

Fisheries and Oceans Pêches et Océans Canada

Canada Ecosystems and Sciences des écosystèmes Oceans Science

et des océans

#### Canadian Science Advisory Secretariat (CSAS)

#### Research Document 2016/093

Maritimes, Newfoundland and Labrador, Gulf, Quebec, and Central and Arctic Regions

#### Delineation of Coral and Sponge Significant Benthic Areas in Eastern Canada Using Kernel Density Analyses and Species Distribution Models

E. Kenchington<sup>1</sup>, L. Beazley<sup>1</sup>, C. Lirette<sup>1</sup>, F.J. Murillo<sup>1</sup>, J. Guijarro<sup>1</sup>, V. Wareham<sup>2</sup>, K. Gilkinson<sup>2</sup>, M. Koen-Alonso<sup>2</sup>, H. Benoît<sup>3</sup>, H. Bourdages<sup>4</sup>, B. Sainte-Marie<sup>4</sup>, M. Treble<sup>5</sup>, and T. Siferd<sup>5</sup>

Fisheries and Oceans Canada

<sup>1</sup>Maritimes Region Bedford Institute of Oceanography P.O. Box 1006, Dartmouth, Nova Scotia B2Y 4A2

<sup>2</sup>Newfoundland and Labrador Region Northwest Atlantic Fisheries Centre P.O. Box 5667, St. John's, Newfoundland A1C 5X1

<sup>3</sup>Gulf Region **Gulf Fisheries Centre** P.O. Box 5030, Moncton, New Brunswick E1C 9B6

<sup>4</sup>Quebec Region Maurice-Lamontagne Institute P.O. Box 1000, Mont-Joli, Québec G5H 3Z4

<sup>5</sup>Central and Arctic Region Freshwater Institute 501 University Crescent, Winnipeg, Manitoba R3T 2N6

#### Foreword

This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research documents are produced in the official language in which they are provided to the Secretariat.

#### Published by:

Fisheries and Oceans Canada Canadian Science Advisory Secretariat 200 Kent Street Ottawa ON K1A 0E6

http://www.dfo-mpo.gc.ca/csas-sccs/ csas-sccs@dfo-mpo.gc.ca



© Her Majesty the Queen in Right of Canada, 2016 ISSN 1919-5044

#### Correct citation for this publication:

Kenchington, E., L. Beazley, C. Lirette, F.J. Murillo, J. Guijarro, V. Wareham, K. Gilkinson,
M. Koen Alonso, H. Benoît, H. Bourdages, B. Sainte-Marie, M. Treble, and T. Siferd. 2016.
Delineation of Coral and Sponge Significant Benthic Areas in Eastern Canada Using Kernel
Density Analyses and Species Distribution Models. DFO Can. Sci. Advis. Sec. Res. Doc.
2016/093. vi + 178 p.

# TABLE OF CONTENTS

| ABSTRACT                                        | V  |
|-------------------------------------------------|----|
| RÉSUMÉ                                          | VI |
| INTRODUCTION                                    | 1  |
| MATERIALS AND METHODS                           | 2  |
| DATA SOURCES                                    | 2  |
| KERNAL DENSITY ESTIMATION                       | 2  |
| Evaluation of Optimum Search Radius             |    |
| Production of the Kernel Density Surface        |    |
| Use of KDE Surface to Identify Hotspots         | 5  |
| Polygons Delineating Significant Concentrations | 7  |
| RANDOM FOREST MODELLING                         | 7  |
| Model Evaluation                                |    |
| Model Extrapolation                             | 10 |
| Ecological Interpretation                       | 10 |
| GENERALIZED ADDITIVE MODELS (GAMS)              | 11 |
| GAM Evaluation                                  | 11 |
| RESULTS                                         | 12 |
| MARITIMES REGION                                | 12 |
| Sponges (Porifera)                              | 12 |
| Vazella pourtalesi                              | 13 |
| Sea Pens (Pennatulacea)                         | 17 |
| Large Gorgonian Corals                          | 21 |
| Small Gorgonian Corals                          | 25 |
| GULF OF ST. LAWRENCE                            | 27 |
| Southern Portion of the Gulf Biogeographic Zone | 27 |
| Northern Portion of the Gulf Biogeographic Zone | 35 |
| Comparison between GAM and RF Models            | 42 |
| NEWFOUNDLAND AND LABRADOR SHELVES               | 43 |
| Sponges (Porifera)                              | 43 |
| Sea Pens (Pennatulacea)                         |    |
| Large Gorgonian Corals                          | 54 |
| Small Gorgonian Corals                          | 60 |
| HUDSON STRAIT                                   | 65 |
| Sponges (Poritera)                              | 65 |
|                                                 |    |
| Sponges (Poritera)                              |    |
| Sea Pens (Pennatulacea)                         | 76 |
| Large Gorgonian Corals                          | 82 |

| Small Gorgonian Corals                                                                                                         | 8      |
|--------------------------------------------------------------------------------------------------------------------------------|--------|
| UNCERTAINTIES                                                                                                                  | 4      |
| CONCLUSIONS                                                                                                                    | 7      |
| IDENTIFICATION OF SIGNIFICANT BENTHIC AREAS                                                                                    | 8      |
| GULF OF ST. LAWRENCE                                                                                                           | 8<br>5 |
| NEWFOUNDLAND AND LABRADOR SHELVES11                                                                                            | 1      |
| HUDSON STRAIT119                                                                                                               | 9      |
| EASTERN ARCTIC120                                                                                                              | 0      |
| ACKNOWLEDGEMENTS123                                                                                                            | 3      |
| REFERENCES CITED123                                                                                                            | 3      |
| APPENDICES127                                                                                                                  | 7      |
| APPENDIX 1. LOCATIONS OF THE TOW POSITIONS THAT WERE USED TO DELINEATE<br>THE SIGNIFICANT CONCENTRATIONS OF CORALS AND SPONGES | :<br>7 |
| APPENDIX 2. AT-SEA IDENTIFICATIONS OF SPECIES WITHIN EACH OF THE FOUR<br>TAXONOMIC GROUPS ANALYZED                             | 6      |
| APPENDIX 3. CONGRUENCE BETWEEN FISHERIES OBSERVER DATA AND SPECIES<br>PREVALENCE                                               | 0      |
| Newfoundland and Labrador170                                                                                                   | 0      |
| Eastern Arctic170                                                                                                              | 0      |

#### ABSTRACT

Significant Benthic Areas are defined in DFO's Ecological Risk Assessment Framework (ERAF) as "significant areas of cold-water corals and sponge dominated communities", where significance is determined "through guidance provided by DFO-lead processes based on current knowledge of such species, communities and ecosystems". Here we provide maps of the location of significant concentrations of corals and sponges on the east coast of Canada produced through quantitative analyses of research vessel trawl survey data, supplemented with other data sources where available. We have conducted those analyses following a bioregionalization approach in order to facilitate modelling of similar species, given that many of the multispecies surveys do not record coral and sponge catch at species level resolution. The taxa analyzed are sponges (Porifera), large and small gorgonian corals (Alcyonacea), and sea pens (Pennatulacea). We applied kernel density estimation (KDE) to create a modelled biomass surface for each of those taxa, and applied an aerial expansion method to identify significant concentrations, following an approach first applied in 2010 to this region. We compared our results to those obtained previously. KDE uses only geo-referenced biomass data to identify "hot spots". The borders of the areas so identified can be refined using knowledge of null catches and species distribution models that predict species presence-absence and/or biomass, both incorporating environmental data. We present such predictive models produced using a random forest machine-learning technique, and in one region compare the biomass random forest models for sea pens to those produced by generalized additive models (GAMs). Together, these distribution maps can be used to identify significant concentrations of corals and sponges in eastern Canada; an essential first step in the identification of Sensitive Benthic Areas.

#### Délimitation des zones benthiques importantes de coraux et d'éponges dans l'est du Canada à l'aide des analyses des noyaux de densité et des modèles de répartition des espèces

# RÉSUMÉ

Dans le Cadre d'évaluation du risque écologique (CERE) de Pêches et Océans Canada (MPO), les zones benthiques importantes sont définies comme étant des « zones importantes qui hébergent des communautés à prédominance de coraux d'eau froide et d'éponge » et l'importance est déterminée « à partir des résultats de processus menés par le MPO qui reposent sur la connaissance actuelle de ces espèces, de ces communautés et de ces écosystèmes ». Le présent document contient des cartes de l'emplacement des concentrations importantes de coraux et d'éponges sur la côte est du Canada, lesquelles ont été produites au moyen d'analyses quantitatives des données des relevés au chalut effectués sur un navire scientifique ainsi que d'autres sources de données lorsque cela était possible. Nous avons effectué ces analyses en suivant une approche biorégionale afin de faciliter la modélisation d'espèces similaires étant donné que bon nombre des relevés plurispécifiques ne tiennent pas compte des prises de coraux et d'éponges à l'échelle des espèces. Les taxons analysés sont les éponges (Porifera), les grandes et petites gorgones (Alcyonacea) et les pennatules (Pennatulacea). Nous avons appliqué l'estimation de la densité par la méthode du noyau afin de créer une surface de biomasse modélisée pour chacun de ces taxons, et appliqué une méthode d'expansion aérienne pour déterminer les concentrations importantes en suivant une approche qui a été appliquée pour la première fois en 2010 dans cette région. Nous avons ensuite comparé nos résultats à ceux obtenus précédemment. Selon l'estimation de la densité par la méthode du noyau, seulement les données géoréférencées sur la biomasse sont utilisées pour trouver les « points névralgiques ». Les limites des zones ainsi définies peuvent être affinées à l'aide de la connaissance des captures nulles et des modèles de répartition des espèces qui prévoient la présence ou l'absence ou encore la biomasse des espèces, lesquels tiennent compte des données environnementales. Nous présentons les modèles prédictifs produits à l'aide d'algorithmes d'apprentissage automatique avec forêts d'arbres décisionnels et, dans une région, nous comparons les modèles de forêts d'arbres décisionnels de la biomasse des pennatules à ceux produits à l'aide de modèles additifs généralisés. Ensemble, ces cartes de répartition peuvent être utilisées pour déterminer les concentrations importantes de coraux et d'éponges dans l'est du Canada. Il s'agit d'une première étape essentielle dans la désignation des zones benthiques vulnérables.

#### INTRODUCTION

Canada has engaged in the identification and protection of sensitive benthic marine ecosystems under two separate, but similar, policies. In international waters (ABNJ), Canada has jurisdiction over the extended continental shelf for attached and sedentary species. Working through the Northwest Atlantic Fisheries Organization (NAFO), Canada has led the science support for the identification of vulnerable marine ecosystems (VMEs), so identified through United Nations General Assembly (UNGA) resolutions following guidance from UN agencies such as the Food and Agricultural Organization (FAO) and to a lesser extent the United Nations Environment Programme (UNEP). This work catalyzed with the passing of the 2006 UNGA resolution 61/105, which under paragraph 83 calls for the identification of VMEs and an assessment of whether bottom fishing activities will negatively influence the long term survival and sustainability of such ecosystems. Domestically, DFO's Policy on Managing the Impacts of Fishing on Sensitive Benthic Areas (SBA Policy) was established in 2009, in response to the same UNGA resolution. Under our domestic policy, areas of ecological or biological significance (EBSAs) are also identified and assessed for their sensitivity to fishing in terms of risk of serious or irreversible harm.

Science support for the two processes has followed similar pathways, with the science further developed in NAFO due to its longer history and the need to report on implementation progress to the UNGA at regular intervals. In NAFO, the approach has been to first identify vulnerable marine ecosystem indicator species or species groups following FAO guidance (FAO, 2009), then to identify significant concentrations (UN language) of those indicators (i.e., VMEs), followed by the adoption of management strategies to protect them (closed areas and encounter protocols), and then to assess the NAFO fisheries for significant adverse impacts on the VMEs. This sequence of activities is laid out in the UNGA 61/105 and has resulted in closures to protect sponge grounds, sea pen fields and corals within the fishing footprint of NAFO, as well as seamounts in the NAFO Regulatory Area (NAFO, 2015). NAFO adopted kernel density analysis (KDE) of research vessel catch data and an associated areal expansion approach (Kenchington et al., 2014) to identify significant concentrations of VME indicators (NAFO, 2014).

During 2010, a Canadian Science Advisory Secretariat (CSAS) meeting was held to identify sensitive benthic areas (corals and sponges) in Canadian waters (DFO, 2010). At that meeting the KDE-based approach used by NAFO was presented (Kenchington et al., 2010) and through that process, and with early support by a segment of the fishing industry, a unique population of glass sponges (V. pourtalesi) on the Scotian Shelf was identified. In 2013, two areas were closed to protect those sponges from the harmful effects of fishing and they became the first area closure under the SBA policy. At the CSAS meeting, an alternative approach to identification of sensitive benthic areas was used by scientists in the Pacific Region. There, available data supported Maxent species distribution modelling (SDM) as a useful management tool for identification of the distribution of sensitive benthic taxa. Subsequently, species distribution modelling was explored on the east coast, first with sponge grounds from the Laurentian Channel to the eastern Arctic (Knudby et al., 2013a), and latterly to black corals, sea pens and large gorgonian corals within the NAFO Regulatory Area on Flemish Cap and the Nose and Tail of Grand Bank (Knudby et al., 2013b). The thought was that such models could be used to refine the boundaries of the KDE polygons (VMEs), which do not include any environmental data in their identification. SDMs have the added characteristic in that they can more broadly interpolate and extrapolate predictions to areas not surveyed by the trawls but are within the environmental domain of the occurrence data.

Here, we present an updated KDE analysis for large and small gorgonian corals, sea pens and sponges following Kenchington et al. (2010, 2014) for the east coast of Canada, including new

data contributed by the regional research trawl surveys over the past five years (detailed in Kenchington et al., 2016). We then present the results of extensive work completed over the past two years on species distribution modelling (SDM) of those taxa. This later body of work was initiated with a review of data that could be used as predictor environmental variables (e.g., Beazley et al., 2016b). This was done separately for five geographic areas following, where applicable, DFO marine protected area planning boundaries: Maritimes Region, the Gulf Region (Gulf and Quebec DFO administrative regions), Newfoundland and Labrador Region, Hudson Strait and the Eastern Arctic. Within each of those regions SDM models were performed using a non-parametric random forest (RF) model to predict the occurrence of each VME indicator taxon. This approach is superior to Maxent and utilizes verified absence data. The same modelling approach was used in a regression mode to model biomass, and in some cases generalized additive models (GAMs) were performed to compare methods (e.g., Murillo et al., 2016). The results of our review of predictor variables, KDE and SDM work will be published in the Canadian Technical Reports of Fisheries and Aquatic Sciences series. a peerreviewed open access publication, so that the details and nuances of each analysis can be fully reported. Here, we provide the results of that work and compare KDE with SDM in order to facilitate the delineation of significant benthic areas (referred to hereafter as SBAs) of coral and sponge as well as the mapping of fishing effort as key steps to implementing the Managing the Impacts of Fishing on Sensitive Benthic Areas policy for these species.

#### MATERIALS AND METHODS

## DATA SOURCES

Details of the data sources for all analyses are found in the associated technical reports for each region (Beazley et al., 2016a, b, c; Murillo et al., 2016; Guijarro et al., 2016; Kenchington et al., 2016). DFO research vessel trawl survey data (RV) was used for the KDE analyses and for the response data in the species distribution models. In some regions, data from scientific surveys with underwater cameras and commercial observer data were used to improve SDM performance.

# KERNAL DENSITY ESTIMATION

Kernel density estimation (KDE) utilizes spatially explicit data to model the distribution of a variable of interest. It is a simple non-parametric neighbour-based smoothing function that relies on few assumptions about the structure of the observed data (Kenchington et al., 2016). It has been used in ecology to identify hotspots, that is, areas of relatively high biomass/abundance. With respect to marine benthic invertebrate species, it was first applied to the identification of significant aggregations of sponges in the NAFO Regulatory Area in 2009 (Kenchington et al., 2009) and published in the primary literature applied to VME indicators in 2014 (Kenchington et al., 2014).

## **Evaluation of Optimum Search Radius**

Kernel estimators smooth out the contribution of each data point over a specified local neighbourhood. The extent of that contribution is determined by the shape of the kernel function used, and the search radius or bandwidth which acts as a smoothing function. The latter is particularly influential as, if it is too small, then the surface can be under-smoothed creating discontinuities with sharp peaks and troughs and noisy density estimates; if too large it can be over-smoothed, blurring hotspots (Bowman, 1984).

The analysis fits a circle around each data point (here, around each trawl catch position; Figure 1). We used an optimum search radius to define the circle, based on the ArcGIS v. 10 (ESRI, 2011) Spatial Analysis Kernel Density tool's default calculations (note these calculations are different in version 10.2), which is the shortest of the width or height of the data spatial extent (a rectangle encompassing all of the data used in the analysis), divided by 30. The rectangle must be larger than the default radius to ensure that the whole density surface is created. In most cases the width was the shortest extent. In order to reduce arbitrary and suboptimal choices about the amount of smoothing, we applied this commonly used optimal bandwidth. It is designed to minimize the estimated mean square error. However, if the surface was highly discontinuous we increased the search radius above the default value, while if it was continuous but with data spread at low density, we lowered the search radius. Both were done in order to examine the effect of smoothing produced by those changes. We have not explored the use of an adaptive kernel algorithm to compare the effect of the bandwidth (Brunsdon, 1995). In this technique the parameters which control the surface estimation are adjusted over geographic space, allowing for local variations in the density of observations. This approach limits the influence of a single record to a small spatial extent when the density of points is high through the use of a small bandwidth. Conversely, in areas where density is lower, the kernel is geographically larger and the influence of a single data point is greater. This could give a more precise surface for each analysis but would still differ over time as new data are incorporated. Another established method for determining an optimal bandwidth, i.e. cross validation, results in small bandwidths with large sample sizes, and so was not pursued for this application (Bowman, 1984).

#### **Production of the Kernel Density Surface**

Once the search radius was established, a curve was fit centered over each data point (biomass of the species of interest in the RV catch) such that the surface value is highest at the location of the point and decreases outwards in all directions to reach zero at the search radius distance to define a circular neighbourhood for each point observation (Figure 2). We used a Gaussian (normal) function in fitting that curve. In this way biomass is predicted for the area covered by the circle. A quadratic kernel density function was then used to fit a smooth curve over each data point in ArcGIS using the UTM projected coordinate system North American Datum 1983 Zone appropriate to each region. This kernel surface sums the values under each Gaussian curve in areas of overlap (Figure 1) to produce a smooth surface (Figure 3).



*Figure 1.* An illustration of the application of the optimum search radius (blue circles) to hypothetical data points (red closed circles) representing research vessel trawl start of tow locations.

A grid is placed over the kernel density surface and the value of the kernel surface at its midpoint is extracted. The cell size (resolution) of this grid was also based on the tool's default, which is the shorter of the width or height of the output extent, divided by 250 (see Kenchington et al., 2016 for more details). Each cell kernel value in the grid is the KDE biomass value divided by the search neighbourhood area. If two search circles are used to create the KDE biomass then the divisor is the area of both circles combined. This will standardize the KDE value. The effect of this is to produce lower values where there is less data to support the prediction than when there are multiple intersections. The kernel surface is by default displayed on this gridded surface which is subsequently smoothed using bilinear interpolation (Figure 4) to create a smooth surface from the gridded raster. This final surface was used to identify hotspots in the data so that significant concentrations could be distinguished from the broader distribution of the species. The surface represents relative biomass in that the data were not used as true or actual biomass values. This is because we know that catchability differed among species and that the trawls were not good benthic samplers of these organisms (e.g., Kenchington et al., 2011).



**Figure 2.** A Gaussian curve fit in two dimensions (from Wikimedia Commons, the free media repository). When applied in KDE the peak of the curve is centered over the data point and the base of the curve is delineated by the optimum search radius circle.



**Figure 3.** An illustration of how the kernel surface (red line) is created through summing the values under each curve (dashed green lines) in areas of overlapping search radii. Note that where data are not overlapping such as at the extreme right, the kernel surface takes the form of the underlying Gaussian surface. (Image from open access publication Google Images: Larmarange et al. 2011).

#### Nearest Neighbour (default) raster display





Figure 4. An example of how a KDE gridded surface is smoothed using bilinear interpolation.

## Use of KDE Surface to Identify Hotspots

Once the smoothed KDE biomass surface (Figure 4) was produced, contours were placed over its surface. These contours were finely spaced  $(10^{-4} - 10^{-7} \text{ kg intervals})$  (Figure 5). Each contour line was then converted to a density polygon in ArcGIS. An iterative tool called Density Polygon Dissolver was then applied. This tool selected the contour polygon which most tightly encompassed the subset of points within a given biomass threshold value and outputted the area occupied by the polygon. The full ArcGIS model is presented in Kenchington et al. (2016).

For each benthic taxon, we then produced histograms of the area occupied by successively decreasing biomass values (Figure 6). Typically, for these benthic species that form habitats through dense aggregations, the threshold-area curves initially showed a slow increase in total area as the threshold values decrease. This slow increase in area reflects the fact that the arbitrary thresholds keep "mapping out" the areas that contain the dense aggregations (i.e., better delineating the areas of high density, where density may decrease near their boundaries, while also starting to incorporate smaller new aggregation areas with relatively lower densities). After this initial "phase" of slow increase in area, the threshold-area curves showed a rapid and sharp increase in area as the thresholds keep decreasing; this rapid increase in area is associated with threshold values that are beginning to capture isolated/nonaggregating individuals of the species represented by small catch values in the data. Finally, as the thresholds reached their lowest values, the area covered often stabilizes again, reflecting the entire distribution of the species in the study area. The selection of weight bins does not have a large effect on the results within the dense aggregations. This is because the area can only increase (never decrease) with decreasing weight. For example, placing another weight bin at 190 kg in Figure 6 would mean that the bar would have to fall between the area produced by the 200 and 175 kg bins. Where bin selection does make a difference is in the area of rapid change. For example, placing a bin of 30 kg between 50 and 25 kg in Figure 6 could reduce the degree of change in area depending on where the data fell relative to the bin. This type of fine tuning of the polygon was not pursued given that the original data was not precise to meter accuracy and that the catch could have been taken anywhere along the tow length which was approximately 1 km on average.



Figure 5. An illustration of contour lines fitted to the KDE surface. Stars represent original data points.



*Figure 6.* The area occupied by successive weight thresholds of sponges. The numbers of additional data points contributing to each weight bin are displayed above the bars on the histogram.

Consequently, when interpreting the catch weight defining the significant concentrations a number of criteria were *simultaneously* considered:

- 1. identification of the catch biomass which showed the largest change in area after the initial establishment of the aggregations;
- 2. consideration of the number of data points contributing to those changes in area between successive catch thresholds;
- examination of the spatial relationship of the polygons created by biomass thresholds greater and lesser than the potential threshold using geographic information systems (GIS); and
- 4. the position of the new data points relative to previously established polygons.

These two last criteria were the spatial component to criterion 2 and are necessary as polygon area can increase by the joining of two or more high density polygons. If this occurs the evidence for connecting the areas (i.e., number of points between the smaller areas) was

reviewed. In this instance the threshold was considered to be valid when there was an increase in area through a reasonable number of widely spaced data points. Cases for rejecting the threshold other than insufficient data included:

- 1. joining of smaller polygons with little evidence for a continuous distribution within the newly formed area;
- 2. a gradual increase in area with every new polygon added, creating a situation where no one successive change in area was especially larger or smaller than others (this indicated that there was no aggregation);
- 3. an increase in area established by creation of new areas of very low density; and
- 4. no large increase in area.

This decision framework was followed herein and results from two independent reviewers were compared. These proved to be identical with only a few cases requiring joint discussion to achieve consensus.

#### **Polygons Delineating Significant Concentrations**

Using KDE as described above, areas with significant biomass concentrations of the target species groups were identified. Within these polygons all of the catches above the delimiting threshold were included, but the areas also contained smaller catches. This is expected as those could represent recruitment, different species compositions or areas thinned by bottom contact fishing gears. Consequently, the conservation unit (i.e. SBA) is the polygon area rather than the individual research vessel tows. In some cases, particularly where there are single tows forming a KDE-derived polygon, the surrounding areas can be examined using the null data which is not used in KDE to see whether the single tow was isolated.

## RANDOM FOREST MODELLING

Random forest (RF; Breiman, 2001), is a non-parametric machine learning technique, where multiple regression or classification trees (usually  $\geq$  500) are built using random subsets of the data (Figure 7). Each tree is fit to a bootstrap sample of the biological observations (i.e. the 'in-bag' observations), and the best split at each node is selected based on a randomly-chosen subset of predictor variables. Regression trees are used for response variables consisting of continuous data and classification trees for factor variables. RF is a robust statistical method requiring no distributional assumptions on covariate relation to the response in comparison to other classical statistical models such as generalized linear models (GLM) or generalized additive models (GAM). It can handle a large amount of input variables effectively without variable deletion (Chen and Ishwaran, 2012) and can also account for correlation as well as interactions among variables.

