The phytoplankton of fresh water, systematics and biology

by G. Huber-Pestalozzi

Original title: Das Phytoplankton does Subwassers, Systematik ind Biologic

From: Die Binnengewasser; Einzeldarstellungen aus der Limnologie ind Ihren Nachbargebieter, 16(2) :

1942
Translation of selected taxonomic keys only. 372-377, 392-395, 408-409, 415-418, $422-432,437-438,445 ; 455-457,460-461,465-467,469-472,479-480,485-492,520-521$, 524

Translated by the Translation Bureau(NV)
Multilingual Services Division
Department of the Secretary of state of Canada

Department of the Environment Fisheries Research Board of Canada

Canada Centre for Inland Waters
Burlington, Ont.

1973

91 pages typescript

Bepartment of the secretary of state transiation bureau
FOREIGN LANGUAGES DIVISION
secrétariat dóttat bureau des traductions

4
translateo from-tarouction de

German
[into-EN
titlein english - titre anglais
systematics and biology:
The phytoplankton of fresh water; /Pt. 2, 2d half: The diatoms: Title in forelgn language- (transliterate foreign characters) Systematik und Biologie.
Das Phytoplankiton des Süpwassers;/2 Teil, 2 Halfte: Diatomeen.
REFERENCE IN FOREIGN LANGUAGE (NAME OF GOOK OR PUBLICATIONI IN FULL. TRANSLITERATE FOREIGN CHARACTERS.
REFERENCE EN LANGUE ETRANGERE (NOM DU LIVRE OU PUGLIGATIONI, AU COMPLET. TRANSCRIRE EN CARACTERES PHONETIOUES.
Series: Die Binnengewtsser; Einzeldarstellungen aus der Limnologie und ihren Nachbargebie v. 16, pt.2, 2d half.

TRANSLATTON OF SEIECTED TAXONOMIC KEYS ONLY
REFERENCEIN ENGLISH - RÉFÉRENCE EN ANGLAIS.

\cdots				$\begin{aligned} & 372-377,392-395,408- \\ & 409,15-418,422-432, \\ & 127-12715,15-157 \end{aligned}$
PURLISHER - EOITEUR Z. Schereizerbartische Verlagsbuchhendilung	DATE OF PUBLICATION DATE DE PUBLICATION			PÁGE NUMBERS IN ORIGINAL numeros des pages dans L'ORIGINAL$\begin{aligned} & 460-401,465-467,460 \\ & 1,72,170-10,1,5-402 \end{aligned}$
	YEAR ANNEE	VOLUME	ISSUENO. NUMÉRO	
PLACE OF PUBLICATION LIEU DE PUBLICATION Stuttgart, Gerria				NUMAER OF. TYPEDPAGESF?O-5. NOMBRE DE PAGES DACTYLOGRAFHIÉES
	1942		1	
				91

requesting department ministere-client	Canada Centre for Inland :
Sranch or division	Purlington, Ont.
person requesting DEMAMDE PAR	İrs. T. Fosdick, Librarian
your number	2800
OF REQUEST. OMTE DELA OEMANDE	30.12 .1969

translation bureau notre dossier yo	$\text { AU.NO. } \quad 4517$	
translator (initials)	$\mathrm{Lsil}_{\text {LES }}$	
DATE COMPLETED 10	10.2 .1970	
UNEDITED DRAFT TRANELATION		
TRADUCTICi MCS REVESE		
Information seutu.te:		

PLD 69A

The phytonlankton of fresh water; systematics and biology (Das Phytoplankton des Süp ${ }_{i}$ wassers) Systematik und Biologie

By
G. HUBER-FESTALOZZI

Part II, 2d half
The Diatoms
i

Pages $372-377,392-395,408-409,415-418,422-432,437-438$, 445,
455-457, 460-461, 465-467, 469-472, 479-480, 485-492, 520-521, 524. (selected taxonomic keys only)

I. Order: Centricae (Centrales)

Cells \pm cylindrical, flatly disk-, drum- to box-shaped, isolated, in chains or cords. Predominantly marrine forms; only few fresh-water genera. Predominantly planktonic.

The order of Centricae comprises three sub-orders:
I. Discineae; II. Soleniiceae; III. Biddulphiineae.

Of these three groups, only the first one has a relatively large number of representatives in fresh water; of the other two, only one genus each occurs in fresh water.
I. Sub-order: Discineae. Cells mostly disk-shaped or shortly cylindrical, rarely with conspicuously elongated pervalvar axis. Valvar area usually circular; in most genera, frustule without horns or humps. Of this sub-order, only one family occurs in fresh water, namely Coscinodiscaceae (p.373) with its three sub-families Melosiroideae, Sceletonemoideae and Coscinodiscoideae.
a. Cells cylindrical or spherical, always forming \pm long chains.

Shell lining usually well developed, with' peculiar structure
Sub-family Melosiroideae (p. 373)

Yith one genus: Melosira (p. 373).
b. Cells disk- to drum-shaped, isolated or, more rarely, forming
mostly loose chains. Shell structure particularly well developed on discus area ($=$ terminal area of shell, valvar area).
 with one genus: Thalassiosira (p. 302).

2. Cell walls more silicified; discus area withoyt unpaired marginal thorn, but freruently with numerous large or small marginal thorns

Sub-family Coscinodiscgideae (p. 392) with three genera: Cyclotella, Stephanodiscus, Coscinodiscus. α. Shells with radially striated marginal parts and distinctly defined, differently structured central area Cyclotella (0.393)
B. Margin of shell and central area not differentiated in this manner.

+ Shells with radial rows of dots which in the centre are single lines of dots, towards the margin multiple lines of dots, and are separated by hyaline interstices Stenhanodiscus (0.408)
++ Shells differently structured Coscinodiscus (n.415)
II. Suh-order: Soleniineae. Cells rod-shaped, always much lonfer than wide, pervalvar axis conspicuously elongated on account of numerou
intercalary bands; circular or oval cross-section, mostly isolated, rarely in chains.
Comprises one family Soleniaceae (p.4.7)
with the sub-family Rhizosolenioideae, which is the only one that concerns us here, and one genus: Rhizosolenia (n.417)
III. Sub-order: Biddulnhiineae. Cells cylindrical or box-shaped, with round cross-section; valvar area mostly elliptical. Poles of shells with humps or horns. Of the four families (Chaetoceraceae, Biddulphiaceae, Anaulaceae and Euodiaceae), which have many marine genera, we are concerned only with Chaetoceraceae and Biddulphiaceae.
a. Cells with very long bristles which are several times as long as the cell and form angles of varying sizes with the pervalvar axis. Family Chaetoceraceae (p.422) with the genus Chaetoceros (p.422).
b. Bristles hardly as long or shorter than cell, directed towards pervalvar axis: Pamily Biddulphiaceae (p.424) with the sub-family Eucampioideae and one genus Attheya (p.424).

Family: Coscinodiscaceae

Sub-.family: Lelosiroideae

Melosira AGARDH 1824
(Outdated synonyms)

Cells almost always cylindrical, in some species very short, drum-shaped, in others long, cylindrical, almost spherical only in few species. Valvar area always circular. Terminal prea of valva (= discus) flat or \pm convex; accordingly, the chains afe either tight or loose. In the forms with convex discus areas, the cells are connected with each other by gelatinous cushions, but in the species. with flat shells the cells are attached to each other by the row of teeth at the margin of the discus, with the teeth of two neighbouri cells each interlocking. Shells irregularly or radially dotted or striated; marginal teeth differ in length according to species. As far as we know, the dots are pores which completely penetrate the cell wall. Chromatophores occur as numerous small roundish lobed platelets attached to the mantle.

Auxospores are formed asexually in different ways, but always by strong swelling and rounding of one or several cells in the colony; one end of the filament may or may not be discarded (auxospore formati with or without fregmentation). The spore is flatly attached to the parent cell, or it lies in a depression with a navel; its axes may run parallel with the axes of the parent cell or may intersect with t^{2}

Horphologically and terminologically, Melosira has a few pecularities (see Fig. 446). The terminal area of the shell, the somcalled valvar area, is called discus, the (lateral) cylindrical area, mantle. Very often, the latter has a ring-shaped furrow (t deeply incised), the sulcus, shortly before its "open" margin; this sulcus usually projects into the interior as a ring-shaped ridge, the septum. The furrow formed by the \pm strongly rounded cell ends at the point of attachment of two neighbouring cells is called pseudosulcus. Sulcus and pseudosulcus are always open grooves, "but often appear closed on account of long, overlapping girdle bands" (HUSTEDT). The narrow mantle portion between sulcus and the margin of the girdle band is called collum. Another structure, which occurs only in two species not living in fresh water, is the ring-shaped thin lamellar keel at the cell ends, at some distance from the top of the discus.
"Depending on the state of development of the girdle bands and on the overall growth, the length of the cells varies to such an extent that, contrary to common practice, it cannot-serve as a characterizing feature of the various species. Instead, we are using a measure which is variable, too, but does not depend on the state of the girdle bands: the height, which we define as the measure of half the frustule, measured at the longitudinal axis of the cell from the centre of the discus to the insertion of the girdle band." (HUSTEDT, Fresh-water flora [Sü ${ }_{1}^{\text {wasserflora]). }}$

When determining lelosira specimens, special attention must be given to the following fentures: whether the filaments show pecularly shaped terminal or border cells (e.g. \pm lons thorns or folds of one half of the cell, or a different structure); how the disci (valvar areas) are developed (whether they are flat or: arched, whether the margins bear \pm long thorns or fine teeth, or whether the margins are completely smooth); the structure of the mantle areas (coarse or fine; whether the rows of pores run parallel or at an angle to each other). It is also very important to observe the course of the mantle line (not of the surrounding girdle band) in the optical cross-section.

Most species of the genus ilelosira are euplanktonic organisms and in that capacity widely distributed in lakes. Some of them are most likely endemic species (e.g. in large Jast African lakes: M. nyassensis, or in Lake Baykal: I. baicalensis). Some species are littoral forms (from lakes and ponds) and occur frenuently, for instance, also in ditches (M. arenaria, M. varians); other species prefer moss growing on wet cliffs (M. Boeseana) or live at the bottom of cold high-altitude pools (\mathbb{N}^{-}. distans). Such forms may be found accidentally also in plankton.

The following list comprises 20 species.

Fig. 446

Melosira cell: G - old girdle band, S - sulcus, C-collum, P - pseudosulcus, h-height. According to HUS TEDT.

Key for determining Melosira species
 (according to HUSTEDT)

A. Cell filaments with end or border cells; in the latter, one cell half bearing \pm long thorns and folds, mostly also with different structure.
I. Shell mantle with deeply incised, thin septum. Height of shells on an average much less than diameter (tronical form)
6. M. Acassizii
II. Shell mantle without septum. Height of shells mostly larger than diameter or differing only little from it.
a. Fine structure, $18-20$ rows of pores in 10μ, parallel to or only slightly inclined to pervalvar axis (tropical

b. Coarser structure, rows of pores on mantle area - apart from the border cells - more inclined (cosmopolitan form)
5. N. mranulata
B. Vithout peculiarly developed end or horder cells.
I. Mantle areas convex in an outward direction, cells therefore barrel-shaped 4 . . • Binderana
II. Shell mantle cylindrical, cells in sirdle view not barrelshaped.
a. Margin of discus vith several irregular rows of very small thorns .. 2. M. Hustedti
b. Margin of discus with only one row of regularly arranged small thorns, or apparently without teeth. 1. Shell mantle without septum or, sulcus. a. Shell mantle distinctly punctate.

* Very large, thick-walled form, inner mantle line strongly waved (tropical form) ..3. M. undulata ** Delicate small form, inner mantle line not waved 20. M. distans var.
B. Shell mantle apparently without structure.
* Margin of discus with very coarse teeth

19. 20. americana
** Margin of discus with fine teeth or smooth
1. M . varians
2. Shell mantle with septur or, on the outside, with distinct groove.
a. Sulcus forming a strong septum, on the outside vithout groove or furrow.

