of biologionirpciences pp. 183 plus mupplement, KF gos. unive, Petrocavodsk. 1948.
Zrerintset, L. N. O mybolovstve T Chelmuzhskoi gube ozera Onego. (Fishing in Chelmuger Bay in lwke Onega). Report. In: Protokoly sobr. Vestne rybopronyshi. (Collected dooumente, fish induetry journal). Vol. 14, No. 11. pp. 472- 4 . 7 3. St. Petervburg. 1899.

Titlas in lancuagos othox than Russian

Allen, K. R. The Horokiwi strean, Wew 公al. Mar. Dept. Fish. Bulin. , No. 10, pp. 1-4.239, 1951.
Alm, G. Vixhesmottningen inverican foticket. Studier i svensha vattendrag. (The impoct of logging on the fisheries. Studies in the Ewedish watersheds), Btockholn, 1923.
Anderaen, A. Laksen som stifinder. (The shlmon as patheinder). Vor Viden. (Our knowledgo). No. $3 \cdot(1964-1955): 136-140,1965$.
 on treembark substrates). Arch Soc. zool. bot. Fennicae. Vol. 16. NO. 2, pr. 123-127, Venamo, 1961.

Bhatia, De Factors involved in the production of annual zones on the soales of the rainbow trout (Salro iridaus), II. J. Exper. Biole, Vol. 9, No. 1. yp. 6-11, london, 1932.
Bilton, H. ?. and W. E. Ricker. Suppledentary chocks on the scalem of pink salmon (Oncoxiynchus porbuscha) and cham salmon (O. keta). y. Fish. Res. Dd. Canada, No. 22(6). 2p. 1477-1439. 1965.

Calderwood, W. L. The white epot dibaase in salmon in the Taland of Lowis, 24th Ann. Kep. Figh. Bd. Scot1., App. 5, pp. 78--79, 1006.
Garlin, B. theging of ealroon molts in the River Lagan. Inst. of Fremwator Research Drottningholn, Ann. Rep. a Short papere, No. 36, ppe 57-74, 1955.

Carlin, B. Laxodingens Ibnsabhet. (The profit in admon farming). Svensk Fiskeri kidskrift. (Swedish ت゙ishery Journml). No. 9/10, ppo 113-116. 1964.

Davidson, F. As and O. E. Shostrom. physical and cherifoctiehenges in the pink salaon during the spawing migration. Tnv. Rept. No. 33, Bur Pish, pp. 1-w37, Wabingeton, 1936.
Davia, H. Sg Cure and diseases of trout. U.S. Dept. Intex. Fish and Wild. **) Sorv., Res, Rep. No. 12, pp. 1-m9, Washington, 1946.
Day, F. The fishe of Great Britain and Ireland. Vol. 2, pe. 52-84, Edinburgh, 1884.
Dineen. O. F. A comperative study of the food habits of Cottus bairaii and a ye 29. 1948.

Elson, F. F. Increasing salmon stocks by control of mergansers and kingfishers. Fish. Res. Bd. Canada, Progress Rept. (AtIontic), No. 51, pp. 12-16, 1950.

Elson, F. F. pradator-prey relationships batween fich-ating birds and Atlantio salmon. Bull. Hish. Res. Ba. Ganada, No. 133, 1962.
Elbon, D. Fo and C. J. Kexswill. Forest mprayine and galnon anginf. Atl. Salr. J., Oct., NO. 3.pp. 20m-29, 1964.

Fagerlund. U. H. H., J. D. MCBride, He Smith and H. Tomlinson. OLfactory perception in migrating salmon. III. Stimulanta for adult sockeye salmon (Oncorhynchue nerka) in home stroam waters. J. Fish. Res. Bd.

Foernter. B. 7. An invastigation of the relative efficienciea of notural and artificial propegation of soekeye salmon (O. Mendz) at Cultus Jake, British Columbite J. Fish. Reg. Bd. Canda, Vol. 4, No. 3. p0. 151-161. 1938.

Greeley. J. 13. The spawing habita of brook, brown and rainbow trout and the problems of egg predators. Trans. Aner. Tish. Soc., Vol. 62, рр. 239--248, 1932.
Gunther: A. Catelogue of the Fishes in the Britich Museum. Vol. 6, Londom; 1866.

Hardy, C. J. An examination of eleven stranded redds of brown trout (Skino trutta), excavated in the Selwyr Hivor during July and Auguet. 1960. Now Zeal. J. Sei., Vol. 6, No, 1, ppe 10p--119, 1963.
Hobbe, D. F. The natural reproduction of Quinnat gatmon, brown and rainbow trout in certain Now Realand waters. Mor. Dept., Fish. Bull., Vol. 6, ppo 1-104, 1937.
Horton, P. A. The biononics of brown trout in a Dartaoor stream, J. Anime Ecol. Vol. 30, 22. 311-338, 1961.
Huttong. A. Way salioon and other flah. London, 1949.
Jumefelt, fi. \#ber die minwirkung der flossung aup aie Gewasser und dio Fischered. (kffects of rafing on water bodies and in fishery). Varhe ditern Vereiningung f. theor. und angew. Iimnologto, Bd. 5is Teil 2, pp. 325-334, stuttgaxt, 1931.
Jones, J. W. and G. M. King Experimental observations on the spewning behaviour of the Atlancic salmon (Galro gelax Linnt. Proce zool. Soc. London, Vol. 119, pp. 33-48, 1949.
Jones, J. W. and G. M. King. Further experinental obeervations on the spowing wowbeviour of the Atlentio salmon (Gelmo galar titn"). Proc. Bool. Soc. Liondon, Vol. 120 , pt. 2, 3 p . $317-323,1950$.
Jones, J. W. and G. M. King. The opawing of the mile arimon parr (galmo galax Linn. juv.). Proc. Zool. Soc. Lonton, Vol. 122, yt. 3, pp. 615-619. 1052.