For classification with presence-absence response data, random forest can be used to predict the probability of a species' presence in non-sampled areas by identifying areas with similar environmental conditions. In the case of regression using biomass response data, random forest can predict the species' biomass distribution. The models were built in the statistical computing software package R (R Core Team, 2015) using the 'randomForest' package (Liaw and Wiener, 2002). Default values were used for RF parameters, and 500 trees were constructed.



Figure 7. An example of a regression model tree (modified from Kuhn and Johnson, 2013).

## Model Evaluation

#### Presence-Absence Response Data – Classification Model

The catch records for some taxonomic groups are characterized by a higher number of absences relative to presences (i.e. unbalanced species prevalence). Classification accuracy in random forest is prone to bias when the categorical response variable is highly imbalanced (Chen et al., 2004). This is due to over-representation of the majority class in the bootstrap sample leading to a higher frequency in which the majority class is drawn, therefore skewing predictions in that favour (Evans et al., 2011). Several different approaches have been used to address imbalanced data:

- 1. assign a high cost to misclassification of the minority class,
- 2. down-sample the majority class, and
- 3. up-sample the minority class (Evans et al., 2011).

Although several studies suggest a balanced modelling prevalence of 0.5 (McPherson et al., 2004; Liu et al., 2005), this approach may result in a loss of information particularly for rare species, and may not be necessary when the model training data is reliable and not biased spatially and/or environmentally (Jiménez-Valverde and Lobo, 2006). Another widely-used approach is to adjust the threshold used to divide the probabilistic predictions of occurrence into discrete predictions of presence or absence, to match modelling prevalence (Liu et al., 2005). The latter approach has been shown to produce constant error rates and optimal model accuracy measures compared to balancing modelling prevalence (Liu et al., 2005; Hanberry and He, 2013).

For each taxonomic group we assessed the number of presences and absences and their spatial distribution across the study area. We employed two different modelling methods. The first method was to model the response data with a balanced species prevalence and threshold of 0.5. In these instances, the majority class was randomly down-sampled to give an equal number of presences and absences prior to modelling. In the second method we used all presence and absence records and used species prevalence as the threshold. The appropriateness of each modelling approach on the response data was assessed based on the model accuracy measures (see explanation below of model accuracy measures) and the spatial pattern of the predictions of presence probability in relation to the response data.

Accuracy measures were obtained using 10-fold cross validation (10 resamples over which performance estimates were obtained). In 10-fold cross validation the response data are randomly split into 10 equal-sized groups and the model is trained on a combination of 9, while validated on the remaining group.

Three measures of accuracy were used to assess model performance:

- 1. sensitivity,
- 2. specificity, and
- 3. area under the receiver operating characteristic curve (AUC).

In a classification model with two classes (e.g. presence and absence), there are four possible predicted outcomes:

- 1. true positive, where observed presences are predicted as presences,
- 2. false negative, where observed presences are predicted as absences,
- 3. true negative, where observed absences are predicted as absences, and
- 4. false positive, where observed absences are predicted as presences (Fawcett, 2006).

Sensitivity measures the proportion of observed presences correctly predicted as presence (i.e. the true positive rate) (McPherson et al., 2004; Fawcett, 2006). Low sensitivity indicates high omission error (i.e. false negative rate). Specificity measures the proportion of observed absences correctly predicted as absence (i.e. the true negative rate). Low specificity indicates high commission error (i.e. the false positive rate). Both sensitivity and specificity are derived from a two-by-two confusion matrix of the tabulated predicted outcomes.

The AUC is a threshold-independent measure of model accuracy that is calculated from the combination of true positive rate (sensitivity) and false positive rate (1 – specificity), and equals the probability that the model will rank a randomly-chosen presence instance higher than a randomly-chosen absence instance (Fawcett, 2006). Its value ranges from 0 to 1, with values larger than 0.5 indicating performance better than random. It was calculated using 10-fold cross validation.

For models generated using a balanced species prevalence and threshold of 0.5, 10 data subsets were created with an equal number of presences and absences (balanced data) and 10 models were run. AUC was determined by averaging AUC values between folds within each run. The model with the highest average AUC was considered the most accurate in predicting the validated data and was used as the final model in which predicted presence probabilities of the response data were generated. The predicted outcomes from the two-by-two confusion matrices were summed across all 10 folds to give a complete confusion matrix for each model from which sensitivity and specificity were calculated. For models generated using all presence and absence data and a threshold equal to species prevalence, only one model was considered and the AUC was determined by averaging AUC values between folds. The predicted outcomes

from the two-by-two confusion matrices were summed across all 10 folds to give one confusion matrix from which sensitivity and specificity were calculated.

# Biomass Response Data – Regression Model

Regression random forest models were validated using 10-fold cross validation. Data were split using the createFolds function in R. This function performs stratified partitioning into k groups in order to evenly distribute the biomass within splits. Models were built using each calibrated and validated dataset and accuracy measures were calculated for each corresponding dataset. The accuracy measures used to validate the models included the goodness-of-fit statistic R<sup>2</sup>, the Root-Mean-Square Error (RMSE) value and the percentage of variance explained. RMSE was normalized to a percentage of the range of observed biomass values ( $y_{max} - y_{min}$ ) for each specific response (NRMSE) to facilitate the comparison between responses in the different models. The correlation between biomass and presence probability for some of the groups was also evaluated. Cross validation gives an average of the accuracy measures used, but can also be used to estimate the variability around the mean to evaluate the stability of the model fit, and to check for the arbitrary effects from subsampling data for calibrate and validate the model.

# Model Extrapolation

In some regions, the modelling boundary extends far beyond the spatial extent of the training data. For instance, in the Maritimes Region data observations are limited to depths above ~2900m (multispecies trawl observations are limited to depths of 1850m and shallower). Extrapolation of model predictions to areas outside of the range of data observations may produce unreliable predictions in those areas (Elith et al., 2010). Random forest models average the decision across regression trees to predict piecewise constant functions, giving a constant value for inputs falling under each leaf. When extrapolating outside the domain of the training data, where different physical conditions from those used to train the model likely exist, random forest models predict the same value as they would for the closest value in the tree for which they had training data (Breiman et al., 1984). For each random forest model, we highlight those areas within the study extent where model predictions are extrapolated. We define areas of extrapolation as those areas where at least one environmental variable has values above or below its sampled range.

# **Ecological Interpretation**

Ecological interpretation of the models was aided by predictor variable importance measures and partial dependence plots. In classification random forest, variable importance is measured as the mean decrease in Gini value, otherwise known as Gini impurity. When the response data are split into two child nodes based on a randomly-chosen variable, the data in the two descendent nodes are more homogeneous than that of the parent node. This difference in homogeneity between parent and child nodes is measured by the Gini index, where the increase in homogeneity equals a decrease in Gini value. The sum of all decreases in Gini index for each variable in each tree is averaged across all trees in the model 'forest' and then across all 10 repetitions of each model fold. The variable with the highest mean decrease in Gini value is considered the most important variable in the model. Variable importance in regression random forest is measured by the mean decrease in the residual sum of squares when the variable is included in a tree split.

Partial dependence plots using the partialPlot function in R were generated for the 6 highest variable importance scores. Partial dependence plots show the relationship between a particular predictor variable and log-transformed predicted probabilities of presence (for classification models) or the biomass regression function (for regression models),while the other predictor

variables were held constant at their mean observed value and are useful in showing general trends in model accuracy's dependence on the predictors (Herrick et al., 2013). For classification models, the *y* axis ranges from  $-\infty$  to  $\infty$  and quantifies the log-odds of a positive classification for the total range of values in *x*. Log-odds are logarithmic transformations of the probabilities for values in *x* (Hastie et al., 2005). These values were transformed to the original presence probability scale using p = exp(y) / (1 + exp(y)), where p = the probability of presence, and y is the log-odds of presence, the standard output from the partialPlot function.

# GENERALIZED ADDITIVE MODELS (GAMS)

A generalized additive model (GAM) (Hastie and Tibshirani, 1986) is a generalized linear model in which the linear predictor involves the sum of unknown smooth functions of some predictor variables. In general the model has a structure such as:

## $g(\mathsf{E}(\mathsf{Y})) = \beta_0 + f_1(x_{1i}) + f_2(x_{2i}) + \ldots + f_m(x_m)$

where an exponential family distribution is specified for Y along with a link function *g*. The functions  $f_{j}(x_{j})$  are smooth functions that can be specified by non-parametric means. The model allows for somewhat flexible specification of the dependence of the response on the covariates. This flexibility provides potential for better fits to data than purely parametric models.

The mgcv package in R (Wood, 2006) was used to construct GAM models to predict the biomass of some of the taxa considered in order to compare with the RF models. The top ten and top fifteen most important environmental variables obtained from the RF model based on biomass were used as covariates in these models as well as the environmental variables correlated less than 0.7. This differed slightly for the Maritimes and Newfoundland and Labrador Regions (Beazley et al., 2016a; Guijarro et al., 2016), where a natural break in the Mean Decrease in Sum of Squares was also used to select the environmental variables for GAM modelling. The autocorrelation of residuals was studied for the best of these models and in the case where it was significant latitude and longitude were included in the best model as a tensor product (i.e. te(lat, long)). The full model followed the formula:

y = s(var.1) + s(var.2) + ... + s(var.n) + te(lat,long)

where *y* was specified as a Tweedie distribution and *s* indicated a thin plate regression spline smoothing function. In addition, for the Maritimes and Newfoundland and Labrador Regions, (see Beazley et al., 2016a; Guijarro et al., 2016), shrinkage smoothers (Zuur et al., 2009; Marra and Wood, 2011) were evaluated. A Tweedie model is an expansion of compound Poisson model derived from the stochastic process where the weight of the counted objects has a gamma distribution. This model has the advantage of handling the zero-catch data in a unified way and the statistical performance seems to be rather better than that of a Delta lognormal model (Shono, 2008). Tweedie factor was estimated inside the model. GAM models were run on some of the biomass data sets for comparison with RF regression models.

# GAM Evaluation

Residual plots to evaluate the fitness of the model can be generated with the function gam.check of the mgcv package. However, an artifact of the link function shows exact zeros as a band along the residuals vs. linear predictor plot, making it difficult to see whether residuals show heteroskedasticity. In order to avoid this issue randomized quantile residuals (Dunn and Smyth, 1996) were generated using the rqgam.check function of the dsm package in R (Miller et al., 2015). Randomized quantile residuals transform the residuals to be exactly normally distributed making the residuals vs. linear predictor plot much easier to interpret as it does not include the artifacts generated by the link function.

The goodness-of-fit statistic  $R^2$  and the percentage of variance explained were used to evaluate the performance of the models as well as the prediction map derivate of the model in comparison to the real data.

# RESULTS

# MARITIMES REGION

# Sponges (Porifera)

The kernel density analysis identified high biomass areas across the spatial extent of the region (Figures 8 and 9). The SBAs identified in the present analysis are similar to those previously identified (Kenchington et al., 2010), despite the addition of nearly 3x the number of presence records over those available for the previous analysis (Kenchington et al., 2016).

The presence probability RF prediction surface of sponges is presented in Figure 10 with the KDE-derived polygons superimposed. This model performed well, with a cross-validated AUC of 0.760 ± 0.005 (Table 1). Of all 66 environmental predictor variables used in the model, Maximum Average Summer Mixed Layer Depth was the top environmental predictor variable in this model. Pockets of high presence probability were distributed across the study area, but several areas had notably high presence probability: Smokey and St. Anns Banks off northeastern Nova Scotia (Cape Breton), Misaine Bank, and the Bay of Fundy off Digby and Brier Island. The latter two areas corresponded to the location of the additional sponge records from the DFO scallop stock assessment surveys in SPA 3 and 4 (Beazley et al., 2016a). Other areas of high presence probability corresponded well with the occurrence of presence points at those locations. Interestingly, the area southwest of Nova Scotia where no data records occurred due to hard bottom had a moderate to high presence probability of sponges.

The accuracy measures of the regression random forest model on mean sponge biomass from DFO multispecies trawl surveys were poor ( $R^2 \le 0.1$  and/or negative percent variance explained), therefore the predicted biomass surface from this model was not presented here. The highest  $R^2$  was 0.459, while the average and standard deviation (SD) was 0.130 ± 0.138 (Beazley et al., 2016a). The high SD indicates high variability between model folds. The average Normalized Root-Mean-Square Error (NRMSE) was 0.030 ± 0.013 SD. The highest percentage variance explained was 8.51%; however, half of the model folds had a negative variance explained, indicating poor predictive performance of the model.



**Figure 8.** Location of the KDE-derived polygons identifying significant sponge aggregations relative to the broader distribution of sponges and areas closed or proposed to be closed to protect benthic species and habitats in the Scotian Shelf Biogeographic Zone (black outline). Vazella pourtalesi is identified separately from Porifera in the VDC database and catches that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as nonsignificant. Null data (absence) is indicated by the black cross. Only trawl surveys conducted with Western IIA trawls were used in the analysis. Red lines indicate the exclusive economic zone (EEZ) of Canada.

## Vazella pourtalesi

Most sponges were not identified to species level on the DFO trawl surveys. This was because their identification required microscopic examination of their spicules. However, *V. pourtalesi* is a large, distinctive sponge and it has been separately recorded from Porifera in the Maritimes Region (Beazley et al., 2016a). We performed SDM on this species, separately from that of Porifera, in which it was included (Figure 11).

Given the low number of presence records of this unique population of *V. pourtalesi*, the DFO multispecies trawl survey data were augmented with presence records from all available data sources, including scientific surveys and commercial observer data (Beazley et al., 2016a). The combined dataset, consisting of 166 presences and 1983 absences, was modelled using an unbalanced design and a threshold equal to species prevalence (0.08) (Figure 11).

The cross-validated AUC was very high at  $0.977 \pm 0.013$  SD (Table 2). Class error for the presence and absence classes was low. Sensitivity and specificity measures were both high, all

indicating very good model performance. Bottom Salinity Average Maximum was the most important variable, followed by Bottom Salinity Mean and Bottom Temperature Average Minimum. This is consistent with the sponges being located in Emerald Basin, a warmer and saltier area of the Scotian Shelf.



*Figure 9.* Comparison of the location of the significant concentrations identified in Kenchington et al. (2010) (yellow outline) and those identified in this study (gold/orange polygons). Areas closed or proposed to be closed to protect benthic species and habitats are indicated in black outline. Red lines indicate the EEZ of Canada.



*Figure 10.* Predictions of presence probability (Pres. Prob.) from the optimal RF model of sponge presence and absence data collected from DFO multispecies trawl and scallop stock assessment surveys between 1997 and 2015. White lines indicate areas of extrapolation. Areas of significant concentrations of sponges identified by KDE are shown in blue outline.

| Table 1. Accuracy measures and confusion matrix from 10-fold cross validation for the RF model with the |
|---------------------------------------------------------------------------------------------------------|
| highest AUC value (Model Run 1) based on presence and absence of sponges from DFO multispecies          |
| trawl survey records collected within the Maritimes Region.                                             |

| Model Run       | AUC           | Sensitiv       | ʻity    | Specificity    |  |
|-----------------|---------------|----------------|---------|----------------|--|
| 1               | 0.766         | 0.689          |         | 0.708          |  |
| Mean            | 0.760         | 0.691          |         | 0.702          |  |
| SD              | 0.005         | 0.005          | 0.007   |                |  |
| Confusion Matri | ix of Model v | vith Highest A | AUC:    |                |  |
| Observations    | Predi         | ctions         | Total n | Class<br>error |  |
|                 | Absence       | Presence       |         |                |  |
| Absence         | 1003          | 414            | 1417    | 0.292          |  |
|                 |               |                |         |                |  |



**Figure 11.** (upper panel) Predictions of presence probability (Pres. Prob.) of Vazella pourtalesi based on a RF model on unbalanced presence and absence V. pourtalesi catch data collected from DFO trawl surveys between 2007 and 2015. White lines indicate areas of extrapolation. (lower panel) Classification of V. pourtalesi presence probability based on the prevalence threshold of 0.08 is shown. Also shown are the grey areas of model extrapolation, which appear dark red or blue when overlain on the presence-absence surface.

**Table 2.** Accuracy measures for 10-fold cross validation of a RF model of presence and absence of V. pourtalesi from DFO trawl surveys, the Fisheries Observer Program, and in situ benthic imagery observations. Observ. = Observations; Sensit. = Sensitivity, Specif. = Specificity.

| Model | AUC   | Observ.  | Predictions |          | Total n | Class<br>error | Sensit. | Specif. |
|-------|-------|----------|-------------|----------|---------|----------------|---------|---------|
|       |       |          | Absence     | Presence |         |                |         |         |
| Mean  | 0.977 | Absence  | 1811        | 172      | 1983    | 0.087          | 0.952   | 0.913   |
| SD    | 0.013 | Presence | 8           | 158      | 166     | 0.048          |         |         |

The accuracy measures of the regression RF model on mean *V. pourtalesi* biomass were poor  $(R^2 \le 0.1 \text{ and/or negative percent variance explained})$ , and therefore the predicted biomass surface is not presented here. The highest  $R^2$  value was 0.207, while the average was 0.087 ± 0.079 SD. The average Normalized Root-Mean-Square Error (NRMSE) was 0.024 ± 0.021 SD. The high SD values for both of these metrics indicate high variability between model folds. The highest percent variance explained was 1.16%. The majority of the model folds had a negative variance explained, indicating poor predictive performance of the model.

## Sea Pens (Pennatulacea)

In our KDE analyses, there were 129 records with sea pen catch and 2245 records of catches with no sea pens from the same surveys. In contrast there were only 46 records available for the previous analysis (Kenchington et al., 2010). The updated analysis identified new sea pen fields, and expanded the location of others identified previously, particularly in the St. Ann's Bank Proposed Closure (Figures 12 and 13).

The RF model using sea pen records from both DFO trawl surveys and *in situ* camera observations, and unbalanced species prevalence was selected as the best predictor of sea pen distribution in the Maritimes Region (Beazley et al., 2016a). This model performed excellently with a cross-validated AUC of  $0.901 \pm 0.031$  SD (Table 3). The top environmental predictor variable was Depth. Figure 14 shows the predicted presence probability surface with the KDE-derived polygons superimposed. This model predicted high presence probability of sea pens in the Laurentian Channel and along the Scotian Slope and in several deep-water canyons in the study area. Most KDE-derived polygons overlapped with areas of moderate to high presence probability.

The accuracy measures of the regression RF model on mean sea pen biomass from DFO multispecies trawl surveys indicated that the model performed well. The highest R<sup>2</sup> value was 0.815, while the average was 0.518  $\pm$  0.301 SD. The average Normalized Root-Mean-Square Error (NRMSE) was 0.018  $\pm$  0.018 SD. The high SD indicated high variability between model folds. This model explained a relatively high percentage of variance in the biomass data (average = 18.41%  $\pm$  2.48 SD). Bottom Salinity Average Range was the most important variable in the model (Beazley et al., 2016a). The model predicted the highest biomass along the Laurentian Channel (Figure 15). The KDE analyses for this area coincide with this location (Figure 42).



**Figure 12.** Location of the polygons (blue) identifying significant sea pen aggregations relative to the broader distribution of sea pens and areas closed or proposed to be closed to protect benthic species and habitats (black outline). Catches that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as nonsignificant. Null data (absence) is indicated by the black cross. Red lines indicate the EEZ of Canada.



**Figure 13.** Comparison of the location of the significant concentrations of sea pens identified in Kenchington et al. (2010) (yellow outline) and those identified in this study (gold/orange polygons). Areas closed or proposed to be closed to protect benthic species and habitats are indicated in black outline. Red lines indicate the EEZ of Canada.

| Table 3. Accuracy measures for 10-fold cross validation of a random forest model of presence and |
|--------------------------------------------------------------------------------------------------|
| absence of sea pens from DFO multispecies trawl survey records and in situ benthic imagery       |
| observations. Observ. = Observations; Sensit. = Sensitivity, Specif. = Specificity.              |

| Model | AUC   | Observ.  | Predictions |          | Total n | Class<br>Error | Sensit. | Specif. |
|-------|-------|----------|-------------|----------|---------|----------------|---------|---------|
|       |       |          | Absence     | Presence |         |                |         |         |
| Mean  | 0.901 | Absence  | 2219        | 489      | 2708    | 0.181          | 0.813   | 0.819   |
| SD    | 0.031 | Presence | 65          | 283      | 348     | 0.187          |         |         |



**Figure 14.** (upper panel) Predictions of presence probability (Pres. Prob.) of sea pens based on a RF model on unbalanced presence and absence sea pen catch data from DFO multispecies trawl surveys and in situ benthic imagery observations of sea pens. White lines indicate areas of extrapolation. (lower panel) Binary classification of sea pen presence probability based on the prevalence threshold of 0.11 is shown. Also shown are the grey areas of model extrapolation, they appear dark red when overlain on the red presence surface and dark blue when overlain on the blue absence surface.



*Figure 15.* Predictions of biomass (kg) of sea pens from catch data recorded in DFO multispecies trawl surveys conducted in the Maritimes Region between 2002 and 2014. Grey areas indicate areas of extrapolation.

# Large Gorgonian Corals

The research trawl surveys did not sample the large gorgonian corals very well. This was due to a number of factors, including avoidance. Significant concentrations were identified on the eastern Scotian Shelf Slope (Figures 16 and 17) as in 2010. However, known locations, such as the coral conservation areas and the Gully MPA, were not sampled. In this case the SDM can be very useful in complementing the KDE work (Figure 18). The RF models which included data from DFO multispecies trawl surveys as well as DFO and NRCan *in situ* camera observations, performed excellently (Table 4) and the probability of occurrence maps showed these corals concentrated along the continental slopes in the Northeast Channel, the Gully MPA and the Stone Fence (Figure 18). The most important environmental predictor variable for the classification of the large gorgonian coral presence and absence data was Slope (Beazley et al., 2016a).

The accuracy measures of the regression random forest model on mean large gorgonian coral biomass from DFO multispecies trawl surveys indicated that the model performed reasonably well. The highest  $R^2$  value was 0.975, while the average was 0.285 ± 0.410 SD. The average Normalized Root-Mean-Square Error (NRMSE) was 0.016 ± 0.016 SD (Beazley et al., 2016a). The high SD of these metrics indicated high variability between model folds. This model

explained a relatively high percentage of variance in the biomass data (average =  $24.53\% \pm 7.08$  SD).

Figure 19 shows the predicted biomass surface of large gorgonian corals. The majority of the spatial extent was predicted to have low (0 - 2.19 kg) large gorgonian biomass. The slope between Haldimand Canyon and Stone Fence had the highest predicted biomass up to 34.72 kg. Several canyons that intersect the eastern Scotian Slope, such as The Gully and Shortland Canyon, and the Northeast Channel on the western Scotian Slope, were predicted to have a moderate to high biomass. Like the classification model, Slope was the top predictor in the regression random forest model on the large gorgonian coral biomass data.



**Figure 16.** Location of the polygons (yellow) identifying significant large gorgonian coral aggregations relative to the broader distribution of large gorgonian corals and areas closed or proposed to be closed to protect benthic species and habitats (black outline). Catches that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as nonsignificant. Null data (absence) is indicated by the black cross. Red lines indicate the EEZ of Canada.



**Figure 17.** Comparison of the location of the significant concentrations of large gorgonian corals identified in Kenchington et al. (2010) (yellow outline) and those identified in this study (red polygons). Areas closed or proposed to be closed to protect benthic species and habitats are indicated in black outline. Red lines indicate the EEZ of Canada.

**Table 4.** Accuracy measures for 10-fold cross validation of a random forest model of presence and absence of large gorgonian corals from DFO multispecies trawl survey records and in situ benthic imagery observations collected within the Maritimes Region. Observ. = Observations; Sensit. = Sensitivity, Specif. = Specificity.

| Model | AUC   | Observ.  | Predictions |          | Total n | Class<br>Error | Sensit. | Specif. |
|-------|-------|----------|-------------|----------|---------|----------------|---------|---------|
|       |       |          | Absence     | Presence |         |                |         |         |
| Mean  | 0.928 | Absence  | 2063        | 250      | 2313    | 0.108          | 0.833   | 0.892   |
| SD    | 0.033 | Presence | 38          | 189      | 227     | 0.167          |         |         |



**Figure 18.** (upper panel) Predictions of presence probability (Pres. Prob.) of large gorgonian corals based on a RF model on unbalanced presence and absence large gorgonian coral catch data from DFO multispecies trawl surveys and in situ benthic imagery observations of large gorgonian corals. White lines indicate areas of extrapolation.(lower panel) Classification of large gorgonian corals presence probability based on the prevalence threshold of 0.09 is shown. Also shown are the grey areas of model extrapolation, they appear dark red when overlain on the red presence surface and dark blue when overlain on the blue absence surface. The KDE-derived significant concentrations are shown in yellow outline.



*Figure 19.* Predictions of biomass (kg) of large gorgonian corals from catch data recorded in DFO multispecies trawl surveys conducted in the Maritimes Region between 2002 and 2015. Grey areas indicate areas of extrapolation. KDE-derived significant concentrations are shown in blue outline.