* Cells thick-walled, inner mantle line convex towards interior of the cell $0.13 . \mathrm{M}$. baicalensis
** Inner mantle line straight ... 12. M. pyxis
$\hat{\beta}$. Sulcus developed as outer groove or furrow.
* Sulcus forming a distinct groove.
\# Nantle structure very coarse, a maximum of 10 rows of areoles in $10 u$ (tropical form)

14. M. argus
\#\# Mantle structure much finer, 16-20 rows of areoles in 10μ (cosmopolitan form)
15. M. ambigua
** Sulcus forming furrow incised at an acute angle, or merely a shallow groove. \# Cells with highly arched disci and conspicuously long thorns, therefore filament looser
16. M. Iongispina
\#\# Disci almost or completely flat, thorns shorter and only very fine, filament mostly tight. 0 Cells mostly very flat, shell mantle with more or less strongly developed, mostly deeply incised, flat septum, discus area coarsely areolate-punctate (Nordic-Alpine species)
17. V. distans 00 Cells generally more highly cylindrical,
shell mantle without conspicuously developed septum or with ridge-like septum. x Rows of pores on mantle area parallel or very slightly inclined to pervalvar axis. v Height of shells mostly much larger than diameter (tropical form) : $: 9$: ${ }^{\mathrm{N}}$. Goetzeana
vv Shells generally only slightly higher than diameter, but very often shorter 8: M: is ilandica
$x x$ Rows of pores on mantle area in more or less strongly inclined spirals:
v Shell mantle with coarse structure,
pervalvar rows of areole up to approx. 15 in 10 u.
w Margin of discus with strong teeth
(Nordic-Alpine form) : : : 17: Monica
ww Margin of discus with very small teeth (tropical forms).
z Cell diameter $12=16$ u, pervalvar rows with strong S shaped curvature.

> 玨: M: Mannusii:
nz Cell diameter 20 and more, pervalyar rows less strongly curved.

10: M: nyassensis
vv Rore delicate structure.
w Rovis of pores on mantle area strongly spirally inclined, teeth on margin of discus strong 17. Mo italica ww Rows of pores little inclined, small teeth on margin of discus more delicate (tropical form, living predominantly in acid waters) 18. M. ikanoënsis
Sub.family: Sceletonemoideae 35Its only fresh-water genus is
Thalassiosira CLEVE 1873
with one species:
Thalassiosira fluviatilis HUSTEDT (Fig.478). - Cells living separately
(in the marine species the eelly, attached to each other by a centralgelatinous filament, form lọse chains, sometimes also shapelessgelatinous masses) . Cells drum-shaped or shortly cylindrical,diameter 15-23u, sheils sightly indented or convex in centre.Marginal thorns of shells very small, arranged in one row, apnrox.10-23 in 10μ; unpaiped lapger thorn close to the margin. Shellswith delicate radial punetate striae which form unbundled rows andleave the centre free. In the resultant central area severaldispersed, larger dotes; Cells with 2-4 intercalary bands; onlyslighty silicified, fairly thinowalled. As yet, no colonies have
been observed.

Halophilic fresheweter species. In the summer of 1925 and 1926, It occurred in great numbers in the plankton of the upper veser Piver and in the lierra River, below the places where potash vaste products get into the river. Also observed in the lower Rhine, and on Kauai and Oahu in the Hawaijan Islands; presumably still more widely distributed (HUSTEDT).

It may also be mentioned that A. CLDVE, in 1911, established

Cyclotella KÜTZIMG1834.

Cells disk- to drum-shaped, with circular, very rarely elliptical cross-section [Cyclotella austriaca (PERAGALLO) HUST.], mostry without intercalary bands. Shells rarely flat, almost always. \pm tangentially or concentrically waved, without peculiarly developed mantle portion, with radially striated marginal zone and distinctly defined, punctate, spotted or smooth central area. TRadial striae regular, or vith short shadow lines at regular intervals or with similarly arranged humps on the interior of the shell." Shortened marginal striae are sometimes preceded by isolated ("flaming") dots. Chromatonhores are small roundish platelets on the side of the shell. The girdle side apnears rectangular, with straight, undulate, convex or concave lateral margins. Nucilage or baistles often present. Cells mostly living separately, more rarely forming loose or tight chains, predominantly planktonic, less freauently growing at the bottom (littoral) of various water bodies. "To obtain correct information on the formetion of colonies, it is necessary to re-examine all Cyclotella material" (HUSTEDT). The auxospores develop from a single parent cell (MIISTER).

Of the 21 species listed here, at least one dozen are euplanktonic (Cycl. bodanica, catenata, chaetoceras, comensis, comta, Mlomerata, nlanctonice, nuadrijuncta, socialis, etc.l) other species occur mainly in littoral locations, more rarely in the plankton
(C. Kützinciana, Menechiniana, onerculata, stellirera); one species 36 (C. Striata) is halophilic. It occurs (according to HUSTEDT) freruently in the plankton of all littoral regions, but also moves far upstream, into the interior, where it lives in almost purely fresh water.

> Key for determining the species of Cuclotella (according to HUSTEDT)
A. Cells living separately, forming short chains for short periods at best soon after division.
I. Shells in regularly striated marginal zone without humps or shadow lines.
a. Centre of shell with radially arranged striae (or dots).
4. C. stelligera
b. Central area with different markings or smooth.

1. Shells concentrically undulate, large form with
diamețer of approx. 40-90 M.......... ll. C. Fotti
2. Shells tangential.ly undulate.
a. Central area apparently smooth or with few larger dots, sometimes very delicately, radialiy punctate-- striated (visible only in highly refracting embedding media).

* Marginal zone with coarse club-shaped radial striae,

** Marginal zone more delicately striated. \# Central area with several (mostly 3) coarse papillae 7. C. ocellata
Iftlt Central area smooth or with only disperse punctation 10. C. Kützinsiana
β. Central area irregularly punctate-spotted.
* Very small fresh-water form with irregularly radially punctate-spotted central area, living predominantly in chains. Individual cells of 20. ㄷ. comensis
** Larger, halophilic species with densely spotted central area 3. C. striata
II. Marginal zone of shells with humps or shadow lines. a. Shells tangentially undulate.

1. Marginal zone of shells vith shadow lines or individually strengthened radial ribs.
a. Very large form with a diameter of approx. 100 u
2. C. haicalensis:
3. Extremely snall form with a diameter of hardly 5 u (tropical form) 6. C. atomus
4. Shells with marginal thorns or inner humps.
α. Sheils with distantly arranced marrinal thorns. * Large central area, marsinal striae of enual length 5. C. nseudostellimera
**: Small central area, marginal striae of unequal length (tropical form) 9. C. Wolterecki F. Marginal zone of shells with a ring of small humps at the inner side of the cell wall (at high magnifications, the humps appear as light dots)
5. C. onerculata
b. Shells concentrically undulate. Central area radially
nunctate.
6. Marginal zone delicately striated, approx. 20 striae in 10μ, shadow lines indistinct (hypolimnetic species with fairly large forms) 15. C. styriaca
7. Marginal zone more coarsely striated, conspicuous shadow lines.
a. Shell margin with inserted, shorter striae outside the ring formed by the shadow lines (particularly in edge view), shells strongly undulate, mostly large forms :14. C. bodanica
β. Shell margin without such inserted striae, individuals usually smaller 13. C. comte
B. Cells combined to - mostly chain-like - colonies.
I. Cells with bristles.
a. Colonies forming tight chains ,............. 2. C. chactocaras
b. Cells forming irregularly shaped groups ... 18. C. socialis

JI. Cells without bristles.

a. Chains loose, with wide spaces between ceils.
l. Larger forms in straight or slightly curved chains. a. Chains with wide, distinct gelatinous cover, marginal zone of shells without shadow lines
17. C. nlanctonica
β. Cells attached to each other by thin, hardly visible gelatinous threads, marginal zone of shells with shadow lines 16. C. nuadriiuncta
2. Small form in very long chains which are curved several times and balled up 19. C. zlomerata
b. Chains similar to those of Nelosira, tight, without visible gelatinous cover.

1. Deep pseudosulcus, incised at an acute angle, between two cells each. Shells tangentially undulate
2. C. comensis (syn. C. melosircides)
3. Pseudosulcus shaped like a channel, shells concentrically undulate 2l. \underline{C}. catenata

Stenhanodiscus muB. 1845.
(Out-dated synonyms). - Cells separate or in tight chains, as a rule disk-shaped, more rarely drum-shaped, very rarely cyindricál; with intercalary bands. Valvar area circular. Shells in most cases more or less concentrically undulate, with a marginal ring of mostly thick thorns, sometimes also with thin long bristles. Discus area finely areolate-punctate, with radial rows of dots which in the centre are single, towards the margin bundled, and with more or less regular, intersecting striae. Radial bundles separated from each other by hyaline spaces; central areoles disarp,pregate, isolated, irregular. Chromatophores small platelets attached to the sides of the shells, or 1-2 large plates attached to the mantle areas. Auxospores spherical (in the smaller forms) or ellipsoidal (in the larger forms).

Euplanktonic species which occur mainly in fresh water, more rarely in brackish water; no marine species are known among the species presently existing. Slain development in eutrophic lakes.

> Key for determining the Stenhanodiscus species
> (according to HUSTEDT)
A. Only traces of shell structure on the small, tangentially undulate central area, for the rest the spaces between the ribs are apparently hyaline .. 8. St. luceus
B. Shells without such central area, either concentrically undulate or flat to evenly convex.
I. Iarfinal zone with distinct rib-like structure :ithin wich the individual dots can hardly be distinguished. Shells therefor similar to those of Cyclotella l. St. dubius
II. Punctation visible as far as the margin, or very fine throughout a. Shell area distinctly punctate, structure visible already with dry systems. Fostly large forms:.

1. Merginal bundle of areoles, anprox. 4-6 in 10 . a. 20-24 areoles in lo u, delicate forms, diameter mostly less than 30 u. 3. St. tenuis 3. 12-14 areoles in 10μ, robust forms, diameter mostly
 2. Varginal bundle of areoles, anprox. 9 or more in 10 u . 4 a. Merginal thorns present rerularly in front of each hyaline radial stria, therefore remarkably dense. Shells delicate (hypolimnetic species) ...5. St. alninu β. Narginal thorns less dense. Shells always thicker (epilimnetic species) 2. St. astrae
b. Very fine structure, visible only with strong immersions.
2. Pervalvar axis not conspicuously elongated, cells therefore disk- to drum-shaped. Chronatophores numerous small rranules6. St. Hantaschii
3. Cells elongate cylindrical on account of ereatly eloncited pervalvar axis, very delicate. Chromatophores l-2 large plates at mantle areas 7. St. suhsalsus

Coscinodiscus FHEB. 183.

Numerous out-dated synonyms.

Cells disk-shaped and (in the species found in fresh water) with circular valvar area; living separately. Shells flat or undulate, mantle zone not particularly well developed; discus area more or less finely. punctate to areolate. Structural elements arranged irregularly or in oriented, tangential or radial rows; radial rows sometimes bundles, individual rows of the central row or of one lateral row of the bundles parallel. Marginal thorns more or less distinct. In larger forms, the membrane has been found to be two-layered, the areoles constitute chambers communicating with the interior of the cell, partly also with the surrounding water. Chromatonhores mostly small platelets at sides of shells. (Diagnosis according to HUSTEDT, Süpwasserflora [Fresh-water flora], 1930).