Laxsen, K. The effect of the liberetion of sea-trout fry in the Gudong srem, as shown by the trout catch in the Jowor niver. happe et froc-iverb, Cone. Internat. Explor. de la Mer, Vol.. 148, 1959.
Iindroth, A. Nergansers as salion and trout predators in the River Indalsalven. Inst. Freshwater Res. Drottningholm. No. 36, pp. 126-132.

McCrimon, H. Ke Strean studies on planted Athantic salmon. J. Fish. Fes. Ba. Canade, VoZ. 2, No. 4. wp. 362-403, 1954.
Henzies, W.J. H. The calmon, its Life story, p. 210, Hainburgh and London, 1931

Nelaon, P. R H Hfects of fertiliking Baxe Lake, Alacka, on growth and production of red eximon (0. nerica). Fish. Bull. Fish and Wildlife Service, vol. 60, ppe 59-86, 1959.

Parker, $\mathbb{R}_{\text {, }} \mathrm{RA}_{n}$ Estimation of sea mortality rates for 1961 brood-year pink saimon of the Bella Coola area, British Columbla. J. Fimh. Res. Bd.

Conada, No. 22(6), pp. 1523-1554, 1965.
percival, Re and $A_{*} M_{*} R_{4}$ Burnet. A study of the lake Lymdon rainbow trout (Selme gairdnerii). New Zealand, J. Scle, Vol. 6. No. 2. pp. $273-303,1963$.

Richardson, If Fauna Boreali-Americana; of the moology of the northern parta of Britioh America. Part 3. The Hishe po. 137 mm 145 , London, 1836.

Ricker, W. B. Stock and reoruitment. J. Tibh. Res. Bd. Canada, Vol. 11. No. 5, pp. 559-623. 1954.
Ricker, W. F. and R. Eic Foerster. Computation of fiah production. Buil. Bingham Oceanog. Col1. Yale., No. 11, pp. 173-211, 1948.

Saunders, W, Le and J. H. Gee. Movement of young Atiantio seamon in amell streame. J. Fish. Ies. Bd. Canada, Vol. 21, No. 1, pp. 27-36. 1964,
Saunders, R. L. and. E. B. Yenderson. Precoaious seximl development in male post-molt Athantic salmon reared in the lakoratory* J. Fieh. Res. Ba, Ganada, Vol. 22, No. 6, 17. 1567-1570, 1965.
Shearer, w. M. The capture of the jremrilse stage of Athentic Ealmon in fresh water. Salmon and Trout Magaz , No. 168, pp. 100-110, 1963.
Smith, C. A. Restoration of a North Shore galmon river. Ath. Shlm. J. No. 3. pp. 3--7. 1963.
smith. M. W. Fertilization and predatox concrol to improve trout angling in
 \%p. 210-237, 1955.
Smitt. If A. A/history of Scandinavian tishes. Part 2, pp. 827-919, Stockholm, 1895.
Sockeye salmon distribution pattern in Bristol Bay area stiuded. Comerc. Fish, Reve. Vol. 27, Ho. 10, yp. 18--19, 1965.

Warner, K. The landlooked salmon spawning run at Crosis Lake Thoroughifare, Maine. Copeia, No. 1. ppe 131-138, 1962.
Watt, K. H. F_{0} gtudies on population productivity. Rcol. Honogr. Yol. 25, 20. 269-290, 1955.

Woodhesd, P. M. J. World fishing. No. 3-7. 1963.

[^0]: ${ }^{1}$ The Russian word loshanie (from "lokh", a male in spawning colours), here translated as post-wpawning condition, is connected with the alteration in the colour and external appearance of the salmon in connection with the preparation for spawning.

[^1]: 1 Iranslator's note mhe reference to the new calendar means that the date has been adjusted by the addition of 13 days to bring the Jultan calendar into line with the Gregorian calendax. The Gregorian calendar was introduced in Eussia on Feoruary 1, 1918. As the date of kozin's paper, from which this quotation is taken, is given as 1927 , Kozhin mut have been drawing

[^2]: * Translator's note. Apparently a dialect word. Not in the latest edithion of Nikol'skii: Chastnaya j.khtiologiya (insoom, 1971). Mot in Eyby SSSR.

[^3]: ${ }^{1}$ A "kerevod" is a single-vinged lake net used in Karelia.

[^4]: 1 Kalezhen'e and brozhenie are the local terms for fishing with special nets ("kalega" and "brodil'naya" net) practised in small and medium-sized rivers.

[^5]: 1 Translator's note. No equivalent found; preşumably a long thin net.

[^6]: Key to Table 30: 1. Table 30 2. Ealmon catches in the Shala district, centners 3. Locality 4. Around the mouth of the Vodla 5. Around Cape Besov Nos 6. No data.