# **Small Gorgonian Corals**

In Maritimes Region there were too few records to apply KDE to the small gorgonian corals and so that analysis was omitted. The RF model using small gorgonian records from both DFO trawl surveys and *in situ* camera observations, and unbalanced species prevalence was selected as the best predictor of small gorgonian coral distribution in the Maritimes Region (Figure 20). This model performed excellently, with a cross-validated AUC of  $0.949 \pm 0.033$  SD (Table 5). The most important environmental predictor variable for the classification of the small gorgonian coral presence and absence data was Depth. This was followed more distantly by Slope and Bottom Salinity Average Range (Beazley et al., 2016a).

The accuracy measures of the regression random forest model on mean small gorgonian coral biomass from DFO multispecies trawl surveys were poor ( $R^2 \le 0.1$  and/or negative percent variance explained), therefore the predicted biomass surface was not presented here. The highest  $R^2$  value of this model was 0.423, while the average was 0.135 ± 0.155 SD. The average Normalized Root-Mean-Square Error (RMSE) was 0.027 ± 0.019 SD (Beazley et al., 2016a). The percent variance explained for each fold was negative, indicating that the model had no predictive power.



*Figure 20.* (upper panel) Predictions of presence probability (Pres. Prob.) of small gorgonian corals based on a RF model on unbalanced presence and absence gorgonian catch data from DFO multispecies trawl surveys and in situ benthic imagery observations. (lower panel) Prediction of presence and absence probability using the prevalence threshold of 0.06 is shown. Also shown are the grey areas of model extrapolation, they appear dark red when overlain on the red presence surface and dark blue when overlain on the blue absence surface.

**Table 5.** Accuracy measures for 10-fold cross validation of a RF model of presence and absence of small gorgonian corals from DFO multispecies trawl survey records and in situ benthic imagery observations collected within the Maritimes Region. Observ. = Observations; Sensit. = Sensitivity, Specif. = Specificity.

| Model | AUC   | Observ.  | Predictions |          | Total n | Class<br>Error | Sensit. | Specif. |
|-------|-------|----------|-------------|----------|---------|----------------|---------|---------|
|       |       |          | Absence     | Presence |         |                |         |         |
| Mean  | 0.949 | Absence  | 1662        | 153      | 1815    | 0.084          | 0.876   | 0.916   |
| SD    | 0.033 | Presence | 15          | 106      | 121     | 0.124          |         |         |

## GULF OF ST. LAWRENCE

The Gulf of St. Lawrence Biogeographic Unit was used for the KDE analysis and the DFO MPA Network Planning Area for the Estuary and Gulf of St. Lawrence for the SDM. The DFO MPA Network Planning Area combines two of DFO's six administrative regions across Canada, the Gulf Region in the southern portion, and the Quebec Region to the north.

## Southern Portion of the Gulf Biogeographic Zone

## Sponges (Porifera)

The kernel density analysis identified high biomass areas across the spatial extent of the region (Figures 21 and 22). The areas identified in the present analysis were smaller than those previously identified (Kenchington et al., 2010), despite the addition of nearly 3x the number of presence records over those available for the previous analysis (Kenchington et al., 2016). The reasons for this are not clear. In part, this could be due to the use of the optimal search radius of 12.7 km in the current analysis, as opposed to the 25 km fixed search radius used in the previous analyses. However, this was not seen with the sea pens (see below) that had a smaller search radius as well (15.8 km). We suspect that the data distribution (referred to as the population density) is the reason for this difference. The distribution of the data influences the kernel surface and the additional data likely had more impact on the broadly distributed sponges than it did on the more concentrated sea pens. Also, the result may represent real degradation. It had previously been shown that in the southern portion of the Gulf Biogeographic Zone, the sponge biomass had been reduced between the periods 1990-2002 and 2003-2009 (Figure 90 in Kenchington et al., 2016; Kenchington et al., 2010). We conducted a comparative analysis of the sponge biomass data from 2009-2014, to assess further loss of sponges that could be responsible for the reduction of area in the significant polygons. We noticed that the loss of sponges over the Magdalene Shallows has continued to occur, but with a lesser difference than was observed between 1990-2002 and 2003-2009 (Kenchington et al., 2016).

For sponges, the AUC computed from 10-fold cross validation was moderate (0.708; Table 6). Class error for presence and absence classes was high. The presence probability RF prediction surface is presented in Figure 23 with the KDE polygons overlain. Of all 78 environmental predictor variables used in the model, Depth was the most important for classification of the presence-absence data. Most of the southern portion of the Gulf of St. Lawrence was predicted to have high presence probability.

The accuracy measures of the regression random forest model on mean sponge biomass from DFO multispecies trawl surveys were poor ( $R^2 \le 0.1$  and/or negative percent variance explained), therefore the predicted biomass surface is not presented here. The highest  $R^2$  was 0.066 ± 0.130 SD. The average Normalized Root-Mean-Square Error (NRMSE) was 0.073, while the average was 0.017 ± 0.021 SD (Murillo et al., 2016). The high standard deviation for both of these metrics indicated high variability between model folds.



**Figure 21.** Locations of the significant sponge catches relative to the broader distribution of sponges in the southern portion of the Gulf Biogeographic Zone. Catch locations that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as nonsignificant. Null data (absence) is indicated by the black cross. The polygons are very small and not visible in this map. Areas closed or proposed to be closed to protect benthic species and habitats are indicated in black outline.



**Figure 22.** Comparison of the location of the significant concentrations identified in Kenchington et al. (2010) (green outline) and those identified in this study (red polygons). Areas closed or proposed to be closed to protect benthic species and habitats are indicated in black outline.

| <b>Table 6.</b> Accuracy measures for 10-fold cross validation of a RF model of presence and absence of |
|---------------------------------------------------------------------------------------------------------|
| sponges from DFO trawl surveys conducted within the Gulf Region. Observ. = Observations; Sensit. =      |
| Sensitivity, Specif. = Specificity.                                                                     |

| Model | AUC   | Observ.  | Predictions |          | Total n | Class<br>error | Sensit. | Specif. |
|-------|-------|----------|-------------|----------|---------|----------------|---------|---------|
|       |       |          | Absence     | Presence |         |                |         |         |
| Mean  | 0.708 | Absence  | 846         | 432      | 1278    | 0.338          | 0.646   | 0.662   |
| SD    | 0.022 | Presence | 783         | 1431     | 2214    | 0.354          |         |         |



**Figure 23.** (upper panel) Predictions of presence probability (Pres. Prob.) of sponges based on a RF model on unbalanced presence and absence sponge catch data collected from DFO multispecies trawl surveys between 2003 and 2015. White lines indicate areas of extrapolation. (lower panel) Classification of sponge presence probability based on the prevalence threshold of 0.63 is shown. Also shown are the grey areas of model extrapolation, which appear dark red or blue when overlain on the presence-absence surface. Areas of significant concentrations of sponges identified by KDE are shown in blue outline in both panels.
#### Sea Pens (Pennatulacea)

In our KDE analyses, there were 272 records with sea pen catch and 1779 records of catches with no sea pens from the same surveys and significant polygons were found along the Laurentian Channel (Figure 24). The updated analysis expanded slightly the areas previously identified (Figure 25).

The RF model using balanced sea pen records was selected as the best predictor of sea pen distribution in the southern Gulf of St. Lawrence (Murillo et al., 2016). The presence probability RF prediction surface of sea pens (Table 7) is presented in Figure 26 with the KDE polygons overlaid. Of all 78 environmental predictor variables used in the model, Bottom Salinity Average Minimum was the most important for the classification. The highest predictions of presence probability occurred along the Laurentian Channel.

The accuracy measures of the regression RF model on mean sea pen biomass from DFO multispecies trawl surveys indicated that the model performed well. The highest R<sup>2</sup> value was 0.777, while the average was  $0.370 \pm 0.217$  SD. The average Normalized Root-Mean-Square Error (NRMSE) was  $0.038 \pm 0.020$  SD. Spring Primary Production Average Minimum was the most important variable in the model (Murillo et al., 2016). High predicted biomass coincided with the significant area polygons identified by KDE (Figure 27).



**Figure 24.** Locations of the polygons identifying significant sea pen aggregations relative to the broader distribution of sea pens in the southern portion of the Gulf Biogeographic Zone. Catch locations that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as nonsignificant. Null data (absence) is indicated by the black cross. Areas closed or proposed to be closed to protect benthic species and habitats are indicated in black outline.



**Figure 25.** Comparison of the location of the significant concentrations of sea pens identified in Kenchington et al. (2010) (blue outline) and those identified in this study (red polygons). Areas closed or proposed to be closed to protect benthic species and habitats are indicated in black outline.

**Table 7.** Accuracy measures and confusion matrix from 10-fold cross validation for the RF model with the highest AUC value (Model Run 3) based on presence and absence of sea pens from DFO multispecies trawl survey records collected within the Gulf Region.

| Model Run                                   | AUC                                       | Sensitiv                                  | ity                     | Specificity             |  |  |  |  |  |
|---------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------|-------------------------|--|--|--|--|--|
| 3                                           | 0.912                                     | 912 0.840                                 |                         | 0.822                   |  |  |  |  |  |
| Mean                                        | 0.907                                     | 0.845                                     |                         | 0.815                   |  |  |  |  |  |
| SD                                          | 0.003                                     | 0.007                                     |                         | 0.006                   |  |  |  |  |  |
| Confusion Matrix of Model with Highest AUC: |                                           |                                           |                         |                         |  |  |  |  |  |
| Confusion Mat                               | rix of Model                              | with Highest                              | AUC:                    |                         |  |  |  |  |  |
| Confusion Mati<br>Observations              | rix of Model<br>Predi                     | with Highest<br>ctions                    | AUC:<br>Total n         | Class<br>Error          |  |  |  |  |  |
| Contusion Mati<br>Observations              | rix of Model<br>Predic<br>Absence         | with Highest<br>ctions<br>Presence        | AUC:<br>Total n         | Class<br>Error          |  |  |  |  |  |
| Confusion Mati<br>Observations<br>Absence   | rix of Model<br>Predic<br>Absence<br>1046 | with Highest<br>ctions<br>Presence<br>204 | AUC:<br>Total n<br>2544 | Class<br>Error<br>0.178 |  |  |  |  |  |



*Figure 26.* Predictions of presence probability (Pres. Prob.) from the optimal RF model of sea pen presence and absence data collected from DFO multispecies trawl surveys between 2003 and 2015. White lines indicate areas of extrapolation. Areas of significant concentrations of sea pens identified by KDE are shown in blue outline.



**Figure 27.** Predictions of biomass (kg) of sea pens from catch data recorded in DFO multispecies trawl surveys conducted in the southern Gulf of St. Lawrence between 2003 and 2014 (upper panel). Predictions of biomass (kg) of sea pens above and below the threshold (10 kg) of significant concentrations of sea pens identified by the KDE analysis (lower panel). Areas of significant concentrations of sea pens identified by KDE are shown in blue outline.

## Northern Portion of the Gulf Biogeographic Zone

## Sponges (Porifera)

The kernel density analysis identified high biomass areas across the spatial extent of the region (Figures 28 and 29). The areas identified in the present analysis were in the same locations but with different extensions to those previously identified (Kenchington et al., 2010), despite the addition of nearly 3x the number of presence records over those available for the previous analysis (Kenchington et al., 2016).

Accuracy measures of the random forest model on sponge presence-absence data collected from the entire Gulf Region were presented in Table 6. The presence probability RF prediction surface is presented in Figure 30 with the KDE polygons from the northern Gulf analysis overlaid. Most of the area was predicted to have high presence probability.

The accuracy measures of the regression random forest model on mean sponge biomass from DFO multispecies trawl surveys were poor ( $R^2 \le 0.1$  and/or negative percent variance explained), therefore the predicted biomass surface is not presented here. The highest  $R^2$  was 0.145, while the average was 0.033 ± 0.41 SD. The average Normalized Root-Mean-Square Error (NRMSE) was 0.044 ± 0.021 SD (Murillo et al., 2016). The negative variance explained indicated poor predictive performance of the model.



**Figure 28.** Locations of the significant sponge catches relative to the broader distribution of sponges in the northern portion of the Gulf Biogeographic Zone. Catch locations that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as nonsignificant. Null data (absence) is indicated by the black cross.



*Figure 29.* Comparison of the location of the significant concentrations identified in Kenchington et al. (2010) (blue outline) and those identified in this study (yellow polygons).



**Figure 30.** (upper panel) Predictions of presence probability (Pres. Prob.) of sponges based on a RF model on unbalanced presence and absence sponge catch data collected from DFO multispecies trawl surveys between 2003 and 2015. White lines indicate areas of extrapolation. (lower panel) Classification of sponge presence probability based on the prevalence threshold of 0.63 is shown. Also shown are the grey areas of model extrapolation, they appear dark red when overlain on the red presence surface and dark blue when overlain on the blue absence surface. Areas of significant concentrations of sponges identified by KDE are shown in blue outline in both panels.

#### Sea Pens (Pennatulacea)

Sea pens were distributed in the Gulf of St. Lawrence Estuary, along the Laurentian Channel and north to the deeper waters of the Anticosti and Esquiman Channels (Figure 31). In our KDE analyses, there were 1098 records with sea pen catch and 808 records of catches with no sea pens from the same surveys. The significant area polygons were found along the Laurentian Channel (Figure 31). The updated analysis expanded the areas previously identified (Figure 32).

Accuracy measures of the random forest model using balanced sea pen records collected across the entire Gulf Region are presented in Table 7. The presence probability RF prediction surface is presented in Figure 33 with the KDE polygons from the northern analysis overlaid. The highest predictions of presence probability occurred along the Laurentian, Anticosti and Esquiman Channels. All the significant area polygons identified by KDE were predicted with high presence probability.

The accuracy measures of the regression RF model on mean sea pen biomass from DFO multispecies trawl surveys indicated good performance of the model. The highest R<sup>2</sup> value was 0.502, while the average was  $0.273 \pm 0.137$  SD. The average Normalized Root-Mean-Square Error (NRMSE) was  $0.039 \pm 0.021$  SD. Surface Temperature Average Maximum was the most important variable in the model (Murillo et al., 2016). High predicted biomass coincided with the significant area polygons identified by KDE (Figure 34).



**Figure 31.** Locations of the polygons identifying significant sea pen aggregations relative to the broader distribution of sea pens in the northern portion of the Gulf Biogeographic Zone. Catch locations that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as nonsignificant. Null data (absence) is indicated by the black cross.



*Figure 32.* Comparison of the location of the significant concentrations of sea pens identified in Kenchington et al. (2010) (yellow outline) and those identified in this study (brown polygons).



*Figure 33.* Predictions of presence probability (Pres. Prob.) from the optimal RF model of sea pen presence and absence data collected from DFO multispecies trawl surveys between 2003 and 2015. White lines indicate areas of extrapolation. Areas of significant concentrations of sea pens identified by KDE are shown in blue outline.



**Figure 34.** Predictions of biomass (kg) of sea pens from catch data recorded in DFO multispecies trawl surveys conducted in the northern Gulf of St. Lawrence between 2004 and 2015 (upper panel). Predictions of biomass (kg) of sea pens above and below the threshold (4 kg) of significant concentrations of sea pens identified by the KDE analysis (lower panel). Areas of significant concentrations of sea pens identified by KDE are shown in blue outline.

### Comparison between GAM and RF Models

RF models performed better (in terms of  $R^2$ ) than GAM models in the northern and southern Gulf of St. Lawrence, except when latitude and longitude were used as a tensor product in the GAM model with predictors correlated < 0.7 (Murillo et al., 2016). A RF model for the northern Gulf with the environmental variables correlated < 0.7 was created but it did not improve the performance compared to models where all the predictors were considered ( $R^2 = 0.22$  vs 0.27). When the areas of significant concentrations of sea pens identified by KDE analysis were overlaid to the predictions of biomass (kg) of sea pens above and below the threshold of significant concentrations we observed that both models presented similar patterns (Figure 35).



**Figure 35.** Predictions of biomass (kg) of sea pens based on RF models (left panels) and GAM models (right panels) above and below the threshold of significant concentrations of sea pens identified by KDE in the northern (upper panels) and southern (lower panels) portion of the Gulf of St. Lawrence. Areas of significant concentrations of sea pens identified by KDE are shown in blue outline.

## NEWFOUNDLAND AND LABRADOR SHELVES

# Sponges (Porifera)

The kernel density analysis identified high biomass areas along the Labrador Slope (Figure 36). In the present analysis, sponge areas along the Labrador Slope identified in the previous analysis were greatly expanded (Figure 37). Several new polygons were identified, including two on the Northeast Newfoundland Shelf.

The RF model using sponge records from DFO multispecies surveys and DFO/industry northern shrimp surveys and unbalanced species prevalence was selected as the best predictor of sponge distribution in the Newfoundland and Labrador Region (Figure 38 and Table 8; Guijarro et al., 2016). The AUC of this model was moderate (0.786), and the top environmental predictor variable was Fall Primary Production Average Maximum. The highest predicted sponge presence probabilities occurred along the Labrador Slope and on Saglek Bank. Areas of high presence probability corresponded well with the occurrence of presence points at those locations. Small pockets of extrapolated area were distributed across the continental shelf. All deep water beyond the slope was considered extrapolated area. With the exception of Nain and Saglek Banks, most of the shelf and slopes off Labrador were classified as sponge presence, while the majority of the Grand Banks of Newfoundland was classified as sponge absence (Figure 39).

The highest predicted sponge biomass (up to 763.92 kg) occurred on the slope off Saglek Bank in northern Labrador (Figure 40; Guijarro et al., 2016). The accuracy measures of this model indicated good model performance. The highest R<sup>2</sup> was 0.510, while the average was 0.360  $\pm$  0.108 SD. The average Normalized Root-Mean-Square Error (NRMSE) was 0.026  $\pm$  0.006 SD. This model explained an average percent variance of 31.29%  $\pm$  1.92 SD, and the top environmental predictor variable was Summer Primary Production Average Minimum.



**Figure 36.** Location of the polygons (blue) identifying significant sponge aggregations relative to the broader distribution of sponges and areas closed or proposed to be closed to protect benthic species and habitats in the Newfoundland and Labrador Shelves Biogeographic Zone (black outline). Catches that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as nonsignificant. Null data (absence) is indicated by the black cross. The left panel shows the full distribution while the right panel shows a close-up of the polygons on the Labrador Slope with all records inside each polygon illustrated. Red lines indicate the EEZs of Canada and France (St. Pierre and Miquelon).



**Figure 37.** Comparison of the location of the significant concentrations identified in Kenchington et al. (2010) (yellow outline) and those identified in this study (blue polygons). Areas closed or proposed to be closed to protect benthic species and habitats are indicated in black outline. Red lines indicate the EEZs of Canada and France (St. Pierre and Miquelon).



*Figure 38.* Predictions of presence probability (Pres. Prob.) of sponges based on a RF model on unbalanced presence and absence sponge catch data collected from DFO multispecies and shrimp trawl surveys and Spanish trawl surveys conducted in the Newfoundland and Labrador Region between 1995 and 2015. White lines indicate areas of extrapolation. Areas of significant concentrations of sponges identified by KDE are shown in blue outline.

**Table 8.** Accuracy measures for 10-fold cross validation of a RF model of presence and absence of sponges from DFO multispecies surveys, DFO/industry shrimp surveys, and Spanish trawl surveys conducted within the Newfoundland and Labrador Region. Observ. = Observations; Sensit. = Sensitivity, Specif. = Specificity.

| Model | AUC   | Observ.  | Predictions |          | Total n | Class<br>Error | Sensit. | Specif. |
|-------|-------|----------|-------------|----------|---------|----------------|---------|---------|
|       |       |          | Absence     | Presence |         |                |         |         |
| Mean  | 0.786 | Absence  | 7728        | 3235     | 10980   | 0.296          | 0.729   | 0.704   |
| SD    | 0.010 | Presence | 1045        | 2815     | 3860    | 0.271          |         |         |



**Figure 39.** Classification of sponge presence probability based on the prevalence threshold of 0.26. Also shown are the grey areas of model extrapolation, they appear dark red when overlain on the red presence surface and dark blue when overlain on the blue absence surface. Areas of significant concentrations of sponges identified by KDE are shown in yellow outline.



*Figure 40.* Predictions of biomass (kg) of sponges from catch data recorded in DFO multispecies surveys, DFO/industry shrimp surveys, and Spanish trawl surveys conducted in the Newfoundland and Labrador Region between 1995 and 2015. Grey areas indicate areas of extrapolation. Areas of significant concentrations of sponges identified by KDE are shown in blue outline.

# Sea Pens (Pennatulacea)

In our KDE analyses, there were 1033 records with sea pen catch and 5119 records of catches with no sea pens from the same surveys. In contrast there were only 403 records available for the previous analysis (Kenchington et al., 2010). The updated kernel density analysis identified high biomass in the Laurentian Channel (Figure 41). New sea pen fields in the northwest border of the NAFO 30 Closure Area were identified and existing fields in the Laurentian Channel were expanded (Figure 42).

The RF model using all available sea pen records and unbalanced species prevalence was selected as the best predictor of sea pen distribution in the Newfoundland and Labrador Region (Figure 43 and Table 9; Guijarro et al., 2016). The AUC of this model was excellent (0.926). Depth was the top environmental predictor variable in this model. The highest predicted sea pen

presence probability occurred in the Laurentian Channel and on the slope off the Northeast Newfoundland Shelf. Areas of high presence probability corresponded well with the occurrence of presence points at those locations. Small pockets of extrapolated area were distributed across the continental shelf. All deep water beyond the slope was considered extrapolated area. Much of the continental shelf was predicted as absence of sea pens (Figure 44).

A small area in the Laurentian Channel was predicted to have high (up to 24.27 kg) biomass of sea pens by the regression random forest model (Figure 45). The accuracy measures of this model indicated good model performance. The highest R<sup>2</sup> was 0.642, while the average was 0.376  $\pm$  0.202 SD. The average Normalized Root-Mean-Square Error (NRMSE) was 0.018  $\pm$  0.010 SD (Guijarro et al., 2016). This model explained an average percent variance of 28.74%  $\pm$  3.25 SD. Maximum Average Winter Mixed Layer Depth was the top environmental predictor.



**Figure 41.** Location of the polygons identifying significant sea pen aggregations relative to the broader distribution of sea pens and areas closed or proposed to be closed to protect benthic species and habitats in the Newfoundland and Labrador Shelves Biogeographic Zone (black outline). Catches that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as nonsignificant. Null data (absence) is indicated by the black cross. A close up of the area in the Laurentian Channel is shown in the panel to the right. Red lines indicate the EEZs of Canada and France (St. Pierre and Miguelon).



**Figure 42.** Comparison of the location of the significant concentrations of sea pens identified in Kenchington et al. (2010) (yellow outline) and those identified in this study (orange polygons). Areas closed or proposed to be closed to protect benthic species and habitats are indicated in black outline. Red lines indicate the EEZs of Canada and France (St. Pierre and Miquelon). The left panel shows areas to the north that were identified in 2010 but that did not appear in the 2015 analyses.



**Figure 43.** Predictions of presence probability (Pres. Prob.) of sea pens based on a RF model on unbalanced presence and absence sea pen catch data collected from DFO multispecies surveys, DFO/industry shrimp surveys, and Spanish trawl surveys conducted in the Newfoundland and Labrador Region between 2003 and 2015. White lines indicate areas of extrapolation. Areas of significant concentrations of sponges identified by KDE are shown in blue outline.

**Table 9.** Accuracy measures for 10-fold cross validation of a random forest model of presence and absence of sea pens from DFO multispecies surveys, DFO/industry shrimp surveys, and Spanish trawl surveys conducted within the Newfoundland and Labrador Region. Observ. = Observations; Sensit. = Sensitivity, Specif. = Specificity.

| Model | AUC   | Observ.  | Predictions |          | Total n | Class<br>Error | Sensit. | Specif. |
|-------|-------|----------|-------------|----------|---------|----------------|---------|---------|
|       |       |          | Absence     | Presence |         |                |         |         |
| Mean  | 0.926 | Absence  | 4030        | 743      | 4773    | 0.156          | 0.847   | 0.844   |
| SD    | 0.009 | Presence | 145         | 801      | 946     | 0.153          |         |         |



**Figure 44.** Classification of sea pen presence probability based on the prevalence threshold of 0.17. Also shown are the grey areas of model extrapolation, which appear dark red when overlain on the presence surface and dark blue when overlain on the absence surface. Areas of significant concentrations of sponges identified by KDE are shown in yellow outline.



*Figure 45.* Predictions of biomass (kg) of sea pens from catch data recorded in DFO multispecies surveys, DFO/industry shrimp surveys, and Spanish trawl surveys conducted in the Newfoundland and Labrador Region between 2003 and 2015. Grey areas indicate areas of extrapolation. Areas of significant concentrations of sponges identified by KDE are shown in blue outline.