A very large genus (comprising about 500 species), predominantly marine, with only a few freshwater forms which are still halonhilic.
A. Shells coarsely areolate; areoles in \pm regular radial bundles. C. Rothii var. 1
B. Shells punctate; rows of dots radial, \pm distinctly ramified in a dichotomic manner. Shells tangentially undulate... C. lacustris 2

1. Coscinodiscus Rothii (Ξ_{0}) GRUN。 - Of this marine species we have 4 found only
var。 Subsalsa (IUHLIN-DAMNFELT) HUSTEDT (Fig.511). * "Cells drumshaped, shells concentrically undulate or with one indentation, with a diameter of $25-40 \mathrm{~m}$. In the species, the areoles form recular, bundled radial rows, parallel to the central row within the bundle. In the variety, much less bundling, sometimes even fewer rows, areoles becoming more or less irregular. The most central areoles are sometimes smaller than the adjoining ones: for the rest, the size of the areoles at first does not decrease at all or only a little In an outward direction, but in a broad marginal zone it suddenly decreases substantially, to about 15 areoles in 10 H ; also in the marginal zone, the areoles are arranged in intersectinc line systems. Narginal thorns at the inner margin of the marginal zone, in refularly structured shells one each before centre of bundle. They are lamellar processes with a pore canal, penetrating into the interior.

Occurs in the littoral regions (river mouths) of the North and Baltic Seas; has also been found in inland lakes and rivers: Havel, Spree, Mürgel Lake, Dümmer Lake, Zwischenahner Meer." (HUSTEDT, Süßwasserflora [Fresh-water flora]).

Compare also the note at the end of the chapter on Thalassiosira.
2. Coscinodiscus lacustris CRUN. (Fir.512) (Syn. Cyclotella nunctata W. SFITH, Stephanodiscus punctatus GRUN). - "Cells disk-shaped, with tangentially undulate shells, diameter $20-75 \mathrm{H}$. Discus area distinctly punctate, areole network becomes visible only at high marnifications with immersions. Approx. 10-12 dots in 10 u , arranged in radial rows ramified dichotomically in an outward direction. Dots in marginal zone usually smaller and finer. Narginal thorns thick, 5-7 in 10μ, several larger thorns form a second ring slightly more inward from the first ring.

Helophilic littoral form, very common in river mouths on our coasts, but also in salt mines, mildly salty mools and ditches, even in fairly pure fresh water of inland water bodies." (HUSTEDT). Germany. - In his plankton synopsis (1935), RGDEKF lists numerous locations of Cosc. lacustris in fresh and (oligohaline) brackish . water in Holland. - England.
var. Septentrionalis GRUM. (Syn. Cosc. sententrionalis GRUN.)
(Fig. 512A). - Differs from the species by larger dots which, being more densely arranged, resemble areoles. Approx. 8-9 dots in 10μ.

This (Arctic) form found by GRUNOI! (1\$84) in Franz-Josef-Land was discovered by : ISLOUGH (1023) also in Lake Balkhash, a vast undrained fresh-water lake where the above variety occurs eunlant tonically as a "characteristic form".
var. hynerborea GrUN, (Fis. 512B) is characterized by an even coarser structure and by pronounced areolation of the shells.

This Arctic variety, too, was found in Lake Balkhash (whose fresh-water character is specially emphasized by VISLCUCH), namely in the plankton, together with the preceding variety.

Uncertain species:
Coscinodiscus Pudolfi BACLI: - Cells with flat shells, circular, diameter 16-401. Areoles arranged in distinct radial rows which extend as far as the margin; the latter itself bears short radial marginal rays, 7 in 10u.

Plankter in Lake Rudolf, East Africa. Unfortunately, the nhotograms added by BACH:ANM (1938) to his very brief description do not show the nature of areolation distinctly enough, so that the form cannot be definitely identified. Since that region has salt lakes where Coscinodisci live, it would be very interesting to identify this species beyond any doubt.

II. Sub-order: Soleniineae.

Its only fresh-water family is the following:

Farily: Soleniaceae

Rhizosolenia EHPB. 1841 (1843).

Cells elongate, cylindrical, rod-shaped, with rreatly elonrated
pervalvar axis and numerous scale- or ring-shaped intercalary bands; living separately or forming chains. Circular or elliptical crosssection; end of shell ($=$ "calyptra") With more or less long horn or thorn which is excentrically attached, cone- or cap-shaped, and most 1 y hollow. Shells and intercalary bands finely. punctate-striate, often even without visible structure; mostly with very slight silification of Kucleus mostly centrally attached to girdle side. Chromatophores numerous small, roundish or elongate platelets.. Auxospore formation asexual. Resting spores known of only a few species; formed in pairs or singly in parent cell, "rrenade-shaped"; with conical tips facing each other. Fain axis of auxospores in some species parallel, in 41 other: (exclusively marine) species perpendicular to the main axis of the parent cell.

The genus is almost exclusively marine; its species are euplankters Only 5 species have been found in fresh water (actually, only two of them with certainty) - Rh. minima LEVAFDER occurs in brackishwater.

Key for determining the species.
I. Cells very small, only $8-20 \mu$ long.
a. Cells 8-17u long, $3-4 \mathrm{u}$ wide, forming chains ($4-9$ cells)

Rh. Guldbergiana 5 .
b. Cells 15-20 μ long, 5-7 u wide, not forming chains

Rh. eriensis var. nusilla 2.
II. Cell.s larger, $40-200$ u lone without bristles, isolated or in chains.
a. Calyptra narrow, lanceolately produced. Bristles long,

b. Calyptra broader and \pm shortened.

1. Bristles extending in the longitudinal direction of the cel i.e. in the direction of the pervalvar axis. a. Calyptra obliquely conical, bristle originating in the proximity of the dorsal margin of the cell, fairly straight .. eriensis 2.
?. Calyptra with bump-like ridge, bristle orisinating (in lateral position of cell) more towards the centre of the calyptra, then curves abruptly, and in the distal portion extends in the direction of the lateral margins of the cell Rh. Victoriae 3.
2. Bristles not extending in the direction of the pervalvar axis, but at an acute angle, sometimes even at a right angle, with that axis. Bristles very strongly excentrically inserted .. ${ }^{\text {Khh }}$ curviseta 4.
III. Sub-order: Eiddulnhineae.

Family: Chaetoceraceae.

Cells box-shaped, with elliptical or circular cross-section (valvar area). Intercalary bands rare, septa absent. "Shells with two or several poles, poles with very long bristles. Cells living separately or in chains, in the latter case the bristles at the base or in its proximity intersecting with each other and firmly connected with each other by cementing substance. Ends of bristles free. Chromatophores small sranules in differin\% numbers, or l-2 larger plates. Pesting spores have been found particularly frenuently in this family." Almost exclusively marine; only one inland genus (according to HUSTEDT).

Chaetoceros ZnPTSG. 1844
"Cells with elliptical valvar area, intercalary bands sometimes present, but without septa. Each shell with two fully developed bristles, sometimes, also with rudiments of other bristles. Cells separate or in chains, often with gelatinous covery (HUSTEDT).

Chaetoceros.Muelleri LTM. (Fig. 517B). (Syn. Chaet. Nuelleri var. duplex LET:.; Chaet. subsalsus LMM. ; Chaet. Borrei LEMT.; Chaet. Zachariasi HOMICH., and all the varieties of this species found by trat author, also his other species; Chaet. diversicuryatus VAN COOR; Chaet. Thienemanni HUST.). - Cells mostly separatie, but sometimes
forming short straight chains, with elliptical to almost circular valvar area and apical axis approx. 5-30 u long. Shells flat or concave, often also convex ox with small distention in the ceritre. Shell mantle moderately thick, hardly $1 / 3$ of pervalvar axis, only trace of constriction at the margin of the girdle band. Eristles thin and long, originating at the poles of the apical axis, divergide outward at an acute angle, straight or curved in various manners. Chromatophores a plate on the jirdle. Single resting spores in cells, with smooth membrane. Primary shell uniformly arched, secondary shell \pm strongly constricted at base, then truncate- conical, flatly truncate at the end. In flatter cells the shape of the secondary shell becomes more similar to that of the primary shell" (HUSTEDT, RABETHORST):

Fig. 517B. Chaetoceros Muelleri LFIT. - x 600 (acc. to

Fif. 517C.

Chaetoceros BOTE Imorei

 $\times 600$ (acc. to BOYEF)Very common in brackish waters of European littoral and inland regions, in some locations occurring in lare numbers. In mildly salty water, it has been found in the following locations: Lake Prest near Fagdeburg , salt-minins district of Sparenberg, Oldesloe in Holstein, upper "eichsel River, Lake 'aterneverstorf.

Chaetoceros :lmorei NOYSI (Fig.5l7C) (Fis. in "The Freshwater Algae of the United States" by G.L. CIITH, p. 224 [1937]). - A chain-forming species, has been reported from the plankton of Devil's Lake, North Dakota (BOYE:, 1914; ELLCAE, 1922) wlich alsó contains mildy brackish water, but whose algal flora is reported to have the character of a fresh-water flora. According to G.I.. MITTH, BOYER found this species also in a Canadian lake.
(For the diamnosis of Chactoc Flmorei BOYER, sse Proc.Acad. Mat. Sci.Philadelphia, 66, pn.2lo-221, 1914; BOYER, C.S., A new Diatom).

Family: Piddulnhiaceae.

"Cells mostly shortly box-shaped, more rarely eloncate-cylindrical in the direction of the pervalvar axis; intercalary bands present or absent. Cross-section of cells elliptical to circular, but poles of shells with humps, horms or processes, shells therefore deviating from circular form. Chromatophores as a rule numerous small granules. ... This family, which is extraordinarily common and has many species in sea water, has only one fresh-weter species in the group of Eucempioideae." (HUSTEDT)

Sub-family: Jucamnioideae.
"Cells with elliptical cross-section, mostly crindrical on account of numerous intercalary bands. Shells with two poles, with short humps or longer processes. Membrane always very incompletely silicified" (HUSTEDT).

Attheya TUFFEn VEST 1860. - (Syn. Acanthoceras HONIGMAM.)
"Cells flat-cylindrical, with numerous intercalafy bands. Shells narrowly elliptical, poles with \pm long bristles. Cell walls very incompletely silicified, cells can therefore be easily overlocked (dry preparations!). Zesting spores known" (HUSTED).

Attheya Zachariasi J. BGUN. (Fig.51p) (Syn. Acanthoceras mardehurcense HCNIG:., also var. lata HONIGM.). - Cells cylindrical, vith narrowly
elliptical cross-section; nu:erous ring-shaped intercalary bands which interlock like teeth at the ends; this results in a fremuently mostly regularly interrupted central line in broad girdle view. Shells very narrowly elliptical; poles with two long thin bristles each ("horns"), which extend parallel to the longitudinal (pervalvar) axis, but diverge slightly in an outward direction. Chromatophores mostly four small, centrally located platelets. Single thick-walled resting spores in the centre (sirdle band zone) of the cells, with one concave and one convex valva each, \pm regularly grooved.

Length of cells (or anical axis) $12-40 \mathrm{u}$ (according to HUSTEDT) or 35-100 u (according to FISISTG), width of cells I5-25u (according to FEISTER) 。 Length of bristles 40-60 μ (according to HUSTEDT) or 40-70 μ (according to NEISTMR), 3.4-4 striae in 10μ (according to VEISTER).

Fuplankters, in mostly eutrophic lakes and nonds, also in rivers; very common and sometimes occurring in large numbers, but of ten overlooked. Sometimes occurring also in larger lakes that show little pollution (Lake Biel and Lake of Vorat, Switzerland); found in many north German lakes, but apparently not developing any great maxima; in Lake Dobersdorf (on 28.7 .192260 cells per cubic centimetre, according to UTCONOHL). The species seems to occur mainly in warm water. In the Havel River, according to KRIEGER, it occurs only in summer, sometimes in large numbers: 600 irdividuals in $1 \mathrm{cu} . \mathrm{cm}$.
(Teltow Canal, 23.7.1023). - The maximum generally occurs in July and August. According to HUSMEDT, resting spores occur in north Gormany mainly in September-October, while in the Danish lakes, according to GESEMBEIG-LUND, they are formed in October-llovember. KRIEGER observed resting spores mainly in winter. The living conditions of Attheya seem to be very similar to those of Rhizosolenia longiseta, for the two plankters are often found together.