### Large Gorgonian Corals

In our KDE analyses, there were 530 records with large gorgonian coral catch and 6121 records of catches with no large gorgonians from the same surveys. In contrast there were only 199 records available for the previous analysis (Kenchington et al., 2010). The updated analysis identified several new large gorgonian coral areas along the Labrador Slope and slope northwest of the NAFO 30 Closure Area (Figure 46). The large polygon on the Saglek Bank and slope in northern Labrador identified from the 2010 analysis was greatly expanded in the current analysis (Figure 47). Several significant area polygons from 2010 are no longer present in the current analysis.

The RF model using all available large gorgonian coral records and unbalanced species prevalence was selected as the best predictor of large gorgonian coral distribution in the Newfoundland and Labrador Region (Figure 48 and Table 10; Guijarro et al., 2016). The AUC of this model was good (0.806). Depth was the top environmental predictor variable. The highest predicted presence probability of large gorgonian corals occurred on the edge of Saglek Bank and slope in northern Labrador. Moderate large gorgonian coral presence probability was predicted along the Labrador Slope. Areas of high presence probability corresponded well with the occurrence of presence points at those locations. Much of the continental shelf was predicted as absence of large gorgonian corals (Figure 49). Small pockets of extrapolated area were distributed across the continental shelf. All deep water beyond the slope was considered extrapolated area.

A small area on the edge of Saglek Bank was predicted to have high (up to 175.14 kg) biomass of large gorgonian corals by the regression random forest model (Figure 50). The accuracy measures of this model indicated relatively fair model performance. The highest R<sup>2</sup> was 0.690, while the average was  $0.203 \pm 0.218$  SD. The average Normalized Root-Mean-Square Error (RMSE) was  $0.017 \pm 0.012$  SD (Guijarro et al., 2016). This model explained an average percent variance of  $5.70\% \pm 3.34$  SD. Summer Primary Production Average Minimum was the top environmental predictor variable.



**Figure 46.** Location of the polygons identifying significant large gorgonian corals relative to the broader distribution of large gorgonian corals and areas closed or proposed to be closed to protect benthic species and habitats in the Newfoundland and Labrador Shelves Biogeographic Zone (black outline). Catches that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as nonsignificant. Null data (absence) is indicated by the black cross. Red lines indicate the EEZs of Canada and France (St. Pierre and Miquelon).



**Figure 47.** Comparison of the location of the significant concentrations of large gorgonian corals identified in Kenchington et al. (2010) (blue outline) and those identified in this study (yellow polygons). Areas closed or proposed to be closed to protect benthic species and habitats are indicated in black outline. Red lines indicate the EEZs of Canada and France (St. Pierre and Miquelon).



*Figure 48.* Predictions of presence probability (Pres. Prob.) of large gorgonian corals based on a RF model on unbalanced presence and absence large gorgonian coral catch data collected from DFO multispecies surveys, DFO/industry shrimp surveys, and Spanish trawl surveys conducted in the Newfoundland and Labrador Region between 2003 and 2015. White lines indicate areas of extrapolation. Areas of significant concentrations of large gorgonian corals identified by KDE are shown in blue outline.

**Table 10.** Accuracy measures for 10-fold cross validation of a RF model of presence and absence of large gorgonian corals from DFO multispecies surveys, DFO/industry shrimp surveys, and Spanish trawl surveys conducted within the Newfoundland and Labrador Region. Observ. = Observations; Sensit. = Sensitivity, Specif. = Specificity.

| Model | AUC   | Observ.  | Predictions |          | Total n | Class<br>Error | Sensit. | Specif. |
|-------|-------|----------|-------------|----------|---------|----------------|---------|---------|
|       |       |          | Absence     | Presence |         |                |         |         |
| Mean  | 0.806 | Absence  | 4330        | 1321     | 5651    | 0.234          | 0.726   | 0.766   |
| SD    | 0.039 | Presence | 141         | 373      | 514     | 0.274          |         |         |



**Figure 49.** Classification of large gorgonian coral presence probability based on the prevalence threshold of 0.08. Also shown are the grey areas of model extrapolation, they appear dark red when overlain on the red presence surface and dark blue when overlain on the blue absence surface. Areas of significant concentrations of large gorgonian corals identified by KDE are shown in yellow outline.



*Figure 50.* Predictions of biomass (kg) of large gorgonian corals from catch data recorded in DFO multispecies surveys, DFO/industry shrimp surveys, and Spanish trawl surveys conducted in the Newfoundland and Labrador Region between 2003 and 2015. Grey areas indicate areas of extrapolation. Areas of significant concentrations of large gorgonian corals identified by KDE are shown in blue outline.

## Small Gorgonian Corals

In our KDE analyses, there were 396 records with small gorgonian coral catch and 5419 records of catches with no small gorgonians from the same surveys. In contrast there were only 152 records available for the previous analysis (Kenchington et al., 2010). The updated analysis identified several new small gorgonian coral areas along the Labrador Slope and slope northern boundary of the NAFO 3O Closure Area (Figure 51). Polygons identified in 2010 along the northern boundary of the 3O Closure were greatly expanded in the current analysis (Figure 52).

The RF model using all available small gorgonian coral records and unbalanced species prevalence was selected as the best predictor of small gorgonian coral distribution in the Newfoundland and Labrador Region (Figure 53 and Table 11; Guijarro et al., 2016). The AUC of this model was very good (0.859). Depth was the top environmental predictor variable in this model. The highest predicted presence probability of small gorgonian corals occurred along the slope in the 3O Closure Area southwest of Grand Bank. Small pockets of moderate small gorgonian coral presence probability were predicted along the Labrador Slope. Areas of high presence probability corresponded well with the occurrence of presence points at those locations. Small pockets of extrapolated area were distributed across the continental shelf. All deep water beyond the slope was considered extrapolated area. Much of the continental shelf was predicted as absence of small gorgonian corals (Figure 54).

The regression random forest model on small gorgonian biomass had little predictive power (average  $R^2 = 0.108 \pm 0.080$  SD; average percent variance explained = -1.23% ± 2.46 SD) and consequently, the predicted biomass surface was not presented here.



**Figure 51.** Location of the polygons identifying significant small gorgonian coral aggregations relative to the broader distribution of small gorgonian corals and areas closed or proposed to be closed to protect benthic species and habitats in the Newfoundland and Labrador Shelves Biogeographic Zone (black outline). Catches that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as nonsignificant. Null data (absence) is indicated by the black cross. Red lines indicate the EEZs of Canada and France (St. Pierre and Miquelon).



**Figure 52.** Comparison of the location of the significant concentrations identified in Kenchington et al. (2010) (yellow outline) and those identified in this study (brown polygons). Areas closed or proposed to be closed to protect benthic species and habitats are indicated in black outline. Red lines indicate the EEZs of Canada and France (St. Pierre and Miquelon).



*Figure 53.* Predictions of presence probability (Pres. Prob.) of small gorgonian corals based on a RF model on unbalanced presence and absence small gorgonian coral catch data collected from DFO multispecies surveys, DFO/industry shrimp surveys, and Spanish trawl surveys conducted in the Newfoundland and Labrador Region between 2003 and 2015. White lines indicate areas of extrapolation. Areas of significant concentrations of small gorgonian corals identified by KDE are shown in blue outline.

**Table 11.** Accuracy measures for 10-fold cross validation of a RF model of presence and absence of small gorgonian corals from DFO multispecies surveys, DFO/industry shrimp surveys, and Spanish trawl surveys conducted within the Newfoundland and Labrador Region. Observ. = Observations; Sensit. = Sensitivity, Specif. = Specificity.

| Model | AUC   | Observ.  | Predictions |          | Total n | Class<br>Error | Sensit. | Specif. |
|-------|-------|----------|-------------|----------|---------|----------------|---------|---------|
|       |       |          | Absence     | Presence |         |                |         |         |
| Mean  | 0.859 | Absence  | 3975        | 992      | 4967    | 0.200          | 0.800   | 0.800   |
| SD    | 0.041 | Presence | 74          | 296      | 370     | 0.200          |         |         |



**Figure 54.** Classification of small gorgonian coral presence probability based on the prevalence threshold of 0.07. Also shown are the grey areas of model extrapolation, they appear dark red when overlain on the red presence surface and dark blue when overlain on the blue absence surface. Areas of significant concentrations of small gorgonian corals identified by KDE are shown in yellow outline.

## HUDSON STRAIT

In this biogeographic zone there were too few records to apply KDE to the large or small gorgonian corals and sea pens. Our analyses were conducted on sponges within Hudson Strait and Ungava Bay (termed the Hudson Strait – Ungava Bay Region herein) in the eastern portion of the Hudson Bay Complex Biogeographic Zone.

## Sponges (Porifera)

Sponge catch records for the Hudson Strait – Ungava Bay Region were derived from trawl surveys using both Campelen and Cosmos trawl gear. Campelen trawl records were insufficient for KDE, and therefore, only Cosmos records were analyzed. From this gear type, there were 229 records with sponge catch and 109 records of catches with no sponges from the same surveys. This represented 57 more presence records with this gear type than were available for the previous analysis (Kenchington et al., 2010). Several small significant area polygons were identified in the Ungava Bay portion of the region, northwest and southeast of Atpatok Island (Figure 55).

The accuracy measures of the regression random forest model on mean sponge biomass from Cosmos trawl surveys were poor ( $R^2 \le 0.1$  and/or negative percent variance explained) and therefore the predicted biomass surface from this model is not presented here. The highest  $R^2$  from this model was 0.246, while the average was 0.101 ± 0.086 SD (Beazley et al, 2016c). The average Normalized Root-Mean-Square Error was 0.075 ± 0.042 SD. This model explained a negative percent variance (mean = -8.67% ± 2.41 SD).

The RF model was generated on sponge presence and absence records from both Campelen and Cosmos trawl surveys combined. The model using all available sponge records and unbalanced species prevalence was selected as the best predictor of sponge distribution in the Hudson Strait- Ungava Bay Region (Figure 56 and Table 12; Beazley et al., 2016c). The AUC of this model was poor (0.643). Surface Current Mean was the top environmental predictor variable in this model. Western Hudson Strait was predicted to have high and even presence probability of sponges (Figure 56). Pockets of sponge presence probability were distributed across eastern Hudson Strait and Ungava Bay, with larger areas of high presence probability located northwest of Akpatok Island and south of Baffin Island. Several KDE polygons generated from the Cosmos biomass records fall outside of the SDM extent along the southern coast of Baffin Island. Areas of high and low presence probability of sponges corresponded well with the location of presence and absence data points. The largest area of model extrapolated was along the coast of southern Ungava Bay. Most of western Hudson Strait was classified as presence of sponges (Figure 57). The northern portion of Ungava Bay east of Akpatok Island was classified as absence of sponges.



**Figure 55.** Location of the polygons identifying significant sponge aggregations relative to the broader distribution of sponges in Hudson Strait. Porifera catches that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as presence. Null data (absence) is indicated by the black cross.


*Figure 56.* Predictions of presence probability (Pres. Prob.) of sponges based on a RF model on unbalanced presence and absence sponge by-catch data collected from DFO multispecies surveys and DFO/industry shrimp surveys conducted in the Hudson Strait – Ungava Bay Area between 2006 and 2014. Grey areas indicate areas of extrapolation. Areas of significant concentrations of sponges identified by KDE are shown in cyan blue outline.

**Table 12.** Accuracy measures for 10-fold cross validation of a RF model of presence and absence of sponges from DFO multispecies surveys and DFO/industry shrimp surveys. Observ. = Observations; Sensit. = Sensitivity, Specif. = Specificity.

| Model | AUC   | Observ.  | Predictions |          | Total n | Class<br>error | Sensit. | Specif. |
|-------|-------|----------|-------------|----------|---------|----------------|---------|---------|
|       |       |          | Absence     | Presence |         |                |         |         |
| Mean  | 0.643 | Absence  | 104         | 66       | 170     | 0.388          | 0.574   | 0.612   |
| SD    | 0.085 | Presence | 98          | 132      | 230     | 0.426          |         |         |



**Figure 57.** Classification of sponge presence probability based on the prevalence threshold of 0.58. Also shown are the grey areas of model extrapolation, which appear dark red or dark blue when overlain on the presence-absence surface. Areas of significant concentrations of sponges identified by KDE are shown in cyan blue outline.

# EASTERN ARCTIC

## Sponges (Porifera)

Sponge catch records for the Eastern Arctic Region were derived from Alfredo, Campelen, and Cosmos trawl data. KDE analyses were run separately on catch records from each of the three gear types. For Alfredo gear there were 663 records with sea pen catch and 177 records of catches with no sponges from the same surveys from 1999 to 2014. In the present analysis, the same general areas are recognized but several polygons northeast of Hatton Basin were expanded (Figure 58). The largest sponge biomass is outside of the volunteer closed area put in place by industry but no data were collected within the closed area to examine it in more detail. Small pockets of high biomass were predicted to occur in the Davis Strait by the regression random forest model using Alfredo trawl records (Figure 59). These corresponded to large Alfredo catches that occurred there. The accuracy measures of this model indicated good model performance (Beazley et al., 2016c). The highest  $R^2$  was 0.639, while the average was 0.327 ±

0.242 SD. The average Normalized Root-Mean-Square Error was  $0.040 \pm 0.026$  SD. The average percent variance explained by the model was  $15.44\% \pm 6.98$  SD. Bottom Temperature Average Minimum was the top environmental predictor variable in this model.

From Campelen trawl surveys, there were 711 records with sponge catch and 862 records of catches with no sponges from the same surveys from conducted 2005 to 2014. The significant areas identified in the current analysis are very similar in location to those from 2010, with expansion of most polygons (Figure 60). The regression random forest model on sponge biomass from Campelen trawl survey records predicted high sponge biomass in the southeast corner of the study extent in Davis Strait (Figure 61; Beazley et al., 2016c). The accuracy measures of this model indicated good model performance. The highest R<sup>2</sup> was 0.803, while the average was  $0.480 \pm 0.174$  SD. The average Normalized Root-Mean-Square Error was  $0.032 \pm 0.018$  SD. The average percent variance explained by the model was  $31.91\% \pm 4.82$  SD. The top environmental predictor variable was Surface Salinity Average Minimum.

From Cosmos trawl surveys, there were 167 records with sponge catch and 62 records of catches with no sponges from the same surveys conducted from 2006 to 2012. The significant areas identified in the current analysis are almost identical to those from 2010 (Figure 62). The accuracy measures of the regression random forest model on mean sponge biomass records from Cosmos trawl surveys were poor ( $R^2 \le 0.1$  and/or negative percent variance explained) and consequently the biomass prediction surface is not presented here. The  $R^2$  value of this model indicated good model performance (mean = 0.295 ± 0.208 SD), however, the percent variance explained was negative (-14.81% ± 11.93 SD).

The sponge RF model was generated on sponge presence and absence records from all three gear types combined. The model using all available sponge records and unbalanced species prevalence was selected as the best predictor of sponge distribution in the Eastern Arctic Region (Figure 63 and Table 13; Beazley et al., 2016c). The AUC of this model was good (0.791), with Depth being the top environmental predictor variable. The highest predicted sponge presence probability occurred in the deeper waters of Davis Strait and along Baffin Island Shelf. Areas in northern Baffin Bay were also predicted to have high sponge presence probability. Areas of high presence probability corresponded well with the occurrence of presence points at those locations. Areas of extrapolation occurred in Lancaster Sound, the Gulf of Boothia, in the deep water off Baffin Island Shelf, and in the southeast corner of the spatial extent in Davis Strait. Much of the Davis Strait, southeast Baffin Bay and Baffin Island Shelf were predicted as presence of sponges (Figure 64).



**Figure 58.** Location of the polygons identifying significant sponge aggregations relative to the broader distribution of sponges from Alfredo gear in the Eastern Arctic (left panel). Porifera catches that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as presence. Null data (absence) is indicated by the black cross. Right panel shows a comparison of the location of the significant concentrations identified in Kenchington et al. (2010) (yellow outline) and those identified in this study (pink polygons). Areas closed or voluntarily closed to protect benthic species and habitats are indicated in black outline. Red line indicates the EEZ of Canada.



*Figure 59.* Predictions of biomass (kg) of sponges from catch data recorded in DFO multispecies surveys conducted using Alfredo trawl gear in the Eastern Arctic Region between 1999 and 2014. Grey areas indicate areas of extrapolation. Areas of significant concentrations of sponges identified by KDE for Alfredo gear are shown in blue.



**Figure 60.** Location of the polygons identifying significant sponge aggregations relative to the broader distribution of sponges from Campelen gear in the Eastern Arctic (left panel). Porifera catches that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as presence. Null data (absence) is indicated by the black cross. Right panel shows a comparison of the location of the significant concentrations identified in Kenchington et al. (2010) (purple outline) and those identified in this study (light orange polygons). Areas closed or voluntarily closed to protect benthic species and habitats are indicated in black outline. Red line indicates the EEZ of Canada.



**Figure 61.** Predictions of biomass (kg) of sponges from catch data recorded in DFO/industry shrimp surveys conducted using Campelen trawl gear in the Eastern Arctic Region between 1996 and 2014. Grey areas indicate areas of extrapolation. Areas of significant concentrations of sponges identified by KDE for Campelen gear are shown in blue outline.



**Figure 62.** Location of the polygons identifying significant sponge aggregations relative to the broader distribution of sponges from Cosmos gear in the Eastern Arctic (left panel). Sponge catches that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as presence. Null data (absence) is indicated by the black cross. Right panel shows a comparison of the location of the significant concentrations identified in Kenchington et al. (2010) (yellow outline) and those identified in this study (purple polygons). Areas closed or voluntarily closed to protect benthic species and habitats are indicated in black outline. Red line indicates the EEZ of Canada.



**Figure 63.** Predictions of presence probability (Pres. Prob.) of sponges based on a RF model on unbalanced presence and absence sponge catch data collected from DFO multispecies surveys and DFO/industry shrimp surveys conducted in the Eastern Arctic Region between 1999 and 2014. Grey areas indicate areas of extrapolation. Areas of significant concentrations of sea pens from KDE are shown in the dark blue outline for Alfredo gear, purple outline for Campelen gear, and cyan blue outline for Cosmos gear.

**Table 13.** Accuracy measures for 10-fold cross validation of a RF model of presence and absence of sponges from DFO multispecies surveys and DFO/industry shrimp surveys in the Eastern Arctic. Observ. = Observations; Sensit. = Sensitivity, Specif. = Specificity.

| Model | AUC   | Observ.  | Predictions |          | Total n | Class<br>Error | Sensit. | Specif. |
|-------|-------|----------|-------------|----------|---------|----------------|---------|---------|
|       |       |          | Absence     | Presence |         |                |         |         |
| Mean  | 0.791 | Absence  | 723         | 259      | 982     | 0.264          | 0.709   | 0.736   |
| SD    | 0.029 | Presence | 421         | 1028     | 1449    | 0.291          |         |         |



**Figure 64.** Classification of sponge presence probability based on the prevalence threshold of 0.60. Also shown are the grey areas of model extrapolation, which appear dark red or dark blue when overlain on the presence-absence surface. Areas of significant concentrations of sponges identified by KDE are shown in yellow (Alfredo), dark blue (Campelen), and cyan blue (Cosmos) outline.

## Sea Pens (Pennatulacea)

Sea pen catch records for the Eastern Arctic Region were derived from Alfredo, Campelen, and Cosmos trawl data. KDE analyses were run separately on catch records from each of the three gear types. For Alfredo gear there were 316 records with sea pen catch and 470 records of catches with no sea pens from a subset of the surveys conducted from 2006 to 2014. In the present analysis, several new polygons were identified. These were located mainly on Baffin Island Shelf and in northern Baffin Bay southeast of Devon Island (Figure 65). Several significant area polygons from 2010 are no longer present in the updated analysis.

There were 67 Campelen records with sea pen catch and 1508 records of catches with no sea pens from the same surveys from 2005 to 2014. The significant areas identified in the current analysis are very similar in location to those from 2010 (Figure 66). Several new polygons were identified, and others were expanded.

There were 57 Cosmos records with sea pen catch and 171 records of catches with no sea pens from the same surveys from 2006 to 2012. Significant polygons from 2010 were much reduced in the updated analysis (Figure 67).

The accuracy measures of the regression random forest models on mean sea pen biomass records from each of the three gear types were poor ( $R^2 \le 0.1$  and/or negative percent variance explained) and are consequently the biomass prediction surfaces from all three models are not presented here. For the model using Alfredo records, the highest  $R^2$  value was 0.202, while the average was 0.089 ± 0.069 SD (Beazley et al., 2016c). The average percentage variance explained was negative (-3.03% ± 2.41 SD). A similar result was found with the Campelen and Cosmos models, which had average  $R^2$  values of 0.041 ± 0.062 SD and 0.087 ± 0.176 SD, respectively, and average percent variance explained of -8.99% ± 3.96 and -12.47% ± 3.43 SD, respectively.

The sea pen RF model was generated on presence and absence records from all three gear types combined. The model using all available sea pen records and unbalanced species prevalence was selected as the best predictor of sea pen distribution in the Eastern Arctic Region (Figure 68 and Table 14; Beazley et al., 2016c). The AUC of this model was very good (0.838), with Bottom Salinity Average Range being the top environmental predictor variable, followed by Depth. The highest predicted sea pen presence probability occurred in northern Baffin Bay southeast of Devon Island. The edge of the Baffin Island Shelf also had smaller pockets of high sea pen presence probability. Much of the Davis Strait was predicted to have zero or low presence probability of sea pens. Areas of high presence probability corresponded well with the occurrence of presence points at those locations. Predicted presence probability was low in locations where a high number of presence observations occurred, particularly along the shelf break of Baffin Island and in Davis Strait. This could be due to the high overlap between presence and absence data points in those areas and the inclusion of all absence data in the model. Areas of extrapolation occurred in Lancaster Sound, the Gulf of Boothia, in the deep water off Baffin Island Shelf, and in the southeast corner of the spatial extent in Davis Strait. Most of the study extent was predicted as presence of sea pens (Figure 69). The largest area predicted as absence of sea pens occurred in the southern portion of the study extent in Davis Strait. Smaller pockets of sea pen absence were located on Baffin Island Shelf.



**Figure 65.** Locations of the significant sea pen areas from Alfredo trawl gear relative to the broader distribution of sea pens in the Davis Strait – Baffin Bay area (left panel). Sea pen catches that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as presence. Null data (absence) is indicated by the black cross. The right panel shows a comparison of the location of the significant concentrations identified in Kenchington et al. (2010) (yellow outline) and those identified in this study (pink polygons). Areas closed or voluntarily closed to protect benthic species and habitats are indicated in black outline. Red line indicates the EEZ of Canada.



**Figure 66.** Locations of the significant sea pen areas from Campelen trawl gear relative to the broader distribution of sea pens in the Davis Strait – Southern Baffin Bay area (left panel). Sea pen catches that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as presence. Null data (absence) is indicated by the black cross. The right panel shows a comparison of the location of the significant concentrations identified in Kenchington et al. (2010) (yellow outline) and those identified in this study (pink polygons). Areas closed or voluntarily closed to protect benthic species and habitats are indicated in black outline. Red line indicates the EEZ of Canada.



**Figure 67.** Locations of the significant sea pen areas from Cosmos trawl gear relative to the broader distribution of sea pens in the Davis Strait – Southern Baffin Bay area (left panel). Sea pen catches that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as presence. Null data (absence) is indicated by the black cross. The right panel shows a comparison of the location of the significant concentrations identified in Kenchington et al. (2010) (yellow outline) and those identified in this study (pink polygons). Areas closed or voluntarily closed to protect benthic species and habitats are indicated in black outline. Red line indicates the EEZ of Canada.



**Figure 68.** Predictions of presence probability (Pres. Prob.) of sponges based on a RF model on unbalanced presence and absence sea pen catch data collected from DFO multispecies surveys and DFO/industry shrimp surveys conducted in the Eastern Arctic Region between 1999 and 2014. Grey areas indicate areas of extrapolation. Areas of significant concentrations of sea pens from KDE are shown in the blue outline for Alfredo gear, purple outline for Campelen gear, and cyan blue outline for Cosmos gear.

**Table 14.** Accuracy measures for 10-fold cross validation of a RF model of presence and absence of sea pens from DFO multispecies surveys and DFO/industry shrimp surveys. Observ. = Observations; Sensit. = Sensitivity, Specif. = Specificity.

| Model | AUC   | Observ.  | Predictions |          | Total n | Class<br>Error | Sensit. | Specif. |
|-------|-------|----------|-------------|----------|---------|----------------|---------|---------|
|       |       |          | Absence     | Presence |         |                |         |         |
| Mean  | 0.838 | Absence  | 1413        | 548      | 1961    | 0.279          | 0.814   | 0.721   |
| SD    | 0.014 | Presence | 78          | 342      | 420     | 0.186          |         |         |



**Figure 69.** Classification of sea pen presence probability based on the prevalence threshold of 0.18. Also shown are the grey areas of model extrapolation, which appear dark red or blue when overlain on the presence-absence surface. Areas of significant concentrations of sea pens from KDE are shown in the yellow outline for Alfredo gear, dark blue outline for Campelen gear, and cyan blue outline for Cosmos gear.

## Large Gorgonian Corals

Large gorgonian coral catch records for the Eastern Arctic Region were derived from Alfredo and Campelen trawl surveys. In the 2010 analysis, small gorgonian records from Alfredo gear were insufficient for KDE analysis and so KDE was run only on Campelen records. In the current analysis, KDE was run separately on catch records from each gear type. For Alfredo gear there were 39 records with large gorgonian coral catch and 733 records of catches with no large gorgonian corals from the same surveys conducted between 2006 and 2014. KDE analysis of this data revealed several significant area polygons in the Davis Strait (Figure 70). The regression random forest model in large gorgonian catch from Alfredo gear performed poorly ( $R^2 \le 0.1$  and/or negative percent variance explained) and consequently the prediction surface of this model is not presented (Beazley et al., 2016c).

There were 120 Campelen records with large gorgonian coral catch and 1455 records of catches with no large gorgonians from the same surveys. Several new significant area polygons were identified in Davis Strait north of the voluntary coral closure (Figure 71). Existing polygons within and outside the closure were expanded in the current analysis. The regression random forest model on large gorgonian coral biomass from Campelen trawl survey records predicted several small pockets of high large gorgonian coral biomass in Davis Strait directly north of the voluntary closure area (Figure 72). Moderate biomass was predicted to occur in the southeast corner of the study extent in Davis Strait. The accuracy measures of this model indicated good model performance (Beazley et al., 2016c). The highest  $R^2$  was 0.470, while the average was 0.186 ± 0.160 SD. The average Normalized Root-Mean-Square Error (NRSME) was 0.013 ± 0.007 SD. The average variance explained was 16.86% ± 4.99 SD. The top environmental predictor variable in this model was Bottom Temperature Average Minimum.

The large gorgonian coral RF model was generated on presence and absence records from both the Alfredo and Campelen gear types combined. The model using all available large gorgonian coral records and unbalanced species prevalence was selected as the best predictor of small gorgonian coral distribution in the Eastern Arctic Region (Figure 73 and Table 15; Beazley et al., 2016c). The AUC of this model was good (0.752). Bottom Temperature Average Minimum was the top predictor variable in this model. The highest predicted large gorgonian coral presence probability occurred in the Davis Strait within and north of the voluntary coral closure. The southeast corner of the study extent in Davis Strait was predicted to have moderate presence probability of large gorgonian corals. Much of Baffin Bay was predicted to have zero or low presence probability of small gorgonian corals. Areas of high presence probability corresponded well with the occurrence of presence points at those locations. Lancaster Sound, Gulf of Boothia, the deep water off Baffin Island Shelf, and the southeast corner of the study extent in Davis Strait was considered extrapolated area by the model. With the exception of Lancaster Sound and the Gulf of Boothia, much of the shallow portion of the study extent in Baffin Bay and Davis Strait were classified as absence of large gorgonian corals (Figure 74). The deep waters in Baffin Basin and Davis Strait were predicted as presence of large gorgonian corals.



**Figure 70.** Location of the polygons identifying significant large gorgonian coral aggregations relative to the broader distribution of large gorgonian corals in the Eastern Arctic. Large gorgonian coral catches that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as presence. Null data (absence) is indicated by the black cross. Areas closed or voluntarily closed to protect benthic species and habitats are indicated in black outline. Red line indicates the EEZ of Canada.



**Figure 71.** Location of the polygons identifying significant large gorgonian coral aggregations relative to the broader distribution of large gorgonian coral in the Eastern Arctic (left panel). Large gorgonian coral catches that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as presence. Null data (absence) is indicated by the black cross. Right panel shows a comparison of the location of the significant concentrations of large gorgonian corals identified in Kenchington et al. (2010) (white outline) and those identified in this study (brown polygons). Areas closed or voluntarily closed to protect benthic species and habitats are indicated in black outline. Red line indicates the EEZ of Canada.



*Figure 72.* Predictions of biomass (kg) of large gorgonian corals from catch data recorded in DFO/industry shrimp surveys using Campelen trawl gear in the Eastern Arctic between 2005 and 2014. Grey areas indicate areas of extrapolation. Areas of significant concentrations of large gorgonian corals identified by KDE are shown in blue outline.



*Figure 73.* Predictions of presence probability (Pres. Prob.) of large gorgonian corals based on a RF model on unbalanced presence and absence sponge catch data collected from DFO multispecies surveys and DFO/industry shrimp surveys conducted in the Eastern Arctic between 1999 and 2014. Grey areas indicate areas of extrapolation. Areas of significant concentrations of large gorgonian corals identified by KDE are shown in blue (Alfredo) and purple (Campelen) outline.

**Table 15.** Accuracy measures for 10-fold cross validation of a RF model of presence and absence of large gorgonian corals from DFO multispecies surveys and DFO/industry shrimp surveys. Observ. = Observations; Sensit. = Sensitivity, Specif. = Specificity.

| Model | AUC   | Observ.  | Predictions |          | Total n | Class<br>Error | Sensit. | Specif. |
|-------|-------|----------|-------------|----------|---------|----------------|---------|---------|
|       |       |          | Absence     | Presence |         |                |         |         |
| Mean  | 0.752 | Absence  | 1738        | 474      | 2212    | 0.214          | 0.626   | 0.786   |
| SD    | 0.090 | Presence | 58          | 97       | 155     | 0.374          |         |         |



**Figure 74.** Classification of large gorgonian coral presence probability based on the prevalence threshold of 0.07. Also shown are the grey areas of model extrapolation, which appear dark red or dark blue when overlain on the presence-absence surface. Areas of significant concentrations of large gorgonian corals identified by KDE are shown in yellow (Alfredo) and blue (Campelen) outline.

## Small Gorgonian Corals

Small gorgonian coral catch records for the Eastern Arctic Region were derived from Alfredo and Campelen trawl data. In the 2010 analysis, small gorgonian records from Alfredo gear were insufficient for KDE analysis and so KDE was run only on Campelen records. In the current analysis, KDE was run separately on catch records from each gear type. For Alfredo gear there were 88 records with small gorgonian coral catch and 684 records of catches with no small gorgonian corals from the same surveys conducted between 2006 and 2014. In the present analysis, several significant area polygons were identified in the Davis Strait (Figure 75). The southeast corner of the study extent in Davis Strait was predicted to have high biomass of small gorgonians by the regression random forest model using Alfredo trawl records (Figure 76). The accuracy measures of this model indicated good model performance (Beazley et al., 2016c). The highest R<sup>2</sup> value was 0.677, while the average was 0.292  $\pm$  0.213 SD. The average Normalized Root-Mean-Square Error was 0.044  $\pm$  0.026 SD. The average percentage variance explained was 11.78%  $\pm$  6.32 SD). Bottom Shear Average Maximum was the top environmental predictor variable in this model.

There were 91 Campelen records with sea pen catch and 1484 records of catches with no sea pens from the same surveys from 2005 to 2014. Several significant polygons identified in the Davis Strait in the previous analysis were expanded in the current analysis (Figure 77). Some new polygons were identified. The regression random forest model of small gorgonian coral biomass using Campelen trawl records performed poorly ( $R^2 \le 0.1$  and/or negative percent variance explained), and therefore the predicted biomass surface from this model is not presented here.

The small gorgonian coral RF model was generated on presence and absence records from both the Alfredo and Campelen gear types combined. The model using all available small gorgonian coral records and unbalanced species prevalence was selected as the best predictor of small gorgonian coral distribution in the Eastern Arctic Region (Figure 78 and Table 16: Beazley et al., 2016c). The AUC of this model was very good (0.894), with Surface Salinity Mean being the top environmental predictor variable. The highest predicted small gorgonian coral presence probability occurred in the Davis Strait along the eastern edge of the boundary. The southeast corner of the study extent in Davis Strait was predicted to have moderate presence probability of small gorgonian corals. Much of Baffin Bay was predicted to have zero or low presence probability of small gorgonian corals. Areas of high presence probability corresponded well with the occurrence of presence points at those locations. At the location of some presence points predicted presence probability was not high due to the high overlap of presence and absence points. This could be due to the high overlap between presence and absence data points in those areas and the inclusion of all absence data in the model. Much of Lancaster Sound, Gulf of Boothia, and the deep water off Baffin Island Shelf was considered extrapolated area by the model. The deep waters off Baffin Island Shelf, northern Baffin Bay, and the southeast Davis Strait were classified as presence of small gorgonian corals (Figure 79).



**Figure 75.** Locations of the significant small gorgonian coral areas from Alfredo trawl gear relative to the broader distribution of small gorgonian in the Eastern Arctic. Small gorgonian coral catches that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as presence. Null data (absence) is indicated by the black cross. Areas closed or voluntarily closed to protect benthic species and habitats are indicated in black outline. Red line indicates the EEZ of Canada.



*Figure 76.* Predictions of biomass (kg) of small gorgonian corals from catch data recorded in DFO multispecies surveys using Alfredo trawl gear in the Eastern Arctic between 2006 and 2014. Grey areas indicate areas of extrapolation. Areas of significant concentrations of small gorgonian corals identified by KDE are shown in blue outline.



**Figure 77.** Locations of the significant small gorgonian coral areas from Campelen trawl gear relative to the broader distribution of small gorgonians in the Davis Strait (left panel). Small gorgonian coral catches that contributed to the identification of the polygons are indicated as significant, while those not used to define the polygons are indicated as presence Null data (absence) is indicated by the black cross. The right panel shows a comparison of the location of the significant concentrations identified in Kenchington et al. (2010) (purple outline) and those identified in this study (brown polygons). Areas closed or voluntarily closed to protect benthic species and habitats are indicated in black outline. Red line indicates the EEZ of Canada.



*Figure 78.* Predictions of presence probability (Pres. Prob.) of small gorgonian corals based on a RF model on unbalanced presence and absence sponge catch data collected from DFO multispecies surveys and DFO/industry shrimp surveys conducted in the Eastern Arctic between 2005 and 2014. Areas of significant concentrations of small gorgonian corals identified by KDE are shown in blue (Alfredo) and purple (Campelen) outline.

**Table 16.** Accuracy measures for 10-fold cross validation of a RF model of presence and absence of small gorgonian corals from DFO multispecies surveys and DFO/industry shrimp surveys. Observ. = Observations; Sensit. = Sensitivity, Specif. = Specificity.

| Model | AUC   | Observ.  | Predictions |          | Total n | Class<br>Error | Sensit. | Specif. |
|-------|-------|----------|-------------|----------|---------|----------------|---------|---------|
|       |       |          | Absence     | Presence |         |                |         |         |
| Mean  | 0.894 | Absence  | 1800        | 387      | 2187    | 0.177          | 0.821   | 0.823   |
| SD    | 0.042 | Presence | 32          | 147      | 179     | 0.179          |         |         |



**Figure 79.** Classification of small gorgonian coral presence probability based on the prevalence threshold of 0.08. Also shown are the grey areas of model extrapolation, which appear dark red or dark blue when overlain on the presence-absence surface. Areas of significant concentrations of small gorgonian corals identified by KDE are shown in yellow (Alfredo) and blue (Campelen) outline.

## UNCERTAINTIES

Our KDE analyses were conducted within biogeographic zones as an attempt to work with similar species compositions. This is particularly relevant when the data are not fully ascribed to species and can include species compositions with different morphologies and biomass. For this reason, the threshold values for a taxon (e.g., sponges) derived from the same survey gear can differ amongst the different biogeographic zones (e.g., comparing thresholds with Campelen gear for sponges across biogeographic regions). This is an expected result and is particularly relevant when shelf systems such as Hudson Strait are compared with regions with continental slope fauna. This will also influence the results within regions where both shelf and slope fauna

with widely divergent species morphologies and biomass occur. This arises primarily with sponges in the Newfoundland and Labrador and Eastern Arctic biogeographic regions. There, large massive sponge grounds (Knudby et al., 2013a) occur on the slopes (these are not found in the Scotian Shelf Biogeographic Zone), and smaller more delicate species are found on the shelves. KDE will put an emphasis on the heavier, highly aggregated slope species, although this can be compensated for by selecting smaller thresholds. This issue is not so relevant to the gorgonian corals and sea pens, where the different species that could comprise the taxa have similar weights, if not morphologies. More precise identification of the sponges in each region would allow for separate analyses based on size/biomass as was done for the gorgonian corals.

Trawl catches of corals and sponges are the result of a stochastic sampling process from a latent (unobserved) mean density on the ocean floor. Catches sampled from the same latent density can vary considerably from one set to another due to the distributional properties of marine biota (e.g., fine scale patchiness in distribution) and an often low and variable catchability to survey trawl gear. This is generally termed observation error. KDE and RF analysis do not explicitly account for observation error. Catches are assumed to be 'perfect' observations and neighboring catches of different magnitude are effectively viewed as reflecting a small scale gradient in density when in fact these catches may be the result of sampling from the same latent density. Some caution is therefore required in interpreting the boundaries of purported areas of a certain density as these boundaries may be more dispersed than otherwise implied by the KDE and RF surfaces. Parametric statistical models (e.g., GAMs) explicitly account for observation error though care must be taken to ensure that an appropriate error distribution is specified and that models correctly account for zero-inflation and overdispersion if there is evidence of these properties in the data. If the parametric models happen to be misspecified, the inferences drawn may be incorrect.

The polygons identified through the KDE analyses identify significant biomass aggregations from research vessel trawl catch data. The boundaries of the polygons can and should be refined using more detailed site-specific data from both environmental and fishery sources. The analysis is not intended to produce hard boundaries for management decisions, but rather to focus attention on the key areas for identifying significant concentrations of corals and sponges.

We also point out that the KDE polygons are subject to change and are influenced by the search radius used. By optimizing the radius in the way we described earlier, we reduced the subjectivity of this element but in some cases we chose to use smaller or larger values; more often larger values were used in order to perform the aerial analysis on a continuous surface. Over-smoothing will create larger polygons around the data, however if used in combination with SDMs this should not be an issue. Additional data that changes the spatial data extent and/or changes the density structure of the points over the surface will also change the kernel surface even if the search radius is unchanged. This was seen in the figures that compared the results from the 2010 analysis (Kenchington et al., 2010) with the current analysis. This can produce changes to the number and/or shape of the polygons which in some cases may be informative in and of themselves (e.g., Kenchington et al., 2012). A simple sensitivity analysis could be conducted by applying KDE at each given year separately to create an averaged KDE output. While optimal search radius needs to be identified each year, a comparison of average versus aggregated KDE outputs could be used to identify potential shifts in species hotspots.

The random forest (RF) models worked well at interpolating predictions between data observations and extrapolating within the data extent. However, RFs are averaging the decision and regression trees to predict piecewise constant functions, giving a constant value for inputs falling under each leaf. When extrapolating outside their training domain, where different physical environmental conditions from those used to train the model may exist, they predict the same value as they would for the nearest point in the tree at which they had training data

(Breiman et al., 1984). For true extrapolation, the random forest algorithm would need to learn the functional relationship between the response and environmental conditions at those locations. Other models, such as Generalized Additive Models, which can find a relationship between the response and predictors, could provide additional information. Therefore, we are not confident of the model extrapolations to depths outside of our data extent (generally greater than 2000m), as we have no means of validation. Sponges, sea pens and gorgonian corals can be found at such depths and so the model may be helpful in guiding research surveys to perform such validation.

Species distribution models were performed using a 5 km buffer around land from the Gulf and Scotian Shelf regions, and with a 20 km buffer for the Newfoundland and Labrador, Hudson Strait and Eastern Arctic. Consequently coastal areas were not considered in this report. This also applies to the KDE analysis as the trawl surveys that generated the data used in the analysis do not cover coastal areas.

While RF models are more robust against overfitting compared to other machine learning algorithms such as bagging, they have been observed to overfit when data contains very "noisy" classification or regression tasks (Segal, 2004). In the SDM context, random forests make distinct spatial predictions compared to GAMs and GLMs. In this regard, overfitted RF models can make predicted distribution maps very "patchy" at smaller spatial scale and difficult to interpret (Franklin, 2010). Caution should be taken to not over analyze predicted distribution maps at smaller spatial scales.

Species catch distribution data from multispecies surveys may be subject to contamination from one trawl set to the next. Different invertebrate organisms such as sponges and some types of corals can remain hooked to the trawl net or in others parts of the vessel during the sorting process and appear posteriorly in the sorting process of the next trawl set catches. This contamination issue likely does not greatly affect the species distribution models based on biomass response data, but it can be an important issue in the models based on presenceabsence data, where a large catch counts the same as a small catch, increasing the distribution area of the species studied.

The use of presence-absence records from different data sources and gear types (trawl and *in situ* camera observations) in random forest modelling may introduce bias and cause poor model performance. In the Maritimes Region, many of DFO's scientific missions involving benthic imagery collection were designed to target the continental slope and canyons where deep-water corals are known to congregate. These areas are typically not surveyed in the multispecies stock assessment surveys as they are either outside of the survey depth limit or are too rough to deploy bottom-tending gear. The addition of *in situ* camera observations and other sources significantly improved the predictive performance of the presence-absence models, and its inclusion in the models is warranted given the spatial bias in the DFO multispecies trawl surveys. Naturally, the addition of the *in situ* camera observations increased the probability of occurrence of the three coral groups along the Scotian Slope and in several deep canyons. Predictions in areas dominated by *in situ* camera observations should be interpreted with caution, as no null data accompanied those records.

An overview of this process with "Lessons Learned" was presented as a case study and published in the International Council for the Exploration of the Sea (ICES) Working Group on the Ecosystem Effects of Fishing Activities (ICES, 2016).

#### CONCLUSIONS

KDE analyses produced very similar locations to those previously identified (Kenchington et al., 2010), despite the large increase in the number of data points used in the present analysis.

The KDE method only uses the georeferenced biomass data from the trawl surveys to construct the polygons. The analysis is not intended to produce hard boundaries for management decisions, but rather to focus attention on the key areas for identifying significant concentrations of corals and sponges. The boundaries of the polygons can and should be refined using more detailed site-specific data from both environmental and fishery sources. In some cases it may be important to closely refine the boundaries of the polygons, particularly if they lie over a depth gradient, or to consider whether a species group occurs in an area not sampled by the survey. Species distribution models (SDMs; e.g., Beazley et al., 2016a, c; Murillo et al., 2016; Guijarro et al., 2016) can be used to refine the boundaries of the polygons and to identify potential areas of occurrence and/or high biomass in unsampled areas. For instance, models based on presence-absence response data can be used to ascertain the full range distribution of the taxa considered whereas models based on biomass response data can be used to trim the polygon while maintaining the biomass identified in the KDE analysis.

Machine learning techniques such as RF can also be compared with regression models such as generalized additive models (GAMs). This comparison is elaborated on in Murillo et al. (2016) and in Kenchington et al. (2016). In this instance the RF model seemed a better fit to the data, and offers less scope for trimming the KDE polygon than the GAM output (Kenchington et al. 2016).

We have found that classification random forest models generated using all presence and absence data (i.e. unbalanced species prevalence) and a threshold equal to species prevalence produced the most realistic presence probability prediction surfaces and highest model accuracy in instances when the input data were highly imbalanced and spatially biased across the study area. Random down-sampling of the absence data often resulted in gross extrapolation of high presence probability beyond the location of presence observations. This was likely exacerbated when down-sampling to match a low number of presence observations, as in our *V. pourtalesi*, sea pen, and gorgonian coral models. Our sponge model however, produced nearly identical presence probability surfaces and model accuracy measures between balanced and unbalanced runs, likely due to the high and relatively even number of presence and absence observations across the study extent. These results may help guide future applications of random forest modelling by providing insight into which methods are appropriate based on the properties of the training data.

The species distribution models provided in this study do not consider the effect of disturbance by human activities. Predicted distribution and biomass can therefore be confounded by fishing activities, and areas that are physically suitable but are predicted to have low occurrence or biomass may not necessarily indicate bad model performance. The taxa considered in this report are vulnerable marine ecosystem (VME) indicators (NAFO, 2014) and are highly aggregating, structure-forming megafaunal groups that can be found in 'significant concentrations' constituting VMEs (Kenchington et al., 2014). The life- history traits of these species, such as slow growth rates, late age of maturity, or their structural complexity make them very vulnerable to fishing activities (FAO, 2009). In order to consider how anthropogenic pressure has influenced these ecosystems, a measure of this, such as fishing intensity, should be included as a predictor variable in the RF models and the effects of changes in the pressure explored (Bergström et al. 2013). This kind of analysis would point out potential species distribution and could indicate areas for future restoration initiatives.

## IDENTIFICATION OF SIGNIFICANT BENTHIC AREAS

A National Advisory Process meeting was held on March 8-10, 2016 to review the work presented above. At that meeting the results of the KDE analyses and SDMs were jointly considered and significant benthic areas (SBAs) were identified. Here we present the results of those decisions, providing more detail than in the associated Science Advisory Report (SAR). The locations of the tow positions that were used to delineate the significant concentrations of corals and sponges are provided in the Appendix 1 and the species codes used to extract the data are provided in Appendix 2. Fisheries Observer Program Data (FOP) was also provided for the meeting and those data were used to validate the prevalence maps where available (Appendix 3).

## MARITIMES REGION

There was a high degree of consistency between the KDE-derived polygons and the SDMs for all coral and sponge taxa on the Scotian Shelf. Consequently, none of the KDE-derived polygons were modified. An exception was the KDE polygon for large gorgonian corals. On the southeastern slope, east of the Gully and near the Lophelia Coral Conservation Area two KDE polygons were merged. In this area the biogeographic units for the Scotian Shelf and Newfoundland and Labrador Shelves (DFO, 2009) met (Figure 16), resulting in the large gorgonian coral catches made with the Western IIA gear on the Scotian Shelf, being assessed using the data for the Newfoundland and Labrador Shelves biogeographic unit (NL), that was caught with Campelen trawls. The use of the biogeographic unit makes sense as it kept the Laurentian Channel as a single ecological unit, however when comparing the KDE-derived polygons for each region it was apparent that the smaller threshold used in the NL region due to the predominance of the different gear, introduced bias to the size of the polygon on the Scotian Shelf. The biomass model for the large gorgonian corals showed that regions of high biomass extended to the east of the Scotian Shelf biogeographic unit (SS) (Figure 18). Consequently, the threshold value used to create the KDE polygons in the SS was applied to the adjacent area in the NL and a new polygon was created (Figure 80).

In general, there was little overlap between the KDE-derived polygons for each taxon (Figure 81), except for in the St. Ann's Bank Proposed Closure where SBAs for sponges and sea pens overlapped.



**Figure 80.** Location of the new KDE-derived polygon for large gorgonian corals (yellow outline) on the southeastern Scotian Shelf (SS), formed by merging the boundaries of two adjacent polygons, one for the SS and the other from the analysis of the Newfoundland and Labrador Shelves region. For the later, the threshold was changed to match that of the SS where the same gear was used in this area (Western IIA). The polygons are overlain on the random forest prevalence map which was used to create a SBA on the slope in this region (see Figure 83). The EEZs of Canada and France (St. Pierre and Miquelon) are in dashed lines.



*Figure 81.* Location of sponge (black outline), sea pen (yellow outline) and large gorgonian (red outline) SBAs as determined from KDE analyses. Note that there are many small polygons for each taxon that are not readily seen at this scale. The EEZs of Canada and France (St. Pierre and Miquelon) are in dashed lines.

The lower slope and deep water areas off the Scotian Shelf were not fully included in the spatial extent of the research vessel trawl surveys and consequently the KDE approach was not able to delineate significant concentrations of benthic taxa in those areas. It was recognized that those areas coincided with the distribution of the large and small gorgonian corals and sea pens and so new SBAs were drawn using the predicted presence area for the appropriate RF SDM for each taxon. These presence-absence models were considered to be more reliable than the KDE-derived polygons in slope areas due to the inclusion of benthic imagery data in the former analyses. Further, RF maps were used to identify all SBAs for the small gorgonian corals as this group could not be modelled using KDE due to its small sample size.

For the small gorgonian corals, the most influential environmental variables in the RF presenceabsence model were Depth and Slope, and predicted presence prevalence closely followed the 200m depth contour along the shelf slope. It was recommended that the region of predicted presence between the 200m Canadian Hydrographic Service (CHS) Atlantic Bathymetry Compilation (ABC) depth contour and the random forest extrapolation boundary be considered a SBA for small gorgonian corals (Figure 82). The prevalence was followed to the edge of the regional boundary in the east and included extrapolated area in its northeast extreme. In creating this large SBA it was noted that further research on soft bottom communities in this



area could help to refine these boundaries. The RF biomass models did not perform well and so could not assist in this respect.

*Figure 82.* SBAs (green outline) for small gorgonian corals delineated from the random forest presenceabsence SDM and clipped using the 200m depth contour and/or upper prevalence boundary. The EEZs of Canada and France (St. Pierre and Miquelon) are in dashed lines.

For the large gorgonian corals, the presence prediction area from the random forest presenceabsence model was considered a SBA in the slope areas (Figure 83). It showed good congruence with the ecology of the taxa. Unlike the small gorgonian corals a depth boundary was not recommended as the intrusion of the prediction surface into the Northeast Channel and the extrapolated area on the shelf off southwest Nova Scotia was felt to reflect the known ecology of the species. In two regions the KDE-derived polygons overlapped in distribution with this new SBA. In both cases the polygons fell within the SBA (Figure 84).