Sometimes found aiso in Holland (REDEKE, synopsis 1935); common, both in standing fresh eutrophic water bodies and in large rivers (Phine, Vaal, Nieuwe lyas, etc.), June-Sec̣tember. - Mumerous locations also in France, England, Scotland and Ireland.

Feported not only from Burope, but also from Java, e.g. fre~uently in the plankton of the Tjisombong, West Java (HUSTSDT), also in Tjibodas (:CLCSZynska).

II. Order: Pennatae (Pennales)

Shells zygomorphic, always with raphe (which is difficult, to see) or pseudoraphe. Structure in relation to raphe or pseudoraphe mostly regularly pennate (hence the name). Basic shape of cross-section mostly boat- or rod-shaped, but only very rarely circular; cells therefore always line symnetrical. ©hells always without lons processc (horns, humps, bristles). Chromatonhores numerons small platelets
or mostly larger plates. Reproduction by division and auxospores.
This order comprises the majority of all Diatoms living in the littoral and profundal regions of our inland water bodies. A smaller number of the forms belonging to Pennatae are typical planktonic forms.

Overview over the order of Pennatae (according to
HUSTEDT)
I. Shells without true raphe, at the most with pseudoraphe (which is almost always present) in the direction of the apical axis lst suh-order: Araphidineae. It comprises one family, the Fracilariaceae. Cells living separately, or forming cord-shaped, sometimes star-shaped colonies. Valvar area mostly rod-shaped, rarely broadly elliptical, sometimes club-shaped or with undulate margin. Axes as a rule straight and mostly isopolar. Intercalary bands and septa often present; when they are present, the cells; in girdle band position, often broadened into tabular shape. Shells with mostly distinct pseudoraphe and as a rule with \pm finely transapically punctate-striate pattern, sometimes also with transapical ribs. Species living predominantly in littoral regions, some also in plankton; usually attached to a substrate; when freed, able to live without substrate.

3 subofamilies:
a. Cells with strong septa parallel to valvar area

Sub-family: Tabeliarioideae
with the genus Tabellaria.
b. Cells without such conspicuous septa

1. Shells with strcng transapical ribs, also trañäpicaliy striated Sub-family: Diatomoídeae with the genera Diatoma (and Meridion).
2. Shells without ribs, only with coarser or finer もrañāp̄íáa
dotted striae Sub-family: Fragiài With the genera Centronela, Frarilaria, Asterioneije, Synedra (Cnenhora, Crratoneis, Amphicampa).
II. Shells with true raphe (althourg it may be difficult もo sée). 2. Raphe rudimentary and as a rule developed only at thé polès of the shells; also with pseudoraphe which as a rule is displaced transapicad 2nd sub-order: Rāphìdiñáe with one family: Sunotiaceae.
b. Raphe developed at least on one shell of each, cell
3. Raphe developed only on one shell; the other sheil with rudimentary raphe or with pseudoraphe

3rd sub-order: Mōnōāphidineae.
with one family: Achnanthaceaeae (which comprises the two sub-families of Cocconeioideae and Achnanthoideae).
2. Both shells with developed raphe

4th sub-order: Biraphidineae comprising 4 families: Naviculaceae, Enithemiaceae, Nitzschi.. aceae, Surirellaceae.
Q. Paphe like that of Navicula; outer and inner fissures not separated by channel-like dilatation; mostly located in the central line of the shell, more rarely displaced or shifted to a keel, without keel dots, cells generally with boat-shaped shell Ist family: Naviculaceae with 3 sub-families x^{\prime}. Apical or transanical axis or both heteronolar

Sub-family: Gomphocymbelloide with the renera Didrmosnhenia, Somphonema, Omnho- 4 cymbella, Crmbella and Amphora.
β^{\prime} Axes isopolar

+ ? Raphe displaced to a keel located in the central line of the shell. Cells often twisted around apical axes

Sub-family: Amphiproroideae with the genus Amphiprora (predominantly marine form).
++ Shells not distinctly keeled. Raphe located in val.var area Suk-family: laviculoideae
with the genera Diatomella, Mastorloia, Mmhinleura, Frustulia, Srrosisma, Pleurosisma, Caloneis, Neidium, Dinloneis, Stauroneis, Anomoeoneis, Navicula, Pinnularia.
β. Raphe developed as canal raphe, mostly displaced on to a keel.

+ Shells keeled indistinctly or not at all; keel dots or wing canals absent or developed only in the form of delicate pitted pores 2nd family: Epithemiaceae (cells with boat-shaped or \pm clamp-shaped shells, Cells as a rule with transanical rincs, the membrares. between the rinss areolate and with ventrieles). - Raphe not distinctly keeled, r ith pits at inner wall of canal. Shells boat-shaped or curved inteo an arc, not clamp-shaped

Sub-family: Enithemioideae
with the genera Denticula and Enithemia.
oo Paphe keeled, without distinct pits; shells mostly
curved like clamps .. Sub-fomily: Rhopalodioideae with the genus Rhopalodia:
++ Keel dots or wing canals distinct, raphe always \pm raised in the shape of a keel.

- Keeled canal raphe located in valvar area (central or laterally displaced), or only one shell masein

With keel 3rd family: Nitzschiaceae
Each shell with canal raphe which is displaced to a \pm raised keel; canal raphe connected with cell interior through numerous tubules [keel dots]. Central pores present, but mostly noorly visible, or altogether absent. One sub-family ${ }^{\text {` }}$

Sub-family: Nitzschioideae Cells mostly elongated in the direction of the apical axis, more rarely elliptical, mostly without intercalary bands and septa. Sometimes twisted around an axis, keel with ranhe in the central line of the shell or displaced transapicad, but, never extending around the entire shell, shells only with one keeled edge. "ith the genera Cylindrotheca, Facillaria, Hantzschia and Nitzschia. oo Keel with canaj, raphe extending around the entire 4 shell at the valvar edge... 4th family: Surirellaceae Shell with thin keel to strong wing on valvar edge.. Keel or wing extending around the entire shell; each shell therefore aprearing to have two canal raphes. Paphe canal comunicatine with cell interior through winc canals. The membranes between the tubules are called "windows". - 'ith two suh-families
i: Cells arched like saddles, apical axes of the two shells (the so-called "parapical axes") intersecting at a right antle
Sub-family: Carmylodiscoídeae
with one zenus: Campylodiscus.
\#\# Parapical axes of shell not intersecting
Sur-family: Surirelloideae.
Parapical axes of the two shells running parallel to each other. Cells frenuently tyisted afound axis; shells sometimes undulate. "ith 3 genera:

* Shells with undulate parapical axis: Eymatonlcura
** Parapical axis straight or curved, not fegularly undulate.
x Shells with indistinct wing, elongate $=$ inear outline, curved like an S Stenopterobia
$x x$ Shells with distinct wing, or of different shape Surifella

Sub-order: Aranhidineae
Family: Fracilariaceae
Sub-family: Wobellarioideae

Tabellaria EHENBG. 1839
(Syn. Conferva e.p., Diatoma e.p., Tetracyclus e.p.)
Cells forming zigzag-shaped or tight cords, sometimes also star-shaped colonies; in the latter case the cells are connected with each other by small gelatinous cushions ("gelatinous intercalary elements" according to SCHRÖDER). "'hen fully developed, cells with four to numerous intercalary bands vith more or less deeply penetrating septa. Intercalary bands ring-shaped, open at one pole, septa flat, more or less thickened in the manner of a wall at the free margin; septa of adjacent intercalary bands alternately attached. Outline of valvar area linear, usually more or less inflated in the centre and at the poles (constricted in ce non-planktonic species, Tabellaria binalis (E.) GRUN.). Shells without ribs, with delicate transapical striae and distinct narrow pseudoraphe. Ghromatophores more or less numerous, dispersed granules.

In the preparations, the position of the zigzag cords or stars, and mostly also of isolated cells, is such that the observer sees their rectangular sirdle band side.

A small genus (with only three species, of which one is common in the euplankton of large and small lakes, and tyo of which occur mainly in littoral regions). Fresh-water forms which rarely occur in mildly brackish water. Ye shall concern ourselves only with the two following species:
A. Normal resting cell with 4 or more intercalary bands and as many septa; apical axis very long, central distension of shell slightly wider than polar ones..................... T. fenestrata 1.
B. Normal resting cell with numerous intercalary bands and septa; anical axis relatively shorter. Shells in centre often considerably wider than at the noles................................ $\frac{\text { flocculosa } 2 .}{}$

1. Tabellaria fenestrata (LYMCB.) KG. (Fir.519). (Syn. Diatoma fenestratum LYHGBE; Talellaria trinodis R.; T. fenestrata var. pracilis FEICT. ; \mathbb{T}. fenestrata var. intermedia GlUN.). - Cells. mostly forming flat zigzag cords, in girdle band view rectangular, with rounded corners, very flat, strongly developed in the direction of the apical axis. In the resting cell, four (two in each half of the cell) intercalary bands or more (5-8), septa extending almost as far as the centre. Shells linear, distended transapically in the centre and at the poles; centre as wide/or only slightly wider than the poles, $30-140 u$ lonf, $3-9 \mu$ wide. Transapical striae delicate, distinct, punctate-striate, striae parallel; perpendicular to apical axis, $1 \$-20$ in 10μ, at the
ends slightly radial. Pseudoraphe narrow, slichtly broader at the poles, sometimes also at the centre. Near the centre, slirhtly to the side of the central line, shell area with one small pore; a second pore, which is difficult to see, at the margin of the apical shell mentle (polar point of curvature of valva).

The variety intermedia $\mathrm{r}_{\mathrm{I}} \mathrm{RUN}$. (cells with more than 4 intercalary. bands) has here been combined with the type.
var. asterionelloides FRUN. (FiE.520). (Syn. Tah. fenestrata var. villei HUITF.-KAAS; Tab. fenestrata var. lacustris FTEISTER; T. flocculose var. nelagica HOLR.). - Cells mostily forming star-shaped colonies, which frenuently break up into ziozag cords, however, thus forming transitions to the species.
var. geniculata A. CLEVE (Fig. 52l). - Cells bent in centre (cirdle $\underline{L}^{\text {: }}$ band side \%ith strongly angular bend), mostly forming star-shaped colonies. (This "variety" strikes me as being the result of a malformation which has become heritable, HUBEI-PEST.)

Euplanktonic species, very common and frequent; inhabits mainly mesotrophic and eutrophic lakes; tolerates mildly brackish water where as a rule it occurs only in small numbers. In most water bodies in plains, Tabellaria fenestrata reaches pronounced maxima, manly in the summer months during the colder season, the number of Ta!ellaria decreases. Small numbers may survive
the winter in the plankton; a substantial increase in numbers starts in liarch-April. fiass development as early as February (as observed by HUSMEDT', 1919, in Lake Schöh) is an exception. A rapid decrease in numbers usually begins in late autumn.

In the form of its colonies, Tabellaria shows a pronounced seasonal difference: "in the colder season the chain-shaped colonies were by far predominant: they occurred from January to June, and again in September; during the months of june to September, almost only stars and spirals were found" (observation by C: SCHRÖTER in the Lake of Zurich [1806]). The "explosive" development of Tabellaria in the Lake of Zurich in pegs was a remarkable phenomenon. In the preceding years, none of the researchers who regularly studied the lake (HEUSCFTRP, SCHRÖTZR, etc.) had noticed the alga (t:is, of course, does not mean that it had not occurred there, but in any case it had not formed a conspicucus part of the plankton). From 1896 onwards, wabellaria has occurred in the Lake of Zurich as a regular planktonic organism, with high maxima in summer. In 1896 , then, conditions in the Lake of Zurich had, obviously for the first time, feached that level of eutrophy which made the mass development of Tabellaria possible.