**Figure 83.** SBAs (white outline) for large gorgonian corals delineated from the random forest presenceabsence SDM. Note that an area of model extrapolation off southwest Nova Scotia was considered by the experts at the meeting to warrant inclusion in the SBA. The EEZs of Canada and France (St. Pierre and Miquelon) are in dashed lines.


*Figure 84.* KDE-derived SBAs (yellow outline) for large gorgonian corals overlain on the SBA delineated from the random forest presence-absence SDM (see Figure 83). The EEZs of Canada and France (St. Pierre and Miquelon) are in dashed lines.

For sea pens, a similar slope area determined from the RF predicted presence prevalence was recommended as a SBA (Figure 85). Depth was not the primary predictor in this model and the boundaries were not clipped to depth. One area of overlap occurred to the northeast of the spatial extent. In this area the KDE-derived SBA showed good congruence with the SBA from the random forest prevalence map (Figure 86).



*Figure 85.* SBA (yellow outline) for sea pens delineated from the random forest presence-absence SDM. The EEZs of Canada and France (St. Pierre and Miquelon) are in dashed lines.



*Figure 86.* KDE-derived SBAs (yellow outline) for sea pens overlain on the SBA delineated from the random forest presence-absence SDM (see Figure 85) showing congruence between the modelling approaches. The EEZs of Canada and France (St. Pierre and Miquelon) are in dashed lines.

# **GULF OF ST. LAWRENCE**

The KDE analysis identified many sponge SBA polygons in the north of the Gulf of St. Lawrence (NGSL) and few and smaller ones in the south (SGSL). Some significant areas in the NGSL were straddling deep channel and shelf areas and these were individually inspected; it appeared that the models may not be doing well for some especially where fine scale (< 1 km) environmental factors may be influencing distribution, while others appeared to be justified. Two KDE-derived sponge polygons were clipped to the underlying RF model probability (Figure 87). Three sponge KDE-derived polygons that were northwest and west of Anticosti Island were slightly modified to remove land in the polygon extents, however these were not clipped to the buffer area along the coast due to high catch records along the periphery of the buffer (Figure 87, lower panel and similar).





*Figure 87.* Two KDE-derived polygons for sponges in the Gulf of St. Lawrence Estuary were trimmed (dashed area removed) to match the sponge prevalence to create new sponge SBAs.

Two small sponge KDE-derived polygons immediately south of east Anticosti Island at constant depth were grouped together. This was done by using the RF prevalence area bounded by the absence boundary and the 300m depth contour to the north. The latter was estimated using the

CHS-ABC depth contours (Figure 88). To the north of east Anticosti Island a polygon was deleted. This polygon straddled an area of predicted absence from the random forest presence-absence model and linked three large catches across and along this barrier (Figure 89).



*Figure 88.* Two KDE-derived polygons for sponges (dashed lines) in the Gulf of St. Lawrence were replaced with the portion of the RF prevalence area to the 300m depth contour to create a new sponge SBA.



*Figure 89.* The location of the KDE-derived polygons for sponges (dashed lines) in the Gulf of St. Lawrence that was deleted because the polygon straddled the absence area of the RF model.

The KDE-derived polygons for sponges in the southern Gulf of St. Lawrence were small and scattered (Figure 90). A few large catches occurred with many smaller catches interspersed among them. These smaller SBA may be grouped using the prevalence maps.



*Figure 90.* Location of some of the KDE-derived polygons for sponges in the southern Gulf of St. Lawrence overlain on species prevalence from the random forest presence-absence model, showing their small size and separated distribution.

Large, elongated sea pen areas in the Laurentian Channel were identified probably connected through strong bidirectional (tidal) current. There was good overlap between concentrations in the south and northern Gulf from the different surveys, overlapping at the shelf break between the two zones. In one region the KDE polygons from the two surveys overlapped and extended over the shelf edge, likely due to contamination in the trawl catches. It was recommended that these polygons be merged and clipped to the 200-m isobaths (using the CHS-ABC depth contours). This new sea pen SBA is shown in Figure 91.

The final sponge and sea pen SBAs are shown in Figure 92; no substantial overlap between areas was observed.



*Figure 91.* Location of the sea pen KDE-derived polygons from the northern and southern Gulf surveys. The smaller polygon was subsumed within the larger one and the boundary (dashed lines) clipped to the 200m depth contour. The new sea pen SBA is indicated in yellow.



**Figure 92.** Location of the sponge and sea pen KDE-derived polygons from the northern and southern Gulf surveys. Boundaries are shown after modifications were made. The EEZs of France (St. Pierre and Miquelon) is shown in dashed lines. Areas closed or proposed to be closed to protect benthic species and habitats are indicated in blue outline.

# NEWFOUNDLAND AND LABRADOR SHELVES

A number of KDE-derived polygons were modified. One sponge KDE-derived polygon was modified from its original boundary. This polygon was located on the edge of Saglek Bank off northern Labrador (Figure 93). The southwestern portion of the polygon was clipped based on the 250m CHS-ABC depth contour to exclude absence areas predicted by the RF presenceabsence prevalence model (Figure 93).





One sea pen KDE-derived polygon was modified and a new SBA for sea pens was added based on the random forest model output. The modified KDE-derived polygon was located on the northwest boundary of the 3O Coral Protection Zone (Figure 94). The northern portion of the polygon was clipped along the presence-absence boundary excluding the model absence areas.



**Figure 94.** Location of the sea pen KDE-derived polygon that was trimmed (dashed line) to match the prevalence distribution along the upper slope. EEZs of Canada, Greenland and France are shown by dashed lines in the inset box.

The new sea pen SBA was located on the slope northeast of Newfoundland (Figure 95). This SBA coincided with an area of sea pen presence predicted by the random forest model. This area also had a high probability of sea pens based on the probability scale, and had good congruence with sea pen records from the Fisheries Observer Program that were used to validate the model. The heavy fishing in this area may be the reason why larger catches were not taken in the RV surveys. The polygon is bounded by the extrapolated area boundary in the deeper portion, and by the presence boundary in the shallow portion. It was clipped to create a single, continuous polygon.



**Figure 95.** Location of the sea pen SBA (red area outlined in black) created to match the prevalence distribution along the upper slope and the area of extrapolation to the east. The yellow circles denote data from the Fisheries Observer Program which was used to validate the area. White circles denote sea pen presence from the research vessel catches. EEZs of Canada, Greenland and France are shown by dashed lines in the inset box.

Three large gorgonian coral KDE-derived polygons were modified from their original extent. All three polygons were clipped to the presence-absence boundary from model prevalence. One polygon was located along the northwest boundary of the 3O Coral Protection Zone (Figure 96). The two other modified large gorgonian coral KDE-derived polygons were located along the slope northeast of Newfoundland (Figure 97). These were clipped based on the presence-absence boundary from model prevalence, although the changes to the smaller polygon were very minor.



**Figure 96.** Location of the large gorgonian KDE-derived polygon that was modified (dashed area clipped) to match the prevalence distribution along the upper slope. The new SBA is indicated in red outlined in black. EEZs of Canada, Greenland and France are shown by dashed lines in the inset box.



*Figure 97.* Location of the large gorgonian KDE-derived polygons that were modified (dashed area clipped) to match the prevalence distribution along the upper slope. The new SBAs are indicated in red outlined in black. EEZs of Canada, Greenland and France are shown by dashed lines in the inset box.

Three KDE-derived polygons for small gorgonian corals were modified from their original extent. All three were located along the northern boundary of the 3O Coral Protection Zone (Figure 98). The westernmost polygon was clipped based on the 400m CHS-ABC depth contour. This contour closely followed the undulating presence-absence boundary. Most small gorgonian KDE-derived polygons in the Newfoundland and Labrador Region were located below 400m depth.

The location of all coral and sponge SBA are shown in Figure 99. Most of the SBAs fall along the slopes and there is a high degree of overlap amongst the different taxa in some areas.



**Figure 98.** Location of the small gorgonian KDE-derived polygons that were modified (dashed area clipped) to match the prevalence distribution along the upper slope. The westernmost polygon was clipped using the 400m depth contour. The new SBAs are indicated in red outlined in black. EEZs of Canada, Greenland and France are shown by dashed lines in the inset box.



**Figure 99.** SBAs for sponges, sea pens, large and small gorgonian corals for the Newfoundland and Labrador Shelves region. All but one of the polygons was derived from the KDE analyses but a number were clipped using the random forest presence-absence prevalence maps and/or depth. One sea pen polygon was created from the latter along the slope east of Newfoundland. Note that there are a number of small SBAs that are not readily seen on this projection. EEZs of Canada, Greenland and France are shown by dashed lines.

# HUDSON STRAIT

In this region KDE polygons were created for sponges only (Figure 100) as the sea pens, large and small gorgonian corals were either not present or present with insufficient data to perform the analyses. The random forest SDM did not perform well (AUC=0.643) and so was not used to alter the KDE polygons. It was felt that modelling in this area could be improved with more survey data to augment the current data series.



*Figure 100.* Location of sponge (black outline) SBAs in Hudson Strait, as determined from KDE analyses. Note that there are many small polygons for each taxon that are not readily seen at this scale.

# EASTERN ARCTIC

There was a high degree of consistency between the KDE-derived polygons and the SDMs for all indicator taxa in the Eastern Arctic. Fisheries Observer data (FOP) that was not used in the analysis overlaid the modelled species presence very well. For one location in the Narwhal Overwintering and Deep-Sea Coral Conservation Area the prevalence map was used to expand the KDE-derived polygon, creating a new SBA for large gorgonian corals (Figure 101). This was based on the overlay of a high catch of the large gorgonian coral *Keratoisis* sp. from the FOP data which gave confidence that the KDE polygon was too small to define the habitat.

The locations of the SBAs in the Eastern Arctic are shown in Figure 102. There is a high degree of overlap amongst taxa in the southern part of the region, along the slope areas. Figure 103 eliminates overlap within taxa from the different gears by dissolving polygons embedded in other polygons of the same type.



**Figure 101.** SBA (red area with white outline) for large gorgonian corals delineated from the random forest presence-absence SDM. The areas are overlain with all of the catch data (presence of large gorgonian corals and absence). A very large catch of large gorgonian corals from the Fisheries Observer Program (triangle) was positioned in this area and provided independent confirmation of the SBA. EEZ of Canada is shown by the dashed line in the inset box.



**Figure 102.** Location of sponge (black outline), sea pen (yellow outline), large gorgonian (red outline) and small gorgonian coral (green outline) SBAs as determined from KDE analyses and random forest SDM based on presence-absence (large gorgonian coral SBA in the Narwhal Overwintering and Deep-Sea Coral Conservation Area). Note that there are many small polygons for each taxon that are not readily seen at this scale. EEZ of Canada and Greenland are shown by the dashed lines.



**Figure 103.** Location of non-overlapping sponge (black outline), sea pen (yellow outline), large gorgonian (red outline) and small gorgonian coral (green outline) SBAs as determined from KDE analyses and random forest SDM based on presence-absence (large gorgonian coral SBA in the Narwhal Overwintering and Deep-Sea Coral Conservation Area). Note that there are many small polygons for each taxon that are not readily seen at this scale. EEZ of Canada and Greenland are shown by the dashed lines.

#### ACKNOWLEDGEMENTS

The authors acknowledge the invaluable input from the National Advisory Process meeting that helped to refine our work and reach consensus on the location of significant benthic areas of corals and sponges in eastern Canada. In particular we are very grateful for the useful comments from the reviewers of this document, Chris Rooper (National Marine Fisheries Service, Seattle, WA) and Kisei Tanaka (University of Maine, Orono, ME), both of whom generously shared their experience and knowledge on species distribution modelling and provided us with valuable comments that improved the present work and will guide future work.

## **REFERENCES CITED**

- Beazley, L., Kenchington, E., Murillo, F.J , Lirette, C., Guijarro, J., McMillan, A., and Knudby, A. 2016a. Species Distribution Modelling of Corals and Sponges in the Maritimes Region for Use in the Identification of Significant Benthic Areas. Can. Tech. Rep. Fish. Aquat. Sci. 3172: vi + 189 p.
- Beazley, L., Lirette, C., Sabaniel, J., Wang, Z., Knudby, A., and Kenchington, E. 2016b. Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Gulf of St. Lawrence. Can. Tech. Rep. Fish. Aquat. Sci. 3154: viii + 357 p.
- Beazley, L., Murillo, F.J., Kenchington, E., Guijarro, J., Lirette, C., Siferd, T., Treble, M., Wareham, V., Baker, E., Bouchard Marmen, M., and Tompkins MacDonald, G. 2016c. Species Distribution Modelling of Corals and Sponges in the Eastern Arctic for Use in the Identification of Significant Benthic Areas. Can. Tech. Rep. Fish. Aquat. Sci. 3175: vii + 210 p.
- Bergström, U., Sundblad, G., Downie, A.-L., Snickars, M., Bostöm, C., and Lindegarth, M. 2013. Evaluating Eutrophication Management Scenarios in the Baltic Sea Using Species Distribution Modelling. J. Appl. Ecol. 50: 680–690.
- Bowman, A.W. 1984. An Alternative Method of Cross-validation for the Smoothing of Density Estimates. Biometrika 71: 353–360.
- Breiman, L. 2001. Random forests. Machine Learning 45: 5–32.
- Breiman, L., Friedman, J.H., Olshen, R. and Stone, C.J. 1984. Classification and Regression Trees. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific California.
- Brunsdon, C. 1995. Estimating Probability Surfaces for Geographical Point Data: An Adaptive Kernel Algorithm. Comput. Geosci. 21: 877–894.
- Chen, C., Liaw, A., and Breiman, L. 2004. Using Random Forest to Learn Imbalanced Data. Berkeley: University of California.
- Chen, X., and Ishwaran, H. 2012. Random Forests for Genomic Data Analysis. Genomics 99: 323–329.
- DFO. 2009. Development of a Framework and Principles for the Biogeographic Classification of Canadian Marine Areas. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2009/056.
- DFO. 2010. Occurrence, Susceptibility to Fishing, and Ecological Function of Corals, Sponges, and Hydrothermal Vents in Canadian Waters. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2010/041.
- Dunn, P.K., and Smyth, G.K. 1996. Randomized Quantile Residuals.J. Comput. Graph. Stat. 5: 236–244.

- Elith, J., Kearney, M., and Phillips, S. 2010. The Art of Modelling Range-shifting Species. Methods Ecol. Evol. 1: 330-342.
- ESRI, 2011. ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands, CA.
- Evans J.S., Murphy, M.A., Holden, Z.A., and Cushman, S.A. 2011. Modeling Species Distribution and Change Using Random Forests. *In*: Predictive Species and Habitat Modeling in Landscape Ecology: Concepts and Applications. Eds: Drew, C.A., Wiersma, Y.F., and Huettmann, F. Springer, NY.
- FAO. 2009. International Guidelines for the Management of Deep-sea Fisheries in the High Seas. FAO, Rome. 73 p.
- Fawcett, T. 2006. An Introduction to ROC Analysis. Pattern Recog. Lett. 27: 861-874.
- Franklin, J. 2010. Mapping Species Distributions: Spatial Inference and Prediction. University Press, Cambridge, UK, pp. 340.
- Guijarro, J., Beazley, L., Lirette, C., Kenchington, E., Wareham, V., Gilkinson, K., Koen-Alonso, M., and Murillo, F.J. 2016. Species Distribution Modelling of Corals and Sponges from Research Vessel Survey Data in the Newfoundland and Labrador Region for Use in the Identification of Significant Benthic Areas. Can. Tech. Rep. Fish. Aquat. Sci. 3171: vi + 126 p.
- Hanberry, B.B., and He, H.S. 2013. Prevalence, Statistical Thresholds, and Accuracy Assessment for Species Distribution Models. Web Ecol. 13: 13-19.
- Hastie, T., and Tibshirani, R. 1986. Generalized Additive Models. Stat. Sci. 1: 297-318.
- Hastie, T., Tibshirani, R., Friedman, J., and Franklin, J. 2005. The Elements of Statistical Learning: Data Mining, Inference and Prediction. Second Edition. Springer+Verlag.
- Herrick, K.K., Huettmann, F., and Lindgren, M.A. 2013. A Global Model of Avian Influenza Prediction in Wild Birds: The Importance of Northern Region. Vet. Res. 44:42.
- ICES. 2016. Report of the Working Group on the Ecosystem Effects of Fishing Activities (WGECO), 6–13 April 2016, Copenhagen, Denmark. ICES CM 2016/ACOM:25. 110 pp.
- Jiménez-Valverde, A., and Lobo, J. M. 2006. The Ghost of Unbalanced Species Distribution Data in Geographical Model Predictions. Divers. Distrib. 12: 521–524.
- Kenchington, E., Cogswell, A., Lirette, C. and Murillo-Perez, F.J. 2009. The Use of Density Analyses to Delineate Sponge Grounds and Other Benthic VMEs from Trawl Survey Data. Serial No. N5626. NAFO SCR Doc. 09/6, 15 p.
- Kenchington, E., Lirette, C., Cogswell, A., Archambault, D., Archambault, P., Benoît, H., Bernier, D., Brodie, B., Fuller, S., Gilkinson, K., Lévesque, M., Power, D., Siferd, T., Treble, M., and Wareham, V. 2010. Delineating Coral and Sponge Concentrations in the Biogeographic Regions of the East Coast of Canada Using Spatial Analyses. DFO Can. Sci. Advis. Sec. Res. Doc. 2010/041. vi + 202 p.
- Kenchington, E., Murillo, F.J., Lirette, C., Sacau, M., Koen-Alonso, M., Kenny, A., Ollerhead, N., Wareham, V., and Beazley, L. 2014. <u>Kernel Density Surface Modelling as a Means to</u> <u>Identify Significant Concentrations of Vulnerable Marine Ecosystem Indicators</u>. PLoS ONE 10(1): e0117752. doi:10.1371/journal.pone.0117752.

- Kenchington, E., Murillo, F.J., Cogswell, A., and Lirette, C. 2011. Development of Encounter Protocols and Assessment of Significant Adverse Impact by Bottom Trawling for Sponge Grounds and Sea Pen Fields in the NAFO Regulatory Area. Ser No 6005. NAFO SCR Doc 11/75, 53 p.
- Kenchington, E., Siferd, T., and Lirette, C. 2012. Arctic Marine Biodiversity: Indicators for Monitoring Coral and Sponge Megafauna in the Eastern Arctic. DFO Can. Sci. Advis. Sec. Res. Doc. 2012/003: vi + 44 p.
- Kenchington, E., Lirette, C., Murillo, F.J., Beazley, L., Guijarro, J., Wareham, V., Gilkinson, K., Koen Alonso, M., Benoît, H., Bourdages, H., Sainte-Marie, B., Treble, M., and Siferd, T. 2016. Kernel Density Analyses of Coral and Sponge Catches from Research Vessel Survey Data for Use in Identification of Significant Benthic Areas. Can. Tech. Rep. Fish. Aquat. Sci. 3167: viii + 207 p.
- Knudby, A., Kenchington, E., and Murillo, F.J. 2013a. <u>Modelling the Distribution of Geodia</u> <u>Sponges and Sponge Grounds in the Northwest Atlantic</u>. PLoS One 8, e82306. doi:10.1371/journal.pone.0082306.
- Knudby, A., Lirette, C., Kenchington, E., and Murillo, F.J. 2013b. Species Distribution Models of Black Corals, Large Gorgonian Corals, and Sea Pens in the NAFO Regulatory Area. NAFO SCR Doc 13/78, Ser. No N6276. 17 p.
- Kuhn, M., and Johnson, K. 2013. Applied Predictive Modeling. New York: Springer Science + Business Media.
- Larmarange, J., Vallo, R., Yaro, S., Msellati, P., and Méda, N. 2011. <u>Methods for Mapping</u> <u>Regional Trends of HIV Prevalence from Demographic and Health Surveys (DHS)</u>. Eur. J. Geog. 558.
- Liaw, A., and Wiener, M. 2002. Classification and Regression by Random Forest. R News, 2: 18-22.
- Liu, C., Berry, P.M., Dawson, T.P., and Pearson, R.G. 2005. Selecting Thresholds of Occurrence in the Prediction of Species Distributions. Ecography 28: 385-393.
- Marra, G., and Wood, S.N. 2011. Practical Variable Selection for Generalized Additive Models. Comput. Stat. Data. An. 55: 2372-2387.
- McPherson, J.M., Jetz, W., and Rogers, D.J. 2004. The Effects of Species' Range Sizes on the Accuracy of Distribution Models: Ecological Phenomenon or Statistical Artifact? J. Appl. Ecol. 41: 811–823.
- Miller, D.L., Rexstad, E., Burt, L., Bravington, M.V., and Hedley, S. 2015. Package 'dsm'. 26 p.
- Murillo, F.J., Kenchington, E., Beazley, L., Lirette, C., Knudby, A., Guijarro, J., Benoît, H., Bourdages, H., and Sainte-Marie, B. 2016. Distribution Modelling of Sea Pens, Sponges, Stalked Tunicates and Soft Corals from Research Vessel Survey Data in the Gulf of St. Lawrence for Use in the Identification of Significant Benthic Areas. Can. Tech. Rep. Fish. Aquat. Sci. 3170: vi + 132 p.
- NAFO. 2014. Part E: Report of the Scientific Council Meeting, 31 May 12 June 2014. NAFO SCR Doc. 238 p.
- NAFO. 2015. Conservation and Enforcement Measures. NAFO/FC, Doc. 15/01, Serial No. N6409. 190 p.

- Nozères, C., Bourassa, M.-N., Gendron, M.-H., Plourde, S., Savenkoff, C., Bourdages, H., Benoît, H., and Bolduc, F. 2015. Using Annual Ecosystemic Surveys to Assess Biodiversity in the Gulf of St. Lawrence. Can. Tech. Rep. Fish. Aquat. Sci. 3149: vii + 126 p.
- R Core Team. 2015. R: A <u>Language and Environment for Statistical Computing</u>. R Foundation for Statistical Computing. Vienna, Austria.
- Segal, M.R. 2004. <u>Machine Learning Benchmarks and Random Forest Regression</u>. eScholarship Repository. University of California.
- Shono, H. 2008. Application of the Tweedie Ddistribution of Zero-catch Data in CPUE Analysis. Fish. Res. 93: 154–162.
- Wood, S.N. 2006. Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC Press, Boca Raton, FL.
- Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., and Smith, G.M. 2009. Mixed-Effects Models and Extensions in Ecology with R. Springer, New York.

## APPENDICES

# APPENDIX 1. LOCATIONS OF THE TOW POSITIONS THAT WERE USED TO DELINEATE THE SIGNIFICANT CONCENTRATIONS OF CORALS AND SPONGES.

The locations of the tow positions that were used to delineate the significant concentrations of corals and sponges are provided in this Appendix. Tables A1.1 to A1.3 provide locations for sponges, sea pens and large gorgonian corals on the Scotian Shelf where they were fished with a Western IIA trawl. In this region there were insufficient data to perform the analyses on the small gorgonian corals. Tables A1.4 and A1.5 provide the tow positions for the sponges and sea pens respectively in the southern Gulf of St. Lawrence where they were fished with a Western IIA trawl, while Tables A1.6 and A1.7 provide the tow positions for the sponges and sea pens respectively in the northern Gulf where they were fished with a Campelen trawl. Tables A1.8 to A1.11 provide tow locations for sponges, sea pens, large and small gorgonian corals respectively from the Newfoundland and Labrador Shelves Region. Table A1.12 provides the locations for sponges in Hudson Strait. Tables A1.13 to A1.22 provide locations for sponges, sea pens and large gorgonian corals by gear type for the Eastern Arctic.