Sometimes the snecies occurs also in high mountain regions; I found it, althouch in very small numbers, in a lake in Gorsica,
at an altitude of $2,000 \mathrm{~m}$.
The strange variety reniculata has been observed as eunlanktonic organism in North European lakes, from northern Finland to Norvay.

In the Lake of Zurich, in winter, C. SCHROPI TP found that a fungal parasite of the family of Chytridiaceae, wlich he called Phlyctidium Tabellariae C. SCHROET., occurred fairly frequently on T. fenestrata. (SCHBRMEL found a very similar fungus [1926, p. 188], but on Amphora ovalis [also in winter]; he described it as Physorhizonhidium pachydermum SCHERFF., and he felt it was not impossible that his and SCHROETER's form were identical; in any case, they are very closely related.)

Salpincoeca (Diplosimopsis) frecuentissima (ZACH.) LEFT., a "flagellate" of the family of Craspedomonadaceae, may occasionall be found parasitizing $\underset{\sim}{m}$. fenestrata. The same organism is found on Asterionella and occasionally also on planktonic blue algae.
2. Tabellaria flocculosa (RCTH) KG. (Fig. 522). (lumerous old synonyms; also I. flocculosa var. ventricosa GRUN., T. flocculosa var. amphicenhala G?UN., T. flocculosa var. genuina KIRCHN.). - Cells forming zişag cords, star-shaped colonies unknown. In girdle view (usual position in preparations) tabular, width predominant dimension (emphesis on pervalvar axis). Numerous intercalary bands, with deeply penetrating, flat septa. Shells with \pm inflated
centre, at the poles rounded into the shape of a head or broadly and flatly truncate; centre as a rule distinctly broader than poles. Length 12-50u, width 5-16 u. (The length of the rirdle band side is often a multiple of the shell lencth.) Transapical striae (or rows of dots) delicate, approx. 18 in $10 u$, perpendicula to centre line, slishtly radial at the ends. Pseudoraphe narrow, often slightly widened in centre, more rarely at poles. Gelatinous pores as in T. fenestrata.

Shell anomalies (or asymmetries) not rare. Fairly strong variations in the species, therofore according to HUSTEDT the establishment of separate forms based on the varia fions in the outer appearance of the shell not justified. Freruent transitions in almost all m=terials.

In acreement with HUSTSDT, and "in spite of the apparent transition forms", I cannot share BACIMAMM's view that $\underset{-}{\text { P }}$ fenestrat and T. flocculosa are the extreme forms of one single species; I, too, think that the two forms are "sufficiently differentiated from morphological and ecological viemoints" to'maintain their independence as separate species.

Very cormon and freouent form; very often tychoplanktonic, sometimes also facultative plankter. In contrast to T. fenenterta, particularly common in marshy waters. "From the plains it rises
to the hirgest basins where it is almost always found, both in the littoral rogion and in the open water (facultative plankt:r) (e.g. the lakes of the Bernina ilps, the lakes of Aela, and the lakes high-altitude/of the Glarus Alps, etc.). I have also found it frequently in high-altitude Corsican lakes (above $2,000 \mathrm{~m}$), and high it has been reported often from nordic lakes at fairly/altitudes (HUITFELDT-KAAS, STRÖM)." (HUBEF-PESTAIFCZZT, 1926).

Although ecologically T. flocculosa differs essentially from T. fenestrata, both species are sometimes found together in plankton, occasionally even in olirotrophic lakes (author's own observation in the plankton of the Lake of "allenstadt, Switzerland).

Sub-family: Diatonoideae

Diatoma DE CAYPCLLE 1805 (em. CEIBARG 1863)

Several obsolete symonyms.
: Cells forming tight or zigzag cords, in girdle view rectangulartabular, in shell view linear to elliptical, sometimes with produced or head-shaped poles. Intercalary bands sometimes present, septa absent. Shells with strone transavical ribs and delicate dotted striae. Gelatinous pores on shell side near the pole mostly distinctly visible.

In preparations, the girdle side of the bands faces the observer. $\frac{l}{2}$ Cells connected with each other by small gelatinous cushions at the corners close to which lies a pore excreting relatinous mattex (particularly distinct in zigzag cords).

Exclusive fresh-water fenus. Only one planktonic species: D. elonse tum. The other species are attached to the bottom of water bodies and occur in slowly running water, at river banks, in streams, wells and small channels, also in the littoral zone of lakes; etc.; therefore sometimes tycholimnetic.

Key for determinins its species

A. Cells forming tight cords; shells with distant ribs, usually fewer than 5 in 10μ................... (Sub- (Jenus: Ccontidium)
I. Shells narrowly linear, with ends constricted into the share of a head or at least produced distinctly, smaller forms
(D. ancens)
II. Shells elliptical-lanceolate, with blunt or hardy produced ends, larger forms
(D. hiemale)
B. Cells forming zigzag cords; shells with close ribs, usually more than 7 in 10 н (sub-genus: Diatoma)
I. Cells in rirdle and shell views narrow, elongate, always fairly delicate D. elonratim l.
II. Cells in wirdle view broady linear, shells linear to e? lintical. lanceolate, also relatively hroad; stronr forms ...D. vilmre 2.

Cells at shell side connected with each other, forming more or less long, tight cords which sometimes show recular gaps between individual cells (so-called "fenestrated" cords). Connection between cells frequently strengthened by tiny thorns at the shell margin. Outline of shells narrowly linear to elliptical, sometimes transversel: inflated or constrict-ed in centre. Intercalary bands and septa absent. Striation of shell transanical (transverse); pseudoraphe narrow to very wide, without continuous transapical ribs. Chromatophores a few isolated large nlates or numerous small granules. Special resting spores known only in a few marine species.

In preparations, the girdle band of the cells forming the cords faces the observer.

Predominantly fresh-water forms; several marine species. Among the first-mentioned group; , actually only Fr. crotonensis is euplanktonic, the other species are mostly attached to the bottom and are sometimes swept into the open water. Some of the latter will be included in the following key.

Key for determining the species (according to HUSTEDT)
A. Cells in cords connected with each other only by shell centres,

sometimes also at infétated ends; ianceolate gaps ("windows") between centre and ends; cords therefore "lósie"; cormon

B. Cells forming corrds without gape .
I. Shells narrów and elóngately linear, rarely lanceolate or (variety) siighitly constrícted in ćentree. Pseudoraphe very narrow; often with central area, although the lattér is sometimes indisitinctig defined, Leng̣th $25-100 \mathrm{u}$; width $2-5 \mu$ E. Garucina 2.
II. Shells thostiy somewhat bröader, ppredominantiy inear or

 head-shaped önily. in the variét éañtata). Central area absent. In addition tô the sheili, the g givỉ̀e band side, too, mostly slightijif broader than in the preceding snecies. - .

III. Shells abruptiy and strōngly transanićálily inflated in centre, or with rhombic outiane and sfrongly tapering from centre to

IV. Shells elliptical or lanéolate; (rarely with three roles); 坐 small forms: leneth $3=30 \mathrm{H}$, vith $\hat{z}=6 \mathrm{u}$; striae strons,
rib-like, anprox. 11 in $10 \mu \ldots$. Pr. ninnata 5. C. Cells formine irregular zigzas cords........... Pr. zasuminensis 6 .

Asterionella MA:SALL 1855
Cells rod-shaped, narrowly linear, with uneaually thickened poles, at one shell pole (foot pole) connected with other cells, forming star-shaped, more rarely chain-like colonies; without intercalary bands and septa. Girdle band side of cells linear, usually broadened at the ends, sometimes with pervalvar constriction. Valvar area linear, with head-shaped ends. Shells :יith delicate transapical striation, without central area, with narrow pseudoraphe which \because roadens at the poles, without trarsanical ribs. Chromatophores: several small, round, \pm lobed platelets. - Occasionally asymmetrical forms ith \pm stronely curved cells.

Very common euplankter, occurring in large numbers. In the colonie which lie flat on the slide, firdle band side faces the observer. For determinetion, individual cells must be found and placed on the slide with the shell side facing uprards (valvar view).

In ceneral, we distinguish between two fresh-water species:
A. In valvar view, foot pole of shell broader thán head pole A. formosa 1.
B. Font pole hardly hroader than head pole A. aracillima 2.

Another author (A. YAYBir) uses the rirdle band sides for determination:
A. At the foot pole, cells are joined with areas
A. formosa 1.
B. Cells are joined with acutely rounded edges. A. fracillima 2 .

However, the forms determined according to the latter method do not correspond exactly to the forms determined according to the first method. (See pertinent discussion on p.447).

Synedra seatareig 1830

Several obsolete synonyms.

Cells isolated or forming fan-shaped to bushily star-shaped colonies, rarely forming short cords; generally rod-shaped, prismatic on account of greatly elongated apical axis, sometimes curved in 4 the direction of the apical axis, but varying greatly in habit. Intercalary bands and septa absent, thus girdle band side as a rule narrowly linear. Valvar area linear to very narrowly lanceolate, sometimes with waved margins, often with belly-shaped dilation at centre or at the ends. Valvar area as a rule with transanical rows of delicate dots (pores or poroids?) and narrow pseudoraphe, or with broader, lanceolate, hyaline central field which is sometimes dispersely dotted. Central area present or absent. One shell end usually bears a gelatinous pore. Chromatophores: numerous small granules to two larce plates. (According to HUSTEDT.)

Genus with numerous species; mostly cosmopolitan species in fresh water (and in the sea), living predominantly in littoral regions as plants growing upwards; several species and varieties typical plankters. One species (Synedra cyclonum ERUTSCHY) lives epibiotically on planktonic crustaceans and Rotifera.

Key for determining the species
A. Cells forming bushily star-shaped, free-swimming colonies (Sub-genus Belonastrum)
I. Shells linear, tapering little or not at all towards poles; approx. 15 transapical striae in 10 u S. berolinensis 1. II. Shells lanceolate, approx. 24 transapical striae in 10 u S. Utermöhli 2.
B. Cells not forming such colonies. Cells attached to substrate either singly or in bushy or fan-shaped cushions (when occurring tycholimnetically), or free-living and isolated, not forming free-swimming clusters (in the latter case frenuently planktonic)
(Sub-genus Eusynedra)
I. Apical axis curved (epiplanktonically attached form)
S. cyclonum ?.
II. Apical axis straight.
a. Transapical striae very delicate, ofter hardly visible. Nordic-Alpine planktonic form S. nana 3.
b. Coarser structure.

1. Shells fairly broadly linear, not tapering tovards ends, at poles widened in the typical head shape and shortly rostrate S. . canitata 7 .
2. Shells shaped differently (small to very large forms). α. Shells strong, linear to lanceolate, tapering tomards
the ends only little and eradually or not at all,
or stronc also at the ends; usually only approx.
10 striae in $10 \mu \ldots$. β. Shells delicate.

* Small forms, hardly longer than 70μ; at the ends produced only little or not at all and only slightly capitate. Central area often particularly 4! pronounced on account of the shells on either side being slishtly constricted. Transapicfl striae very delicate, approx. 20 in 10 S. rumpens 5. ** Longer forms (over do u, mostly considerably longer).
+ Shells with narrowly linear central nortion from vihere they taper ranidly towards the ends, or entire shells very narrowly needle-shaped. Nostly 12 or more striae in $10 \mu . . .$. . S. . acus 4. ++ Shells with double inflation in centre S. Cunninctonii .

1. Synedra berolinensis LMM. (Fig.533) (Syn. ㅇ. Iimnetica LYT.; S. victoriae "CL.; S. berolinensis var. gracilis LDOT.). - Cells forming free-floatins, hushily star-shaped colonies. Shells linear, with \pm transanical belly-shaped distention at centre and ends, but in smallefit individuals complotely ellintical fand bearins a decertively close resemblance to the shells of Tramiloria rinnata
at the poles bluntly rounded, 5-40 4 lonf, 1.3-3 u vide. 14-16 transapical striae in 10 u . Pseudoraphe narrow, linear. Central area absent.

Wuplankter in standing and slowly flowing water; so far rerely found. Gemany (Lake Grunewald, Lake Sumet, Lake Colpin, Lake Petersdorf, near Danzig, from the Havel River region [Lake :'oblitz], in the Wüme River near Bremen, Kleiner Sutiner See [smaller one of two lakes near Eutin in Schleswig-Holstein], Lake :'olf, Lake Schulen).
2. Synedra Ut,armbhli HUST. (Vic.534). - Cells forming free-floating, bushily star-shaped colonies. Shells lanceolate, evenly and gradually tapering fron centre towards moderately acutely rounded ends, 25-35 u lons, 2.5-3 u wide. Transanical striae delicate, $22-24$ in 10 u . Pseudoraphe narrow, linear. Central area absent:

Euplankter. So far found in only one locality: Lake Dobersdorf in Holstein.

Key for determining the varieties
 (according to HUSTEDT)

A. Transapical striae close, approx. 15 in $10 u$
S. ulna var. oxyrhynchus
E. δ - 12 transapical striae in 10 u .
I. Shells transapically constricted.
a. Finds bluntly-cuneately rounded var. impress
b. Ends produced-rostrate var. contract
II. Shells not constricted.
a. Shells linear, not tapering towards broadly rounded ends; ends not capitate var. aerualis
b. Shells linear to lanceolate, with \pm capitate ends

1. Shells linear, widened at ends, and with \pm rostrate poles .. var. spathulifera
2. Shells with bluntly rounded, capitate poles
a. Shells almost linear, hardly tapering towards the ends; ends broadly capitate var. biceps
B. Shells lanceolate, with narrow, capitate ends.

* Shells mostly wider than 5 u , tapering fairly abruptly in front of ends, thus with capitately constricted poles var. amnhirhunchus
** Shells mostly less wide than 5 u , narrow, needleshaped, not much constricted in front of slightly capitate ends var. danica

Suborder: Biramhidineae

In this sub-order both shells have a true raphe which either lies in the centre line of the shell or is displaced transapicad, sometimes also transferred to a keel. The sub-order comprises four families: Naviculaceae (with the typical "Navicula raphe" which mostly extends in the centre line of the shell, but is rarely displaced or transferred to a keel); Epithemiaceae, Nitzschiaceae and Surirellaceae. In the last three families the raphe is developer as a "canal raphe" and is mostly transferred to a keel. The latter lies either on the valvar area (medial, or laterally disnlaced) or on one marsin of the shell (Nitzschiaceae), or extends around the shell (on the valvar edge) (Surirellaceae).

Family: Haviculaceae

Sub-family: Neviculoideae

Cells always symmetrical, shell view never club- or crescentshaped. Raphe on valvar area. Intercalary bands and septa often present, but in most cases absent. Cells usually isolated, rarely in gelatinous tubes or on relatinous stalks also rarely forming cords, in which case it is difficult to distinguish them from Fracilaria (according to HUSTEDT).

The sub-family of Naviculoideae comprises meny genera; some
species frenuently occur tychoplanktonically, and have been erroneously called euplanktonic. Amoni these species are, in partieular, species belonging to Navicula, Pinnularia, Pristulia, Stauroneis, Perosirma, more rarely also to Dinloneis, Caloneis, Anomoeoneis, Reidium, etc. It is not permissible to include here the very larce number of species, especially of the first two genera, which fairly of ten are found on lists of "plankters". Peference may be made to the main publications, already noted repeatedly. As yet, no euplanktonic forms have been renorted for this sub-family whose taxbnomy is very complicated.

Sub-family: Gomphocymelloideae

Cell body asymmetrical in relation to at least one main section. Either apical axis or transanical axis, or both axes heterorolar, pervalvar axis isopolar. Intercalary bands fre~uently present, septa absent. Faphe of the Navicula type; with \pm developed rodules, frenuently displaced from the centre line of the shell, but not distinctly keeled, no keel dots (accordine to HUSTRNT).

This sub-fanily comprises several very comon genera: fomphonema, with mostly club-shaped, attached cells which, however, once torn from their selatinous stalk, can also live frcely, in w! ich latter case they often float around tychoplanktonically. - Amohora, wose 4 cells, in cirdle view, are ciliptical vith flattened ends, but in
shell view are \pm crescent-shaped, , ith bluntly roundod or producod, often capitate ends. Cells mostly isolated, either attached to a substrate or free-living in the mud of the water body. Oftien found tychoplanktonically (e.r. Amnh. ovalis and its veriety nediculus, which often attaches in large numbers to larcer diatoms, such as Mitzschia, Surirella and other algae, or also occurs free-living). Another genus with numerous species is Cymbella, which will be discussed in sreater detail below.

Crmbella ArAPDH 1830.

Cells isclated and free-living, or attached to substrate on gelatinous stalks, or livins in selatinous tubes. Without intercalary bands and septa. Thells mostly boat-shaped, dorsiventral, rarely almost symmetrical ahout the centre line (in which case they resemble the shells of some species of Lavicula). Raphe mostly close to ventral margin of shell; axial and central areas usually distinctly developed. Structure: transapical rows of dots, the central rows on the ventral side often terminate in isolated dots separated from the rest of the dots by a furrow. In some species a conspicuous pore (stirma) in the vicinity of the central nodule, usually on the ventral side. (According to hUSTEDT.)

Predominantly frosh-wator forms, "ostly of ceneral distribution; no euplanktonic forms are known, but frequently occurring
tychoplanktonically, both in lakes and in ponds. The folloving species merits attention:

Cymbella ruttneri HUSmedt (Fig.554). -"Shells naviculoid, narrowly and asymmetrically lanceolate, with flatly arched ventral margin and slishtly more arched dorsal margin; very slightly produced at the fairly acutely rounded corners, $15-30 \mathrm{u}$ lons, $3-4.5 \mathrm{u}$ wide. Axial area narrow, very narrowly lanceolate, not widened around central nodule. Raphe almost straight, slightly curved dorsad in front of central pores. Transapical striae slightly radial to perpendicular to centre line, $20-24$ in 10 u , usually slirhtly wider at ventral side than at dorsal side.

General distribution! Very common in the lakes of the Sunda Islands, freruently also in the plankton, so that with great likelihood it is a form which occurs, at least temporarily, as a true planktonic form" (HUSTEDT).

Family: Epithemiaceae
Cells with boat- to \pm clamp-shaped shells. Raphe developed as canal raphe, transferred to a keel or lying on valvar area, of ten with pitted pores in the inner canal wall, but always without actual keel dots, sometimes angulated on the valvar area and disnlacer? transapicad. Moclules roorly developed or altogether absent.

Cell wall as a rule with transapical ribs, the memrano portions between the ribs areolatemehambered. Chromatophore as a rule a plate on the firdle extending to the other walls. - Two sub-families:
I. Raphe not distinctly keeled, pits on inner canali wall. Shells boat-shaped or curved like a bow, not clamp-like. Epithemioideae.
II. Raphe keeled, without distinct pits, shells most,y curved like a clamp. (No known planktonic forms) .. Rhopalodioideae.

Sub-femily: Tnithemioideae

In girdle view, cells rectangular or elliptical. Shells boatshaped or evenly curved, in the latter case \quad ith dorsiventral structure. Raphe lying on valvar area, mostly \pm displaced transapicad, often extending almost in its entirety on the valvar edge, but hardly pedicellate. Inner canal wall pitted; raphe often angulated in centre. Cells irith intercalary bands and septa of peculiar structure. Two genera:
I. Apical axis straight, raphe on valvar area not angulated. Only one known planktonic species Denticula (p. 4 67)
'II. Apical axis curved, sholls dorsiventral, raphe on valvar area ançulated (no known planktonic species)........ Enithemia

Family: Nitzochiaceae

Both shells of each cell with canal raphe transferred to a \pm protruding keel; canal raphe connected with cell interior through numerous tubules (keel dots). Central pores present, in which case they are mostly difficult to see, or altogether absent.

Sub-family: Mitzschioideae

Cells elongate (predominantly in the direction of the apical axis); mostly without intercalary hands and serta. Keel with raphe either in centre line of shell or displaced transanicad. Shells with only one keeled edge.
I. Cells formine tabular colonies inside which individuals perform independent giding motions Eacillaria (1.450)
II. Cells not forming such colonies.
a. Apical axis bent into a curve in centre, cells therefore dorsiventral. Ranhe of both shells on concave margin (Hantzschia)
b. Cells linear-rod-shaped, broadly elliptical or curved like an S Nitzschia (p.470)

Bacillaria GTELIN 1788

Cells forming tabular cords, but in a manner which allows $\underset{\sim}{r}$]iding motions to be performed by individuals inside the cords; shape of
cords thus changing frenuently. Cells rod-shaped. Keel central.

Bacillaria paradoxa GIEL. (Fig.558). - In girdle view the cells are linear-rectangular, shells connected with each other to form multicellular plates. Shells linearly spindle-shaped, ends sometimes slightly rostrate, 60-150 u long, 4-8 μ wide. 6-8 keel dots in 10μ. Cell wall transapically punctate-striate, 20-25 striae in 10 u.
var. tumidula GRUN. (Fir. 559). - Cells inflated in centre, in all other respects like those of the species.

This species, which in eneral is euryhaline, sometimes occurs in almost purely fresh weter, and is very common in inland waters. According to observations by G. XARSTPM, Eacillaria naradoxa sometimes rises from its usual location, the muddy bottom, and after extersive reproduction appears in the plankton in hure numbers.

Nitzschia HASSALI, 1845

(Homoeocladia ACARDH, 1830)

Cells isolated or forming colonies, differing sreatly in habit; mostly linearly rod-shaped, or curved like an S, or, more rarely, with broadly elliptical shells. Ǩcel central or displaced \pm transapica in the latter case cells diasonal.ly surmetrical. Keel dots somotimes extending like ribs across the shell area. Canal raphe with or
without central pores. Shell area sometimes with apically oriented fold on which the structure is less distinct or often altogether absent.

Genus with large number of species (more than 180 species in fresh, sea and brackish water, mostly marine and fossil); sometimes forms difficult to distinguish from each other. "rith regard to identification, it must be remembered above all that the aprearance of the shells differs with their position. As a rule they rest on one side of the keel, tious occupying a "half-turned" position, while their true shape is revealed only in the "keel position", i.e. When the crest of the keel faces the observer; this position, hovever, can be achieved for most species only by time-consumine searching and trying" (HUSTEDT).

HUSTEDT has divided the senus into 12 groups, of which we are interested only in trose three groups to which the 25 species mentioned below belonc, namely

1. Lanceolatae GrUN.: Mitzschia species with lanceolate shells which are \pm distinctly striated transapically and have a stroncily eccentric keel. Comprises the majority of the forms mentioned below.
2. Sigmoideae (CRUN,) HUST.: Species with cells which are curved in the shape of an S and whose keel is \pm occentric to almost central.
3. Nitzschiellae (ABH.) GRUN.: Species with spindle-shaped central portion of shells and lone, beakmike produced shell ends; keel \pm eccentric.

Cnly few forms seem to be euplanktonic (in actinastroides (ITET:) VAM GOOR, N. asterionelloides O.I., M fonticola ridit var pelarica HUST., N. holsatica HUST., N. striolata HUST., N. nelarica C.F., II. baccata HUST., N. nyassensis C.I., N. lacustris HUET.). The majority of Nitzschia species grow on the bottom or upwards, but 47 some of them occur very frenuently in the rlankton (tychoplanktonic). N. eviphrtica OF. and N. Kützintiana HILSE have been found to occur epiplanktonically.