**Table A1.1** Scotian Shelf Biogeographic Zone: Details of the Location of Research Vessel Sponge Catches used to identify the Significant Area Polygons. \*Set number is the last 3 digits of the string.

| Year | Mission Number<br>and Set* | Start<br>Lat. (DD) | Start<br>Long.<br>(DD) | End Lat.<br>(DD) | End<br>Long.<br>(DD) | Sponge<br>Weight<br>(kg) | Vazella<br>pourtalesi |
|------|----------------------------|--------------------|------------------------|------------------|----------------------|--------------------------|-----------------------|
| 2011 | NED2011025004              | 43.89233           | -63.02217              | 43.86383         | -63.01400            | 85.54                    | Yes                   |
| 2008 | TEM2008830046              | 43.91683           | -66.42050              | 43.93383         | -66.45367            | 56.00                    | No                    |
| 2010 | NED2010027086              | 42.81667           | -63.21633              | 42.81483         | -63.17633            | 50.18                    | Yes                   |
| 2013 | NED2013022174              | 44.22183           | -62.33667              | 44.20483         | -62.36750            | 36.25                    | Yes                   |
| 2013 | NED2013028032              | 44.09600           | -63.39900              | 44.08833         | -63.43733            | 32.89                    | No                    |
| 2002 | NED2002037002              | 43.98917           | -63.21050              | 43.96683         | -63.18483            | 30.50                    | No                    |
| 2012 | NED2012022003              | 43.98733           | -63.21633              | 43.97217         | -63.18200            | 30.18                    | Yes                   |
| 2014 | NED2014018144              | 44.21833           | -62.89400              | 44.19300         | -62.91200            | 29.89                    | Yes                   |
| 2014 | NED2014101002              | 44.01417           | -63.50150              | 44.02283         | -63.46267            | 28.10                    | Yes                   |
| 2009 | NED2009027095              | 44.31217           | -62.77817              | 44.31500         | -62.73833            | 27.41                    | No                    |
| 2009 | NED2009027051              | 43.96833           | -66.43217              | 43.94883         | -66.43317            | 24.80                    | No                    |
| 2002 | NED2002037026              | 43.57433           | -63.41150              | 43.59717         | -63.38750            | 23.63                    | No                    |
| 2011 | NED2011025151              | 44.55517           | -60.12833              | 44.55133         | -60.16817            | 23.22                    | No                    |
| 2014 | NED2014002020              | 42.08183           | -67.00633              | 42.05683         | -66.98317            | 20.89                    | No                    |
| 2010 | NED2010027041              | 44.22683           | -66.50350              | 44.20967         | -66.51933            | 16.48                    | No                    |
| 2005 | TEL2005605004              | 43.13517           | -63.46150              | 43.14550         | -63.42283            | 15.85                    | No                    |
| 2011 | NED2011025171              | 44.27550           | -62.92933              | 44.25983         | -62.96267            | 15.10                    | Yes                   |
| 2010 | NED2010002071              | 42.81800           | -63.21933              | 42.81800         | -63.18550            | 14.07                    | Yes                   |
| 2014 | NED2014018133              | 44.04300           | -59.91267              | 44.03767         | -59.95533            | 13.63                    | No                    |
| 2010 | NED2010027029              | 42.64917           | -65.57917              | 42.62650         | -65.57883            | 13.20                    | No                    |
| 2014 | NED2014018170              | 46.27350           | -59.29717              | 46.26983         | -59.26817            | 12.64                    | No                    |
| 2009 | NED2009027032              | 42.58783           | -65.62533              | 42.58917         | -65.66450            | 12.42                    | No                    |
| 2002 | NED2002040055              | 44.22383           | -57.83533              | 44.23867         | -57.86467            | 11.76                    | No                    |

|      | Mission Number | Start     | Start     | Endlat   | End       | Sponge<br>Woight | Vazolla    |
|------|----------------|-----------|-----------|----------|-----------|------------------|------------|
| Year | and Set*       | Lat. (DD) | (DD)      | (DD)     | (DD)      | (ka)             | pourtalesi |
| 2008 | TEM2008830088  | 42.80617  | -63.19967 | 42.80700 | -63.16333 |                  | Yes        |
| 2013 | NED2013022161  | 44.03400  | -59.93950 | 44.02667 | -59.97900 | 8.90             | No         |
| 2010 | NED2010027025  | 42.94317  | -65.75833 | 42.91350 | -65.75883 | 8.85             | No         |
| 2009 | NED2009027055  | 44.38950  | -66.47750 | 44.41550 | -66.45700 | 8.09             | No         |
| 2002 | NED2002037023  | 43.20967  | -63.53100 | 43.23367 | -63.50700 | 7.96             | No         |
| 2002 | NED2002040090  | 46.14550  | -59.02533 | 46.13917 | -58.98400 | 7.66             | No         |
| 2013 | NED2013022020  | 42.58883  | -65.61250 | 42.60867 | -65.62433 | 7.28             | No         |
| 2008 | TEM2008830034  | 42.61817  | -65.39367 | 42.63500 | -65.42650 | 7.17             | No         |
| 2008 | TEM2008830037  | 42.80150  | -65.66717 | 42.77783 | -65.68583 | 7.10             | No         |
| 2009 | NED2009027052  | 44.07083  | -66.41117 | 44.05133 | -66.41117 | 7.04             | No         |
| 2014 | NED2014101003  | 43.46317  | -63.49967 | 43.44117 | -63.52533 | 6.95             | Yes        |
| 2012 | NED2012022047  | 42.54067  | -65.44567 | 42.52550 | -65.48000 | 6.65             | No         |
| 2008 | TEM2008830148  | 46.31767  | -59.49067 | 46.33050 | -59.45233 | 6.55             | No         |
| 2002 | NED2002037066  | 43.83617  | -66.35067 | 43.86583 | -66.34567 | 6.53             | No         |
| 2010 | NED2010027194  | 44.19683  | -62.47483 | 44.17617 | -62.49933 | 6.53             | No         |
| 2013 | NED2013022221  | 46.04650  | -59.11817 | 46.07517 | -59.11133 | 6.47             | No         |
| 2011 | NED2011025212  | 45.70767  | -58.57083 | 45.69283 | -58.60700 | 6.28             | No         |
| 2010 | NED2010002058  | 44.27450  | -59.47833 | 44.25317 | -59.44783 | 6.18             | No         |
| 2012 | NED2012002048  | 41.92900  | -65.92983 | 41.94883 | -65.95917 | 6.16             | No         |
| 2011 | NED2011025176  | 44.98017  | -60.80200 | 45.00383 | -60.77667 | 6.14             | No         |
| 2014 | NED2014101001  | 44.04283  | -63.62967 | 44.05483 | -63.59433 | 6.11             | Yes        |
| 2008 | TEL2008805011  | 44.05033  | -59.97933 | 44.05267 | -59.93967 | 6.10             | No         |
| 2010 | NED2010002015  | 44.80217  | -60.20467 | 44.82550 | -60.18667 | 6.07             | No         |
| 2008 | TEM2008830138  | 45.98867  | -59.40467 | 45.96383 | -59.41567 | 6.05             | No         |
| 2015 | NED2015002026  | 41.97467  | -66.01317 | 41.94850 | -65.99750 | 5.80             | No         |
| 2009 | NED2009027149  | 46.19417  | -59.08733 | 46.17750 | -59.05267 | 5.74             | No         |
| 2008 | TEL2008805002  | 44.26983  | -62.08433 | 44.26800 | -62.04383 | 5.20             | No         |
| 2011 | NED2011025047  | 43.82917  | -66.37133 | 43.81000 | -66.36883 | 5.20             | No         |
| 2010 | NED2010027030  | 42.58017  | -65.53017 | 42.57150 | -65.55367 | 5.02             | No         |
| 2007 | TEL2007745030  | 44.17983  | -66.57283 | 44.19250 | -66.55133 | 4.99             | No         |
| 2012 | NED2012022069  | 44.00583  | -66.41950 | 44.02833 | -66.40000 | 4.90             | No         |
| 2010 | NED2010027008  | 43.15467  | -63.54933 | 43.13150 | -63.57317 | 4.80             | Yes        |
| 2007 | TEL2007745068  | 42.97783  | -63.43167 | 42.97683 | -63.39267 | 4.65             | Yes        |
| 2014 | NED2014018084  | 42.87550  | -63.45250 | 42.87383 | -63.48000 | 4.53             | Yes        |
| 2007 | TEL2007745069  | 43.05600  | -63.37300 | 43.08517 | -63.37000 | 4.35             | Yes        |
| 2006 | NED2006030088  | 42.80267  | -63.20167 | 42.80733 | -63.16200 | 4.32             | No         |
| 2012 | NED2012022191  | 45.36217  | -58.18117 | 45.35517 | -58.14167 | 4.24             | No         |
| 2010 | NED2010027085  | 42.94750  | -63.43117 | 42.96433 | -63.41883 | 4.20             | Yes        |
| 2012 | NED2012022051  | 42.55450  | -65.84350 | 42.58300 | -65.85050 | 4.04             | No         |
| 2010 | NED2010027173  | 44.06483  | -59.77283 | 44.05400 | -59.81167 | 3.97             | No         |

|      |                   |           | Ctant     |            | E to al   | <b>C</b> |            |
|------|-------------------|-----------|-----------|------------|-----------|----------|------------|
|      | Mississ Northeast | 011       | Start     | En del art | Ena       | Sponge   | \///-      |
|      | Mission Number    | Start     | Long.     | End Lat.   | Long.     | weight   | vazella    |
| Year | and Set*          | Lat. (DD) | (DD)      | (DD)       | (DD)      | (kg)     | pourtalesi |
| 2008 | TEM2008830087     | 42.83067  | -63.56183 | 42.82750   | -63.52383 | 3.95     | Yes        |
| 2007 | TEM2007686014     | 44.30617  | -59.11133 | 44.33483   | -59.10267 | 3.85     | No         |
| 2002 | NED2002040095     | 45.31683  | -60.04567 | 45.29200   | -60.02333 | 3.84     | No         |
| 2007 | TEL2007745118     | 44.06217  | -60.05633 | 44.06550   | -60.09667 | 3.70     | No         |
| 2010 | NED2010002030     | 45.09617  | -58.54033 | 45.12483   | -58.52650 | 3.70     | No         |
| 2002 | NED2002040076     | 46.23167  | -59.19667 | 46.24933   | -59.23117 | 3.67     | No         |
| 2010 | NED2010027157     | 45.49567  | -60.27600 | 45.51700   | -60.25800 | 3.61     | No         |
| 2013 | NED2013022009     | 43.40300  | -64.55233 | 43.41833   | -64.53350 | 3.58     | No         |
| 2007 | TEM2007686089     | 42.80517  | -63.07400 | 42.80383   | -63.11350 | 3.50     | No         |
| 2013 | NED2013022016     | 42.74450  | -65.30483 | 42.74633   | -65.34333 | 3.43     | No         |
| 2007 | TEL2007745124     | 44.84883  | -59.78833 | 44.82033   | -59.78950 | 3.20     | No         |
| 2005 | TEL2005605085     | 43.91250  | -63.72250 | 43.93467   | -63.69300 | 3.10     | No         |
| 2013 | NED2013028150     | 44.02300  | -59.78100 | 44.03250   | -59.74300 | 3.05     | No         |
| 2009 | NED2009002041     | 44.53950  | -60.02250 | 44.56867   | -60.01667 | 3.04     | No         |
| 2010 | NED2010002054     | 44.34767  | -57.61850 | 44.35233   | -57.57833 | 3.02     | No         |
| 2013 | NED2013022103     | 42.93117  | -63.52100 | 42.92267   | -63.55717 | 3.01     | No         |

**Table A1.2.** Scotian Shelf Biogeographic Zone: Details of the Location of Research Vessel Sea Pen

 Catches used to identify the Significant Area Polygons. \*Set number is the last 3 digits of the string.

|      |                |            |            |          |           | Sea Pen |
|------|----------------|------------|------------|----------|-----------|---------|
|      | Mission Number | Start Lat. | Start      | End Lat. | End Long. | Weight  |
| Year | and Set*       | (DD)       | Long. (DD) | (DD)     | (DD)      | (kg)    |
| 2012 | NED2012022183  | 45.86450   | -58.60300  | 45.84933 | -58.56750 | 2.560   |
| 2014 | NED2014018190  | 45.78183   | -58.54517  | 45.78733 | -58.50800 | 1.140   |
| 2008 | TEL2008805004  | 44.13217   | -61.47050  | 44.11200 | -61.50200 | 1.000   |
| 2008 | TEL2008805005  | 44.36333   | -61.31783  | 44.33483 | -61.32483 | 1.000   |
| 2011 | NED2011025206  | 46.30867   | -59.22450  | 46.31817 | -59.26517 | 0.791   |
| 2007 | TEL2007745156  | 46.08533   | -58.73683  | 46.10350 | -58.76900 | 0.500   |
| 2010 | NED2010027235  | 42.55233   | -63.19467  | 42.53867 | -63.26900 | 0.418   |
| 2009 | NED2009027153  | 45.84567   | -59.01867  | 45.84250 | -59.05333 | 0.286   |
| 2012 | NED2012022145  | 44.43217   | -63.01983  | 44.42367 | -63.05767 | 0.236   |
| 2012 | NED2012022180  | 46.15383   | -58.84900  | 46.12867 | -58.82717 | 0.224   |
| 2012 | NED2012022186  | 45.54900   | -58.65483  | 45.56067 | -58.61800 | 0.172   |
| 2011 | NED2011025205  | 46.28517   | -59.04067  | 46.26383 | -59.01150 | 0.122   |
| 2007 | TEM2007686047  | 45.63017   | -58.55867  | 45.65600 | -58.54150 | 0.120   |
| 2010 | NED2010027123  | 46.46217   | -59.24517  | 46.44367 | -59.21400 | 0.106   |
| 2013 | NED2013028006  | 46.30117   | -59.07783  | 46.27983 | -59.04967 | 0.106   |
| 2006 | NED2006036002  | 44.62450   | -62.37233  | 44.63933 | -62.34317 | 0.105   |
| 2012 | NED2012022179  | 46.32667   | -58.94800  | 46.30450 | -58.92217 | 0.104   |
| 2011 | NED2011025204  | 46.39517   | -59.03783  | 46.37583 | -59.00600 | 0.095   |
| 2010 | NED2010027231  | 42.37450   | -64.00817  | 42.38367 | -64.18600 | 0.074   |

| Year | Mission Number<br>and Set* | Start Lat.<br>(DD) | Start<br>Long. (DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sea Pen<br>Weight<br>(kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|---------------------------|
| 2009 | NED2009027097              | 44.35283           | -61.81300           | 44.35100         | -61.77183         | 0.072                     |
| 2013 | NED2013022007              | 43.05850           | -64.15167           | 43.06383         | -64.11467         | 0.072                     |
| 2009 | NED2009027096              | 44.52100           | -62.39700           | 44.53067         | -62.35917         | 0.062                     |
| 2008 | TEM2008775075              | 44.08467           | -67.27617           | 44.11167         | -67.26050         | 0.060                     |
| 2010 | NED2010027216              | 43.05567           | -61.25917           | 43.10650         | -61.28400         | 0.058                     |
| 2008 | TEM2008830083              | 42.72067           | -64.03517           | 42.73150         | -64.00000         | 0.056                     |
| 2003 | NED2003042035              | 46.22017           | -58.83250           | 46.20217         | -58.80017         | 0.056                     |
| 2012 | NED2012022209              | 44.17650           | -58.18350           | 44.16100         | -58.20517         | 0.054                     |
| 2009 | NED2009027098              | 44.39467           | -61.53267           | 44.39450         | -61.49133         | 0.052                     |
| 2013 | NED2013022194              | 43.97467           | -58.66300           | 43.95950         | -58.69667         | 0.050                     |
| 2012 | NED2012022197              | 44.77633           | -58.14083           | 44.75950         | -58.17383         | 0.043                     |
| 2002 | NED2002037030              | 43.06100           | -63.95900           | 43.05767         | -63.91883         | 0.040                     |
| 2010 | NED2010027226              | 42.52917           | -63.18400           | 42.55483         | -63.11567         | 0.040                     |
| 2011 | NED2011025207              | 46.18850           | -59.23483           | 46.15917         | -59.23183         | 0.040                     |
| 2011 | NED2011025173              | 44.51350           | -62.19333           | 44.52433         | -62.15550         | 0.040                     |
| 2011 | NED2011025268              | 43.60367           | -60.33983           | 43.59333         | -60.37750         | 0.039                     |
| 2010 | NED2010027004              | 43.74450           | -63.21617           | 43.71517         | -63.21667         | 0.037                     |
| 2010 | NED2010027061              | 44.07017           | -67.29750           | 44.04883         | -67.32567         | 0.037                     |
| 2013 | NED2013022226              | 46.37800           | -59.30717           | 46.37067         | -59.34833         | 0.036                     |
| 2006 | NED2006030067              | 43.87417           | -67.14517           | 43.89717         | -67.13450         | 0.035                     |
| 2012 | NED2012022148              | 44.64933           | -61.20617           | 44.62150         | -61.21800         | 0.032                     |
| 2013 | NED2013022216              | 45.51967           | -60.11050           | 45.51200         | -60.15133         | 0.032                     |
| 2008 | TEM2008775078              | 45.04833           | -66.37000           | 45.06417         | -66.33200         | 0.026                     |
| 2010 | NED2010027005              | 43.61750           | -63.44850           | 43.58883         | -63.44967         | 0.026                     |
| 2010 | NED2010027074              | 42.37967           | -66.35217           | 42.37700         | -66.31300         | 0.024                     |
| 2012 | NED2012022146              | 44.47267           | -62.24967           | 44.46350         | -62.28867         | 0.024                     |
| 2013 | NED2013022008              | 43.29967           | -64.14050           | 43.32833         | -64.13683         | 0.023                     |
| 2009 | NED2009027099              | 44.24850           | -61.43083           | 44.27500         | -61.41533         | 0.022                     |
| 2009 | NED2009027159              | 45.52833           | -58.27817           | 45.54550         | -58.24450         | 0.022                     |
| 2012 | NED2012022147              | 44.55000           | -62.08333           | 44.53333         | -62.11667         | 0.022                     |
| 2013 | NED2013022004              | 43.63950           | -63.87533           | 43.61383         | -63.85700         | 0.022                     |
| 2009 | NED2009027100              | 44.13800           | -61.25083           | 44.10883         | -61.24733         | 0.020                     |
| 2006 | NED2006036001              | 44.38583           | -62.85750           | 44.39517         | -62.81800         | 0.020                     |
| 2009 | NED2009027148              | 46.20450           | -59.32583           | 46.18317         | -59.29850         | 0.018                     |
| 2008 | TEL2008805006              | 44.50267           | -60.78400           | 44.53050         | -60.80333         | 0.016                     |
| 2009 | NED2009027154              | 45.72550           | -58.81683           | 45.73700         | -58.77717         | 0.016                     |
| 2013 | NED2013022225              | 46.47267           | -59.13733           | 46.48883         | -59.17250         | 0.016                     |
| 2010 | NED2010027129              | 45.61900           | -58.71017           | 45.59817         | -58.73667         | 0.016                     |
| 2011 | NED2011025174              | 44.55633           | -61.88483           | 44.55583         | -61.84417         | 0.016                     |
| 2011 | NED2011025257              | 44.08950           | -58.42083           | 44.06917         | -58.42100         | 0.015                     |

| Year | Mission Number<br>and Set* | Start Lat.<br>(DD) | Start<br>Long. (DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sea Pen<br>Weight<br>(kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|---------------------------|
| 2010 | NED2010027003              | 44.09233           | -63.56250           | 44.10933         | -63.53917         | 0.015                     |
| 2003 | NED2003036133              | 43.32883           | -60.65517           | 43.33433         | -60.61650         | 0.014                     |
| 2009 | NED2009027005              | 44.17050           | -63.82133           | 44.19033         | -63.79217         | 0.014                     |
| 2009 | NED2009027155              | 45.61200           | -58.83167           | 45.58900         | -58.85650         | 0.014                     |
| 2010 | NED2010027124              | 46.17183           | -58.85917           | 46.15067         | -58.83867         | 0.014                     |
| 2010 | NED2010027002              | 44.17233           | -63.75867           | 44.14617         | -63.77700         | 0.014                     |
| 2013 | NED2013028040              | 43.44400           | -63.74350           | 43.41400         | -63.75233         | 0.014                     |
| 2010 | NED2010027064              | 43.44067           | -67.21517           | 43.42033         | -67.24300         | 0.014                     |
| 2013 | NED2013022003              | 44.11383           | -63.86967           | 44.09217         | -63.89600         | 0.014                     |
| 2011 | NED2011025172              | 44.26900           | -62.87367           | 44.28250         | -62.83783         | 0.014                     |
| 2013 | NED2013022223              | 46.23983           | -58.90150           | 46.25867         | -58.93433         | 0.012                     |
| 2010 | NED2010027006              | 43.68600           | -63.74383           | 43.69750         | -63.77983         | 0.012                     |
| 2002 | NED2002037029              | 43.07533           | -64.08850           | 43.05467         | -64.11733         | 0.010                     |
| 2009 | NED2009027008              | 43.51000           | -63.02600           | 43.53117         | -62.99883         | 0.010                     |
| 2008 | TEL2008805016              | 44.19017           | -58.92650           | 44.17350         | -58.88967         | 0.010                     |
| 2007 | TEL2007745157              | 46.17000           | -58.99167           | 46.18667         | -59.02533         | 0.010                     |

**Table A1.3.** Scotian Shelf Biogeographic Zone: Details of the Location of Research Vessel Large Gorgonian Coral Catches used to identify the Significant Area Polygons. \*Set number is the last 3 digits of the string.

|      |                            |                    | Start         |                  |                   | Large<br>Gorgonian   |
|------|----------------------------|--------------------|---------------|------------------|-------------------|----------------------|
| Year | Mission Number<br>and Set* | Start Lat.<br>(DD) | Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Coral<br>Weight (kg) |
| 2007 | TEL2007745058              | 42.13483           | -65.66050     | 42.14050         | -65.62250         | 27.109               |
| 2011 | NED2011025229              | 44.30500           | -57.56900     | 44.29133         | -57.59083         | 26.025               |
| 2002 | NED2002040055              | 44.22383           | -57.83533     | 44.23867         | -57.86467         | 6.000                |
| 2006 | NED2006036061              | 43.96300           | -58.60717     | 43.94900         | -58.64150         | 2.170                |
| 2010 | NED2010027216              | 43.05567           | -61.25917     | 43.10650         | -61.28400         | 1.494                |
| 2011 | NED2011025232              | 44.34567           | -57.98333     | 44.31733         | -57.99350         | 0.850                |
| 2005 | TEL2005633050              | 44.30533           | -57.73167     | 44.28350         | -57.75667         | 0.570                |
| 2011 | NED2011025230              | 44.38333           | -57.60183     | 44.38083         | -57.64567         | 0.538                |
| 2009 | NED2009027179              | 44.28350           | -57.75800     | 44.25483         | -57.76333         | 0.460                |
| 2015 | NED2015002023              | 41.97783           | -65.74633     | 41.95100         | -65.72617         | 0.326                |
| 2012 | NED2012022164              | 45.62250           | -59.96500     | 45.64050         | -59.93233         | 0.203                |
| 2009 | NED2009027036              | 42.67533           | -65.98717     | 42.66850         | -65.96267         | 0.160                |
| 2007 | TEL2007745068              | 42.97783           | -63.43167     | 42.97683         | -63.39267         | 0.140                |
| 2015 | NED2015002027              | 41.79417           | -66.04533     | 41.76650         | -66.05217         | 0.129                |
| 2013 | NED2013022216              | 45.51967           | -60.11050     | 45.51200         | -60.15133         | 0.112                |
| 2003 | NED2003042066              | 44.05333           | -58.42500     | 44.03817         | -58.42500         | 0.110                |
| 2005 | TEL2005633051              | 44.37150           | -57.81367     | 44.37900         | -57.85317         | 0.105                |

| Year | Mission Number<br>and Set* | Start Lat. | Start<br>Long.<br>(DD) | End Lat. | End Long.<br>(DD) | Large<br>Gorgonian<br>Coral<br>Weight (kg) |
|------|----------------------------|------------|------------------------|----------|-------------------|--------------------------------------------|
| 2005 | NFD2005034051              | 44,38050   | -57,82000              | 44.38617 | -57,85917         | 0.096                                      |
| 2015 | NED2015002030              | 41.61183   | -66.32217              | 41.58350 | -66.31433         | 0.082                                      |
| 2011 | NED2011025231              | 44.30683   | -57.82133              | 44.28467 | -57.84917         | 0.078                                      |
| 2014 | NED2014018158              | 45.45783   | -59.75917              | 45.46767 | -59.72067         | 0.059                                      |
| 2012 | NED2012022162              | 45.22467   | -59.31400              | 45.23583 | -59.28817         | 0.052                                      |
| 2013 | NED2013022190              | 44.62067   | -58.29100              | 44.60100 | -58.26067         | 0.041                                      |
| 2013 | NED2013022200              | 44.31000   | -57.74550              | 44.32467 | -57.72200         | 0.041                                      |
| 2013 | NED2013022154              | 44.63100   | -58.81617              | 44.64333 | -58.85267         | 0.040                                      |
| 2014 | NED2014018206              | 44.31233   | -57.97950              | 44.33933 | -57.96883         | 0.035                                      |
| 2011 | NED2011025238              | 44.47817   | -58.42183              | 44.48633 | -58.46133         | 0.032                                      |
| 2011 | NED2011025237              | 44.42700   | -58.30400              | 44.45067 | -58.33000         | 0.032                                      |
| 2015 | NED2015002024              | 41.87467   | -65.83533              | 41.89600 | -65.86450         | 0.030                                      |
| 2014 | NED2014018205              | 44.20783   | -58.06183              | 44.18967 | -58.06650         | 0.029                                      |
| 2015 | NED2015002028              | 41.77850   | -66.13650              | 41.75083 | -66.14500         | 0.028                                      |
| 2013 | NED2013022191              | 44.41517   | -58.30017              | 44.38583 | -58.30483         | 0.028                                      |
| 2009 | NED2009027042              | 42.60000   | -66.49667              | 42.60550 | -66.45800         | 0.026                                      |
| 2005 | NED2005034015              | 45.87867   | -59.43333              | 45.88833 | -59.40933         | 0.025                                      |
| 2008 | TEL2008805062              | 43.42867   | -60.88283              | 43.43967 | -60.85833         | 0.020                                      |
| 2003 | NED2003042049              | 44.24117   | -57.79067              | 44.26433 | -57.76750         | 0.018                                      |
| 2012 | NED2012022161              | 45.28167   | -59.57750              | 45.28217 | -59.61800         | 0.017                                      |
| 2012 | NED2012022192              | 45.07983   | -58.26033              | 45.05050 | -58.26583         | 0.016                                      |
| 2012 | NED2012022159              | 45.25500   | -60.40933              | 45.23233 | -60.38317         | 0.016                                      |
| 2003 | NED2003042069              | 43.82617   | -59.39150              | 43.80850 | -59.42300         | 0.016                                      |
| 2005 | NED2005034052              | 44.40733   | -57.86833              | 44.40767 | -57.90867         | 0.015                                      |
| 2013 | NED2013022029              | 42.70733   | -65.97600              | 42.68733 | -66.00483         | 0.012                                      |
| 2009 | NED2009027178              | 44.36950   | -57.61650              | 44.36817 | -57.65700         | 0.012                                      |
| 2003 | NED2003042068              | 43.70533   | -59.15883              | 43.69167 | -59.19383         | 0.010                                      |
| 2010 | NED2010027218              | 42.97150   | -61.56617              | 42.99050 | -61.53467         | 0.010                                      |