Key for determining the species of Nitzschia (HUSTEDT)
A. Cells with spindle-shaped central portion and lon ly rostrate, thin ends.. ritzschiellae c.
B. Cells not conspicuously lons and rostrate
I. Cells with S-shaped apical axis Sicmoideae b.
II. Apical axis straight Lanceolatae a.
a. Lanceolatae
A. Cells forming bushily star-shaped colonies.
I. Chells 2.5 u wide or wider N. actinastroices 1 .
II. Vaximum width of shells $2 u$.
a. 'idth:length approx. l:13-2\%, 14-17 keel dots in 10 u IN. holsatica 2.
b. :'idth:length approx. $1: 32-72$, 16-18 keel dots in 10μ (tropical form) I. asterionelloides 3.
B. Cells not forming such colonies.
I. Structure fairly coarse, hardly more than 16 transapical striae in 10μ.
a. Shells broadly lanceolate, with strongly and fairly acutely rostrate noles (tropical form) N. lancettula 4. b. Shells narrowly lanceolate to linear (cosmonolitan

II. Structure more delicate.
a. Cells more than 150 u long (tronical form)... iil lacustris 21.
b. Cells much snaller, mostly st:orter than 100 u.

1. Structure very delicate, hardly resolvable, approx. 35 or more transapical striae in 10μ.
a. Shells linear, with parallel sides and shortly rostrate poles, $18-20 \mathrm{keel}$ dots in $10 \mathrm{u} \ldots \mathrm{N}$. nelarica ?
β. Shells more or less lanceolate, or the keel dots more distant.

* Shells with lonrly acute noles which are capitately rounded at the ends, shell outline thus narrowly spindle-shaped N. Eracjlis 10
\%* Shells with shorter ends or ends that are not produced at all.
\# Shells very narrowly linear-lanceolate, width:length approx. 1:20-40, structure as yet unresolved (tropical form) 思. baccata 20.
\#\# Shells relatively broader.
aa Shells linear to linear-lanceolate, 10-15
keel dots in 10 u................... N. nalea 11.
bb Shells lanceolate, mostly $14-18$ keel dots
in 10μ....................... N. Kützinciana 12.

2. Structure alvays distinctly visible, mofsty only
up to 30 transapical striae in 10 u .
a. Shells linear with bluntly rounded, not produced ends (tropical form) N. eniphytica 17.
\mathfrak{p}. Shells more or less lancきolate, with pointed poles. 4

* Approx. 30 transapical striae in $10 u$.
\# Shells broadly lanceolate, with strongly convex sides (tropical form) N. towutensis 15
(see also N. frustulum var.)
\#\#f Shells narrowly lanceolate, with hardly convex sides.
+ Shells up to approx. 35 u long, 12-16 keel dots in 10 u
0 Shells 2.5-4 4 wide it. fonticola 10. (see also \mathbb{N}. frustulum var.) 00 Shells $1.5-2$ u wide (tropical form)
N. striolata 16.
++ Shells longer than 35 u ; keel dots mostly coarser (tropical forms).
0 Shells with acutely rostrate ends, up to 3μ wide N. subrostrata 9 .
00 Shells 3.5-4.5 u wide, tapering conically towards ends N. nhilinninarum 13.
\%* Structure coarser.
\# Central keel dots more distant (tropical forms).
+ Shells 4-5 u wide, with rostrate ends
I'. nseudcemphioxys 6.
++ Shells narrower, ends not produced.
O Shells narrowly lanceolate, keel dots small IV. Iuzonensis 14 . 00 Shells vider, linear-lanceolate, keel dots coarse E. invisitat, ${ }^{\circ}$.
Hit Distance betwoen central keel dots and between other keeJ dots not conspicuously different (cosmonolitan form) in. frustulum ?
b. Sigmoideae
A. Transapical striae distinct, up to approx. 26 in 10 u
N. simmoidea 22 .
B. Structure much more delicate, $30-36$ striae in 10 u :
N. vermicularis 23.
c. Nitzschiellae
A. Very long tropical form, shells 150 -almost 500 u long, central portion only slightly wider N. nvassensis 21.
B. Shells with wider, spindle-shaped central portion, mostly shorter than 150μ (cosmopolitan form) N. acicularis 25.

Family: Surirellaceae

Shells with slishtly keeled to strongly winged valvar edge; koel or wing extending around the entire shell, thus each shell appearing to have two canal raphes wich biowenetically, however, must be considered as two branches of one raphe (HUCTMDT, Eau d.Diat. [The forms of the Diatoms', VIII. 1929). Canal of raphe communicating with cell interior through wing canals; the membranes hetween the tubules are called windows (HUSTEDT). Two sub-families:
I. Surirelloideae: Apical axes of the two shells of one cell running narallel to each other (not intersecting). Cells rarely vith saddle-shaped arch.
II. Campylodiscoideae: Cells arched in the shape of a saddle, apical axes of the tr:o shells ("narapical axes") intersecting at a right angle.

Sub-family: Surirelloideae
Review of its genera.
a. Shells with waved parapical axis Cymatonleura (n .48 C)
b. Parapical axis straight or curved, not regularly waved.

1. Shells with indistinct wings, elon ate-linear outline,

2. Shells with distinct wings, differently shaped

In shell view, cells elliptical, linear, or solemshaped. Surface of shell transversely undulated, i.e. crossed by a small number of transverse waves with distinct profile at the shell margins, but becoming flatter towards centre of shell. Shell area with delicate transverse striation (transapical striae). Fseudoraphe thin, mostly. difficult to see. Vargins of shell side with short, strong marginal ribs which in some species are so short that they appedr as "pearls". Cells without intercalary bands and septa, in rirdle view. mostly rectangular, rod-shaped; waves of shell líd in girdle view clearly visible. Canal raphe at each lonçitudinal edge. - Auxoprores: two apogamous spores from two cells (G. KARSmEN).

This genus includes several very characteristic snecies which occur in lake plankton.

Key for determining the species (according to HUSTEDT)
A. Shells with one strong, curved thorn each at centre line, at some distance from each pole C. Calcarata ${ }^{\text {. }}$ B. Shells without such thorns.
I. ring canals extended into delicate but distinctily recognizable transapical. ribs which extend as far ns the centre line of the shell .. c. solna 2.
II. Shells without such ribs.
a. Shells.solo-shaped, with elongate; consaderabï constricted central portion, :lost, circular before the ends

E: nyansae 3.
b. Shells shaped differently.

1. Striation on wave crests an apical direction, outing of shells linear, conical towards the ends : En enrulata 4
2. Striation on wave crests forming an a cute angie with apical axis.
a. Transanical striae on shell āréás délícáte buff

$\hat{?}$. Very delicate and irregular, saji=meshé network of hyaline striae dissolving structure into an intricate system of short, finely dotted striae. Transanical striae visible only an a narrow margin l

Surirella TURPIN 1827.

Cells very different in appearance. In girdle view rectangular to trapeziform, sometimes twisted around an axis. Shells with lineal, elliptical, oval or ovoid outline*, margin with more or less distinct wings. ving canals usually extending into valvar area narrow wave crests (called "ribs" because of their shortness and appearance, but not representing membranous thickenings [or only in expeptional cases7\% "Depending on the location and development of the wing, the wing canals and windows, in shell view, are distinctly visible or hardly recognizable, so that we can sneak of "distinct or indistinct wine proiection". The waved houndary line between valvar area and wing is called "loop". If the differences betteen wave crests and wave troughs are very great, long loops are formed, usually in connection with indistinct wing projection; if the differences are small, short loops are formed, mostly in connection with distinct wing projection. The distinctiveness of wing proiection, which is an essential distinguishing feature of several species, depends ever more on the location of the wings. If the wings lie perpendicular to the valvar area, wing projection is of course completely absent; its distinctiveness increases with decreasing \underline{L} angles of inclination between wing and valvar area. The chromatonhores

[^0]to the extent they are known, are two more or less divided plates, attached to the shells." Pseudoraphe linear or lanceolate; pseudoraphes of both shells parallel to each other.

Large genus with many more than 200 species in fresh, brackish and sea water; free-swimming or attached (marine). Nostly very attractive forms. So far, no typical plankters have been found in freshwater bodies of Europe and North America. (But some species are found fairly regularly in the tychoplankton.) On the other hand, it seems that a number of tropical and subtropical species must be regarded as eunlanktonic. The genus, at least in tropical and subtronical waters, shors a strons tendency towards endemic forms; this, HUSTEDT (in litt. .) thinks, is due to the "phylosenetic youth of this genus".

The following list includes 66 species (with numerous varieties and forms). A considerably number of these species have been taken from the publications by O. MULLER, OSTEMEED, G.S. VEST and TOLOSZYNSKA, but in particular from those by HUSTRDT (from SCHNIDT's atlas [material from Tanganyika], from Aokiko, Japan, and Lake Toba, Sumatra, and from his description, to be published shortly, of the material collected by the :allacea expedition). Furthermore, Dr. HUSTEDT was so kind as to put at my disposal a large number of new forms with their diagnoses and nictures, and to draw my attention
to several forms to be included in my list. The key for determining the species of Surirella, riven below, has also been kindly supplied by Dr. HUSTEDT.

The new species from Lake Baykal described by SKVOFTZOT have been included only to the extent to which they had been found by HUSTPDT in the material at his disposal; the pictures and diagnoses of these . forms, too, were revised by HUSTEDT. Isolated finds of doubtful speaies, which require further observetion, have not bden included.

Some forms have been included which were found in mud samples from the bottom at depths of $75 \mathrm{~m}, 10 \mathrm{~m}$ and more; the reason for this is that we had to assume that these forms got into the sediments from the open water. It was not certain, however, whether they were tychoplanktonic or euplanktonic forms. In any case, the eepths mentioned could not have been the usual habitat of these Surirella species. And it was indeed possible to prove that some of the species had come from the open water.

When determining the Surirella species, the following factors must be taken into account: 1. A definite division into heteronolar and isopolar forms, introduced by Otto H ULLER, is hardly ever possible. rany isopolar species have heteropolar verieties or anomalies, and In some heteropolar forms the differencer between the two shell poles are hardly recornizable. A definite distinction usually
requires entire cells, which must be examined both in shell view and in girdle view. The true heteropolar forms have wedge-shaped girdle band sides, and the shell mantles are wider at the head pole than at the foot pole.
2. In some species torsion occurs, which is not always easily recognizable. Wild torsion about the apical axis manifests itself by the fact the the wing margins, when viewed from the shell side, do not lie at the same level, but appear to descend towards the foot pole at one longitudinal side, towards the head role at the other. Ci the other hand, those parts of the wings which face each other diametrically, lie at the same level.

Key for determining the species of Surirella (HUMMED)
a. Forms with isonolar apical axis.
A. Cells twisted around the apical axis.
I. Cells strongly twisted.
a. Shells elliptical, with broadly rounded ends.

1. Shells elongate-elliptical, less than 50μ wide
S. converse 35.
2. Shells broadly elliptical, wider than 80 u
S. injinocios 30.
b. Shells linear, with conical ends ... S. sniraloides 37. II. Cells slizhtly twisted.
a. Shells linear-elliptical, sometimes constricted, up to 50μ wide, bearing large number of small thorns
S. horrida 3.
b. Shells broadly elliptical, approx. 75 u wide
S. prehensilis 34.
B. Cells not twisted around anical axis.
I. Shells very elongate, narrowly linear, aprrox. 12 times longer than wide, or even longer.
a. Approx. 17 wing canals in $100 u$, sirdle hand sides very broadly linear S. . effusa 32.
b. Anprox. 30-40 wiñ canals in $100 \mathrm{\mu}$, sirdle band side not conspicuously wide............................... S. . cusnidata 31.
II. Shells relatively. wider.
a. Transapical waves very short, developed only in narrovi marginal zone, broad central field with irregularly reticulate structure.,......................... s. hrevicostata 30 .
b. Vaves longer or shorter, but central field'with different structure, or absent.
3. Central field surrounded by a row of more or less numerous stronc thorns S. S. asnerrima .
4. Shells with different structure.
a. !'ave crests and troughs on shell area of remarkably different widths, therefore wave crests or troughs appearing like ribs.

* lave troughs rib-like, shells lanceolate
S. Iancettula 20.
**: Wave crests rib-like, shells linear.
O Fore than 100μ long, approx. 25 wing canals in 100μ........................... S. Sredifera 17.
00 Less than 100μ long, approx. $34-4$ O wing canals 4 in 100μ........................... . anfustiformis 15.
${ }^{2}$. "lave crests and troughs on shell area rot differing so conspicuously.
* there wins canals open into wins margin canal, tongue-shaped processes running parallel to val var area Si. panillifera 6. ** Wings without such processes.

O Shell outline elliptical to linear-elliptical, with bluntly rounded ends, sometimes with concave margins.
\# Distinct wing projection.
a Cells in girdle view constricted, shells dumbhell-shaped S. halteriformis 2 bb Girdle hand side not constricted.
a C Cell wall dispersal but coarsely punctate S. . rranulata 10 .
(see also $\underline{\text { S. Jinearis }} \mathrm{V}$. helvetic ll)
$\beta \beta$ Cell wall not conspicuously punctate. x "ing canals very distant, approx. 16 in 100 u s. balata 13. xx ring canals closer, $20-30$ in 100μ S. linearise 11.
ting projection indistinct. or absent.
aa Shell area dispersely covered with small
thorns or coarse dots
a α Shells elliptical, transanical striae distinctly punctate .. S. marcsaritifera 23.
if Shells linear, often constricted in centre
x Wave crests at margin with flat
loop heads S. aculeate 22.
xx Loop heads strongly developed

- . Heideni 21.
aa Shell area without such thorns
as. Shells elliptical-lanceolate
E. latecostata 26 .
$\beta \beta$ Shells linear to linear-elliptical, sometimes constricted in centre
x Approx. 16 wing canals in $100 u$S. pasta 25.
$x x 25$ or more wing canals in $100 u$
+ Girdle band sides linear. .S. Sublingaris 1++ Girdle band sides constricted incentre S. obtusiuscula 14 .00 Shells linear to lanceolate, with more or lessconical ends.\# Shells with distinct wing projection
aa Central portion of centre line raised
conspicuously like a ridge, this ridge
terminating in strong, laterally compressedteeth some distance from the poles
S. Reichelti 10 .
bb Centre line without such teeth, but 4
sometimes irregularly covered with smallteeth along its entire length
an. Shells broadly rhombic-lanceolate
S. turpida .
QB. Shells linear to elliptical-lanceolate, sometimes constricted in centre $\times 20-30$ wave crests in 100 u
+ Shells less than 40 u vide..a. limari ++ Shells wider than 50 u. .s. naucillons 2

```
xx 10-20 wave crests in 100 u
+ Shells elongate, abruptly widening in front of poles, short forms very bros dy linear; ends tynicallyconical (tropical form) .......... S. Tyassae 1.
```

++ Shell ends not so conspicuously characteristic, shells linear with evenly tapering ends (cosmopolitan form) S. Siseriata 7.

Shells with indistinct wing projection aa Shells broadly lanceolate, $100 u$ and more vide S. cacus Baicali $2 \pm$. bb Shells considerably narrower
nr Central third of centre line raised from the level of the shell, centre. line terminating in teeth at both ends of this ridge S. bidentula 20
$\beta \beta$ Centre field and centre line not characterized in this manner
x "ave crests on shell area distinctly wider than wave troughs

+ Shells linear S. . Mel levi 5 .
++ Shells constricted in centre
$x x$ rave crests and troughs on shell area of approximately the same width, or wave crests narrower + !'ave crests in centre between pseudoraphe and shell margin suddenly becoming narrower and lower, shell area thus with semi-lanceolate depressions on eithe side of the centre line
S. acuminata ${ }^{\text {s. }}$.
++ "ave crests oxtending evenly in relation to pseudoraphe

Y Shell area reakly and indistinctly waved, only small difference between wave crests and troughs
S. Encleri 2.
yץ Shell area distinctly waved. 8. Shells up to approx. 30 il 4 C wide S. Thienemarri 16.
5δ Shells 40 u wide or wider
S. Fülloborni 3 .
b. Forms with heteropolar apical axis
A. Cells more or less twisted around apical axis, sometimes only at foot pole.
I. Shells with strong wings.
a. Cells twisted only at foot pole, shells elongate-oval (Nordic form) S. Astride 41.
b. Cells strongly twisted, shells broadly oval, very little heteropolar (tropical form) S. Solterecki 40.
II. Shells with weak or indistinct wings.
a. Shells very broadly oval, membrane strongly punctate-striate, waves very short, marginal S. Striolata 55.
b. Shells more slender, more delicate structure.

1. Wave troughs very narrow. Large, oval form
S. subcontorta 60.
2. lave troughs wider. Smaller form with acutely ege-shaped. shells s. pseudcvalis 64.
B. Cells not twisted.
I. Centre line with one subulate or lamellar thorn each in front of head pole, mostly also in front of foot pole; rarely with two thorns in front of head pole.
a. Shells with two thorns at head pole S. Widens 52.
b. Shells with one thorn each at head pole, sometimes also at foot pole.
3. Wings strongly developed, distinct wing projection (cosmopolitan forms).
a. Thorns on centre line strong, subulate
S. Capronii 50.
β. Thorns more delicate, laterally compressed, lamellar.
S. genera 44.
4. Wings less developed, indistinct wing projection (tropical forms)
a. Shells narrowly oval, shell area strongly waved S. Sninifera 51:
\therefore. Shells broadly oval, shell area slightly waved
S. Detest 59.
II. Centre line without terminal thorns, or irregularly serrate along its entire length.
a. Wings separated from each other at head pole of shell by
a wide gap, wave troughs rib-like, short.. S. Suatimalensis
b. Pings joining at head pole
5. Shell area in inner part of shell not waved, waves short, marginal
a. Shell area strongly punctate-striate (cells very sicisht? twisted) S. Striolata 55 :
β. Shell area only dispersely punctate, or apparently smooth............................... S. Snarsinunctata 56 :
6. Waves extending forther towards pseudoraphe, more or less reaching it, or leaving only a narrow central field free 401 a. Margin of shells without distinct loop heads (doubtful species from East Africa) S. fasciculata 65. p. Margin of shells with distinct loop heads * Yave troughs very narrow, rib-like (cosmopolitan form) ... S. elegans 53
** Wave troughs not conspicuously narrow. \# Shells with distinct wing projection.

0 Fostly fewer than 20 wing canals in $100 u$, cell wall strong, stroncly waved. aa Centre field raised conspicously and strongly like a ridge, shells with deep depression between centre field and margin ...s. exce? lens bb Centre field not so sharply defined
S. robista 42

00 Hostly 25 or more wing canals in 100 u , cell vall thinner, transapical striae more delicate. aa 20-30 wing canals in 100 u , larger forms S. tenera $/ 4$. bb 40-70 wing canals in $100 u$, small forms S. tenuissima 45.
I. ${ }^{\prime \prime}$ In Indistinct wing projection

0 Wider wave crests repeatedly divided at marrin by small inserted vindows , rorata 4 .

00 「ave crests undivided at margin

 aa Shells with acutely rostrate foot pole, wave crests before centre field with small humps S. pediculata 47.bb Foot pole not produced an Trave troughs deeply depressed like grooves, particularly towards the centre field, therefore centre field sharply defined and raised.. S. sulcata 4
ip rave troughs less prono:nced. x Shells with distant winr canals, centre line strongly serrate
S. elerantula 46
xx . Yinf canals not conspicuously distant centre line not serrate.

+ Shells oblong-elliptical, with almost straight or concave sides, slightly heteropolar $\boldsymbol{\gamma}$ Fewer than 20 wing carals in 100 н S. ruiis 63
(see also e. celebesiana var. 30.
vy Fore than 20 winc canals in 100μ.

8. Shell margins slichtly convex,

> transapical striae distinctly punctates. celebesiana 30.
ठ δ Shell margins concave, 49 striae not distinctly punctate S. . decipiens 3 .
++ Shells more broadly elliptical, with more strongly convex margins. v Shell area with transapical row's of pearls S. margaritacea $6:$
wy Cell wall built differently. 3 6-20 wing canals in loo u τ Shells elliptical-circular

$$
\text { S. Shortzori } 57
$$

TT Shells ovoid-lanceolate
S. conifer e 5 5.

85 Approx. 30 or fore wing canals in 100 u
τ Shells with raised, lenceolat centre fieíd ... 气. orulum 6
rr Shells without such a centre field S. plena 61

[^1]Cells arched like a saddle; parapical axes (apical axes of both shells) intersecting at a right angle. Cnly one fenus.

Gampylodiscus masir. 1841

Cells curved like a saddle, in shell view mostly circular. Canal. raphe extending around the shells on the ridge of one more or less strongly developed wing; wing interrupted at the poles of the parapica axis. One shell turned by $90^{\circ} \mathrm{C}$ (about the pervalvar axis) in relation to the other shell of the same cell, so that the apical level of one cell half hecories the transapical level of the other. Pervalvar axis straight, the tro other axes curved; all 3 axes isopolar. Apart from the torsion, cell halves symetrical (Hus TonT).

Genus with large number of species, predominantly marine or seavater forms. For our purposes, only the species listed below'are of importance; they are forms living at the bottom, but they are not infrenuently found tychoplanktonically, in the open water, particularly in smaller lakes, even at hị̆

Key for determining the species (HUSTEDT)
A. Shells bearing coarse papillae, marginal zone strongly waved (tropical form) ... C. paniluosus 5.
B. Shells with \pm thick, small thorns.
I. 10 wing canals in 100 u , shells with linear-elliptical, sharply defined centre field C . rutilus 3 .
II. Fore than 10 wing canals in 100μ, centre field absent or formed differently.
a. Shells divided into four distinctly recognizable structural sectors by two intersecting pseudoraphes $\underline{\text { C. noricus }} 1$. b. Shells with different structure.
I. 20 or more wing canals in 100 u C. fragilis 2 .
2. Fewer than 20 wing canals in 100μ
α. .hells with more or less extensive centre field, t!: e rest of the shell area strongly waved (cosmopolitan form) \mathbb{C}. noricus var. 1.
$\hat{\gamma}$. Shells without centre field, hardly waved (tropical form) C. . tancmicae 4 .

List of diatoms capable of producing laree
 maxima

Melosira rranulata (E.) RALFS.
" " var. angustissima riüll.
" " var. muzzanensis (HEISTER)
" islandica O. MÜLL., subspec. helvetica C. MÜL.
Stephanodiscus astraea (Z.) rPUN.
" Hantzschii GRUN.
Fracilaria crotonensis KITTON:
Asterionella formosa Hics.
" . gracillima (HAMTZSCH) HEIB.
Diatoma e? on"matur AG.
$" \quad \% \quad \operatorname{var}$ tenue (AG.) KG.
" " var. actinastrojdes KRIEG.
Takelleria fenestrata (LYMG.) KG., with var. asterionelloides mUi.-
Synedra acus Kg.
Nitzschia nyassensis C. IÜLL.
Stenopterobia nelasica HUST.

[^0]: "itl: lineal, elliptical, or oval shell outlines (risth exactly irlentical poles) the apical axis is isopolar, 'ith ovoid shells, heteropolar.

[^1]: Sub-farily: Camm:lodiscoideae