| Table A1.4. Southern Portion of the Gulf Biogeographic Zone: Details of the Location of Research Vessel |
|---------------------------------------------------------------------------------------------------------|
| Sponge Catches used to identify the Significant Area Polygons. *Set number is the last 3 digits of the  |
| string.                                                                                                 |

| Year | Mission Number<br>and Set* | Start Lat.<br>(DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sponge<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|-----------------------|
| 2009 | TEL2009992129              | 47.89625           | -62.79942           | 47.90767         | -62.78667         | 225.000               |
| 2010 | TEL201074145               | 47.41075           | -61.13158           | 47.42200         | -61.14583         | 57.202                |
| 2010 | TEL201074065               | 47.89917           | -62.78342           | 47.88950         | -62.80050         | 28.600                |
| 2009 | TEL2009992052              | 47.14492           | -62.69417           | 47.15700         | -62.70750         | 24.500                |
| 2005 | TEL2005507093              | 47.93220           | -63.59120           | 47.93033         | -63.63483         | 23.202                |
| 2006 | TEL2006678034              | 47.41130           | -60.35780           | 47.42800         | -60.38567         | 21.023                |

| Year | Mission Number<br>and Set* | Start Lat.<br>(DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sponge<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|-----------------------|
| 2014 | TEL2014433089              | 48.13917           | -64.55250           | 48.12950         | -64.56933         | 19.230                |
| 2003 | TEL2003352023              | 47.15580           | -61.92430           | 47.13333         | -61.91017         | 18.940                |
| 2005 | NED2005542093              | 47.93970           | -63.60180           | 47.93433         | -63.64333         | 16.788                |
| 2006 | TEL2006678071              | 48.49900           | -63.12730           | 48.51067         | -63.15300         | 13.734                |
| 2005 | TEL2005507146              | 47.97870           | -61.36330           | 47.97517         | -61.33300         | 13.462                |
| 2003 | TEL2003352019              | 47.13570           | -60.86070           | 47.13783         | -60.90167         | 13.151                |
| 2006 | TEL2006678077              | 48.66370           | -63.58030           | 48.64167         | -63.55167         | 11.892                |
| 2012 | TEL2012205042              | 47.41933           | -60.37742           | 47.43033         | -60.37267         | 11.100                |
| 2003 | TEL2003352043              | 46.97250           | -63.06820           | 46.98283         | -63.02817         | 10.200                |
| 2007 | TEL2007745167              | 46.39017           | -59.88217           | 46.40550         | -59.84633         | 9.650                 |
| 2008 | TEL2008815186              | 47.19070           | -61.45580           | 47.16300         | -61.47233         | 9.645                 |
| 2007 | TEL2007749183              | 46.59280           | -62.30870           | 46.58433         | -62.28083         | 9.385                 |
| 2014 | TEL2014433066              | 45.94250           | -62.66075           | 45.94033         | -62.67700         | 8.924                 |
| 2005 | NED2005542141              | 47.74180           | -60.70870           | 47.76900         | -60.70633         | 8.167                 |
| 2012 | TEL2012205058              | 48.06983           | -61.62025           | 48.07183         | -61.63600         | 8.000                 |
| 2013 | TEL2013318037              | 45.91625           | -62.64692           | 45.91250         | -62.66767         | 7.750                 |
| 2003 | TEL2003352040              | 47.02100           | -62.73970           | 47.02250         | -62.69683         | 7.619                 |
| 2008 | TEM2008830142              | 46.43017           | -59.86483           | 46.45000         | -59.83100         | 7.250                 |
| 2005 | TEL2005507069              | 47.37680           | -64.37530           | 47.38867         | -64.35050         | 7.070                 |
| 2008 | TEL2008815156              | 46.97680           | -62.42750           | 46.94783         | -62.41633         | 6.928                 |
| 2005 | NED2005542096              | 48.00120           | -64.24250           | 48.02033         | -64.25033         | 6.761                 |
| 2004 | NED2004446019              | 46.99120           | -62.70530           | 46.98767         | -62.66250         | 6.288                 |
| 2004 | TEL2004434032              | 47.12550           | -61.81270           | 47.09883         | -61.82967         | 6.150                 |
| 2008 | TEL2008815049              | 47.03330           | -62.74400           | 47.00717         | -62.76667         | 5.994                 |
| 2010 | TEL201074044               | 47.37942           | -60.36458           | 47.36700         | -60.35367         | 5.848                 |
| 2007 | TEL2007749130              | 48.26700           | -62.51830           | 48.25717         | -62.54617         | 5.479                 |
| 2010 | NED2010027116              | 46.90200           | -60.23867           | 46.91733         | -60.20233         | 5.350                 |
| 2004 | TEL2004434094              | 47.85320           | -63.02720           | 47.83700         | -63.06150         | 5.250                 |
| 2009 | TEL2009992130              | 48.04550           | -62.96333           | 48.05783         | -62.97567         | 5.150                 |

**Table A1.5.** Southern Portion of the Gulf Biogeographic Zone: Details of the Location of Research Vessel Sea Pen Catches used to identify the Significant Area Polygons. \*Set number is the last 3 digits of the string.

| Year | Mission Number<br>and Set* | Start Lat.<br>(DD) | Start<br>Long. (DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sea Pen<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|------------------------|
| 2010 | TEL2010074142              | 47.95108           | -60.85550           | 47.96133         | -60.87133         | 108.000                |
| 2008 | TEL2008815169              | 47.98270           | -60.88820           | 47.96717         | -60.85200         | 99.432                 |
| 2009 | TEL2009992136              | 47.97992           | -60.88933           | 47.97317         | -60.87100         | 85.400                 |
| 2012 | TEL2012205054              | 47.98875           | -60.91942           | 47.98100         | -60.90100         | 78.900                 |
| 2009 | TEL2009992038              | 48.06825           | -61.05358           | 48.06350         | -61.03383         | 76.100                 |
| 2011 | TEL2011194119              | 47.95542           | -60.85925           | 47.96583         | -60.87467         | 50.700                 |
| 2004 | TEL2004434054              | 47.84470           | -60.64680           | 47.86700         | -60.67500         | 48.200                 |

| Year | Mission Number<br>and Set* | Start Lat.<br>(DD) | Start<br>Long. (DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sea Pen<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|------------------------|
| 2006 | TEL2006678074              | 48.67850           | -63.45450           | 48.70350         | -63.47867         | 46.011                 |
| 2007 | TEL2007749034              | 47.93620           | -60.82550           | 47.95517         | -60.85883         | 42.470                 |
| 2014 | TEL2014433036              | 48.12125           | -61.07600           | 48.11167         | -61.05850         | 30.300                 |
| 2006 | TEL2006678075              | 49.13220           | -63.97530           | 49.16067         | -63.97317         | 24.215                 |
| 2006 | TEL2006678166              | 47.91000           | -60.67100           | 47.90150         | -60.64400         | 20.563                 |
| 2003 | TEL2003352082              | 48.77320           | -63.20230           | 48.79333         | -63.23283         | 19.787                 |
| 2007 | TEL2007749136              | 48.27500           | -61.88280           | 48.26300         | -61.84350         | 19.342                 |
| 2012 | TEL2012205066              | 48.44375           | -62.36142           | 48.45000         | -62.37767         | 18.600                 |
| 2007 | TEL2007749122              | 48.69730           | -63.21720           | 48.67533         | -63.19167         | 17.394                 |
| 2008 | TEL2008815118              | 48.79770           | -63.29550           | 48.78067         | -63.26167         | 17.300                 |
| 2005 | TEL2005507122              | 48.76400           | -63.20780           | 48.74200         | -63.17883         | 15.819                 |
| 2013 | TEL2013318127              | 48.71483           | -63.09617           | 48.72700         | -63.10583         | 15.400                 |
| 2013 | TEL2013318145              | 47.93517           | -60.72133           | 47.94417         | -60.73983         | 13.500                 |
| 2007 | TEL2007749033              | 47.78280           | -60.56070           | 47.75950         | -60.53850         | 12.651                 |
| 2004 | TEL2004434073              | 48.43270           | -62.34070           | 48.43267         | -62.29683         | 12.458                 |
| 2010 | TEL2010074094              | 48.72308           | -63.20008           | 48.73433         | -63.21517         | 12.200                 |
| 2005 | TEL2005507123              | 48.57450           | -63.04380           | 48.54933         | -63.02183         | 11.968                 |
| 2014 | TEL2014433013              | 48.74192           | -63.13892           | 48.75300         | -63.14667         | 10.500                 |
| 2013 | TEL2013318137              | 48.28900           | -61.87942           | 48.28367         | -61.86067         | 10.300                 |
| 2006 | TEL2006678104              | 48.81220           | -63.17600           | 48.78283         | -63.16700         | 10.142                 |

**Table A1.6.** Northern Portion of the Gulf Biogeographic Zone: Details of the Location of Research Vessel Sponge Catches used to identify the Significant Area Polygons. \*Set number is the last 3 digits of the string.

| Year | Mission Number<br>and Set* | Start Lat.<br>(DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sponge<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|-----------------------|
| 2015 | TEL2015012142              | 49.36667           | -66.57750           | 49.36017         | -66.59300         | 70.90                 |
| 2012 | TEL2012009171              | 49.73467           | -61.47317           | 49.73633         | -61.45400         | 56.32                 |
| 2006 | TEL2006003184              | 49.70117           | -65.59417           | 49.70333         | -65.57550         | 43.91                 |
| 2011 | TEL2011008186              | 49.83217           | -65.34467           | 49.83700         | -65.35900         | 41.18                 |
| 2010 | TEL2010007111              | 49.44900           | -65.47517           | 49.44650         | -65.49483         | 29.05                 |
| 2007 | TEL2007004172              | 48.63867           | -68.90083           | 48.64617         | -68.88600         | 25.30                 |
| 2008 | TEL2008005106              | 48.85317           | -60.47033           | 48.86517         | -60.46817         | 22.35                 |
| 2008 | TEL2008005181              | 49.81883           | -65.39083           | 49.82400         | -65.40850         | 20.60                 |
| 2008 | TEL2008005171              | 49.92367           | -63.60450           | 49.91800         | -63.58717         | 18.20                 |
| 2006 | TEL2006003156              | 49.81733           | -61.07583           | 49.81783         | -61.09550         | 17.99                 |
| 2010 | TEL2010007164              | 50.05833           | -63.99183           | 50.05600         | -63.97733         | 17.30                 |
| 2007 | TEL2007004143              | 50.12100           | -64.61000           | 50.11617         | -64.59067         | 17.10                 |
| 2010 | TEL2010007166              | 50.00900           | -64.29550           | 50.00800         | -64.31000         | 16.43                 |
| 2008 | TEL2008005139              | 48.67850           | -61.46333           | 48.67617         | -61.44550         | 15.60                 |
| 2010 | TEL2010007060              | 49.02700           | -59.34233           | 49.03700         | -59.33217         | 15.57                 |
| 2012 | TEL2012009022              | 49.51900           | -60.09833           | 49.52650         | -60.10967         | 15.22                 |

| Year | Mission Number<br>and Set* | Start Lat.<br>(DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sponge<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|-----------------------|
| 2010 | TEL2010007065              | 48.82950           | -59.45333           | 48.81833         | -59.46233         | 14.96                 |
| 2010 | TEL2010007067              | 48.70350           | -59.62117           | 48.71533         | -59.61633         | 14.94                 |
| 2007 | TEL2007004201              | 49.11500           | -63.39967           | 49.10783         | -63.38433         | 13.64                 |
| 2012 | TEL2012009145              | 49.91833           | -65.02883           | 49.91833         | -65.04333         | 12.90                 |
| 2007 | TEL2007004108              | 48.76467           | -61.86250           | 48.76617         | -61.88083         | 12.75                 |
| 2012 | TEL2012009033              | 49.91100           | -58.88467           | 49.91850         | -58.87217         | 12.23                 |
| 2006 | TEL2006003024              | 48.21767           | -59.45800           | 48.22967         | -59.46400         | 12.10                 |
| 2013 | TEL2013010141              | 50.08167           | -63.67500           | 50.08667         | -63.65667         | 11.38                 |
| 2007 | TEL2007004181              | 49.27033           | -66.53917           | 49.27433         | -66.52117         | 11.10                 |
| 2010 | TEL2010007162              | 49.99550           | -64.23383           | 49.99750         | -64.24983         | 11.05                 |
| 2008 | TEL2008005173              | 49.96083           | -63.74633           | 49.96367         | -63.76617         | 10.40                 |
| 2012 | TEL2012009026              | 49.81900           | -60.17450           | 49.80667         | -60.17917         | 9.95                  |
| 2008 | TEL2008005089              | 50.66300           | -57.91983           | 50.67517         | -57.92367         | 9.45                  |
| 2012 | TEL2012009036              | 50.37317           | -58.41283           | 50.37883         | -58.39550         | 9.28                  |
| 2012 | TEL2012009200              | 48.64033           | -68.89817           | 48.64583         | -68.88517         | 8.88                  |
| 2006 | TEL2006003133              | 49.14600           | -63.28767           | 49.14617         | -63.26883         | 8.35                  |
| 2010 | TEL2010007151              | 49.12667           | -63.50167           | 49.13167         | -63.51500         | 8.29                  |
| 2006 | TEL2006003175              | 49.80533           | -64.97317           | 49.80533         | -64.95383         | 8.16                  |
| 2006 | TEL2006003043              | 49.08050           | -59.38900           | 49.08550         | -59.37183         | 7.91                  |
| 2008 | TEL2008005170              | 50.00933           | -63.36500           | 50.00267         | -63.34833         | 7.65                  |
| 2008 | TEL2008005038              | 48.79917           | -59.78450           | 48.81167         | -59.78867         | 7.40                  |
| 2012 | TEL2012009020              | 49.02133           | -60.31317           | 49.00900         | -60.31883         | 7.37                  |
| 2015 | TEL2015012212              | 48.91133           | -61.32550           | 48.91150         | -61.30583         | 7.24                  |
| 2008 | TEL2008005154              | 49.43150           | -61.21967           | 49.41967         | -61.21283         | 7.05                  |
| 2012 | TEL2012009076              | 49.23050           | -59.79033           | 49.23833         | -59.78033         | 6.74                  |
| 2010 | TEL2010007163              | 49.98900           | -64.11433           | 49.98850         | -64.13517         | 6.60                  |
| 2008 | TEL2008005165              | 49.74450           | -62.49300           | 49.75567         | -62.48583         | 6.29                  |
| 2012 | TEL2012009176              | 49.73117           | -62.80300           | 49.73583         | -62.82083         | 6.23                  |
| 2006 | TEL2006003101              | 48.66200           | -60.51967           | 48.66933         | -60.50317         | 6.22                  |
| 2012 | TEL2012009032              | 49.80650           | -59.01700           | 49.79983         | -59.03317         | 6.10                  |
| 2006 | TEL2006003147              | 49.77500           | -60.46317           | 49.78183         | -60.46933         | 6.02                  |
| 2014 | TEL2014011037              | 50.69183           | -57.84083           | 50.69117         | -57.86300         | 6.02                  |
| 2010 | TEL2010007050              | 49.59117           | -58.42000           | 49.58683         | -58.42117         | 5.94                  |
| 2010 | TEL2010007018              | 49.55500           | -60.29117           | 49.54833         | -60.27900         | 5.82                  |
| 2008 | TEL2008005167              | 49.72917           | -62.53317           | 49.71667         | -62.53000         | 5.70                  |
| 2010 | TEL2010007066              | 48.77500           | -59.60617           | 48.78400         | -59.59367         | 5.54                  |
| 2013 | TEL2013010002              | 49.03183           | -63.12983           | 49.03983         | -63.14517         | 5.40                  |
| 2014 | TEL2014011187              | 50.10817           | -64.83250           | 50.10817         | -64.81150         | 5.28                  |
| 2006 | TEL2006003099              | 48.80250           | -60.48167           | 48.81417         | -60.47617         | 5.17                  |
| 2007 | TEL2007004203              | 49.12200           | -63.13367           | 49.13167         | -63.14550         | 5.10                  |
| 2007 | TEL2007004113              | 48.93450           | -61.19883           | 48.93367         | -61.17983         | 5.05                  |

| Year | Mission Number<br>and Set* | Start Lat.<br>(DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sponge<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|-----------------------|
| 2012 | TEL2012009087              | 48.64900           | -59.67167           | 48.63667         | -59.67850         | 4.99                  |
| 2007 | TEL2007004031              | 48.56483           | -59.62850           | 48.55250         | -59.62917         | 4.82                  |
| 2011 | TEL2011008189              | 49.73033           | -64.57283           | 49.72983         | -64.55433         | 4.81                  |
| 2009 | TEL2009006074              | 49.84917           | -59.17783           | 49.85067         | -59.19100         | 4.80                  |
| 2008 | TEL2008005137              | 49.09533           | -63.24883           | 49.09967         | -63.26283         | 4.75                  |
| 2008 | TEL2008005166              | 49.71183           | -62.48700           | 49.72400         | -62.48133         | 4.60                  |
| 2008 | TEL2008005215              | 48.59717           | -68.91133           | 48.58817         | -68.92533         | 4.58                  |
| 2006 | TEL2006003039              | 48.75767           | -59.79083           | 48.76933         | -59.78450         | 4.50                  |
| 2007 | TEL2007004165              | 49.39367           | -67.12450           | 49.40233         | -67.11100         | 4.48                  |
| 2012 | TEL2012009094              | 48.15400           | -59.36833           | 48.14667         | -59.38400         | 4.42                  |
| 2009 | TEL2009006019              | 48.32717           | -60.81800           | 48.31583         | -60.82367         | 4.40                  |
| 2007 | TEL2007004087              | 48.74383           | -61.02883           | 48.73750         | -61.01150         | 4.40                  |
| 2009 | TEL2009006158              | 49.10817           | -60.93283           | 49.10267         | -60.94500         | 4.40                  |
| 2014 | TEL2014011011              | 49.05033           | -59.86217           | 49.04367         | -59.87967         | 4.39                  |
| 2007 | TEL2007004086              | 48.91867           | -60.62267           | 48.92900         | -60.60883         | 4.33                  |
| 2015 | TEL2015012193              | 49.74533           | -62.52133           | 49.75800         | -62.52550         | 4.27                  |
| 2014 | TEL2014011009              | 48.98117           | -60.75700           | 48.97133         | -60.76833         | 4.23                  |
| 2010 | TEL2010007038              | 50.68167           | -57.93800           | 50.67333         | -57.93083         | 4.23                  |
| 2012 | TEL2012009023              | 49.55200           | -60.17950           | 49.54583         | -60.16450         | 4.21                  |
| 2010 | TEL2010007156              | 49.80150           | -64.72217           | 49.79083         | -64.72200         | 4.19                  |
| 2009 | TEL2009006199              | 49.18367           | -66.65767           | 49.18633         | -66.63950         | 4.15                  |
| 2006 | TEL2006003173              | 50.13067           | -64.62250           | 50.11850         | -64.61517         | 4.10                  |
| 2010 | TEL2010007158              | 49.96333           | -65.21950           | 49.95800         | -65.23783         | 4.09                  |
| 2009 | TEL2009006120              | 49.62117           | -63.97400           | 49.62567         | -63.99350         | 3.95                  |
| 2009 | TEL2009006050              | 49.67900           | -58.55167           | 49.66783         | -58.56283         | 3.95                  |
| 2014 | TEL2014011189              | 49.99150           | -63.35700           | 49.98717         | -63.34483         | 3.93                  |
| 2013 | TEL2013010166              | 48.80117           | -61.78333           | 48.80033         | -61.80300         | 3.91                  |
| 2007 | TEL2007004085              | 48.96433           | -60.43467           | 48.97683         | -60.43317         | 3.76                  |
| 2009 | TEL2009006138              | 50.14083           | -64.86200           | 50.15317         | -64.86500         | 3.75                  |
| 2012 | TEL2012009182              | 49.95783           | -64.61733           | 49.97150         | -64.61300         | 3.70                  |
| 2013 | TEL2013010164              | 49.28017           | -61.30250           | 49.28650         | -61.31233         | 3.65                  |
| 2006 | TEL2006003185              | 49.80333           | -65.51633           | 49.80117         | -65.49750         | 3.65                  |
| 2008 | TEL2008005145              | 48.98350           | -60.93017           | 48.98500         | -60.91167         | 3.65                  |
| 2014 | TEL2014011161              | 48.63783           | -68.90450           | 48.63067         | -68.91567         | 3.64                  |
| 2014 | TEL2014011188              | 50.12117           | -64.26033           | 50.11917         | -64.27367         | 3.62                  |
| 2010 | TEL2010007167              | 49.92283           | -63.62533           | 49.90150         | -63.60467         | 3.61                  |
| 2006 | TEL2006003176              | 49.74600           | -64.88317           | 49.74800         | -64.89750         | 3.56                  |
| 2012 | TEL2012009016              | 48.83467           | -60.47467           | 48.82267         | -60.47650         | 3.53                  |
| 2008 | TEL2008005061              | 50.04833           | -58.57500           | 50.04217         | -58.59333         | 3.50                  |
| 2008 | TEL2008005175              | 50.01983           | -64.21733           | 50.02367         | -64.19933         | 3.45                  |
| 2011 | TEL2011008008              | 48.66667           | -61.61350           | 48.66267         | -61.59467         | 3.36                  |

| Year | Mission Number<br>and Set* | Start Lat.<br>(DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sponge<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|-----------------------|
| 2014 | TEL2014011073              | 48.98933           | -59.30500           | 49.00300         | -59.30600         | 3.27                  |
| 2012 | TEL2012009083              | 48.81867           | -59.45300           | 48.80883         | -59.46450         | 3.16                  |
| 2011 | NED2011401056              | 47.52500           | -59.24500           | 47.51500         | -59.23500         | 3.12                  |
| 2010 | TEL2010007184              | 49.00867           | -61.10683           | 49.01767         | -61.09350         | 3.11                  |
| 2014 | TEL2014011019              | 49.55933           | -60.09133           | 49.55433         | -60.11133         | 3.09                  |
| 2011 | TEL2011008194              | 49.19200           | -63.44800           | 49.19467         | -63.43067         | 3.05                  |
| 2007 | TEL2007004049              | 49.84267           | -58.56233           | 49.85267         | -58.57767         | 3.03                  |
| 2011 | TEL2011008187              | 49.74850           | -64.65567           | 49.76050         | -64.66300         | 3.00                  |
| 2007 | TEL2007004077              | 49.62183           | -60.08417           | 49.62200         | -60.06467         | 3.00                  |
| 2006 | TEL2006003187              | 50.08100           | -65.26133           | 50.08117         | -65.24583         | 2.90                  |
| 2008 | TEL2008005097              | 49.63233           | -59.83517           | 49.64517         | -59.83433         | 2.90                  |
| 2007 | TEL2007004173              | 48.47150           | -69.01883           | 48.47950         | -69.00350         | 2.88                  |
| 2015 | TEL2015012008              | 49.56117           | -60.09150           | 49.55733         | -60.10833         | 2.85                  |
| 2012 | TEL2012009072              | 49.50483           | -58.78350           | 49.49317         | -58.79100         | 2.82                  |
| 2011 | TEL2011008115              | 49.08967           | -62.76200           | 49.08667         | -62.74600         | 2.82                  |
| 2010 | TEL2010007155              | 49.85167           | -64.67500           | 49.84667         | -64.69500         | 2.78                  |
| 2007 | TEL2007004064              | 51.76500           | -55.99517           | 51.75900         | -56.01517         | 2.74                  |
| 2006 | TEL2006003140              | 48.92600           | -60.89517           | 48.92983         | -60.87983         | 2.71                  |
| 2008 | TEL2008005086              | 51.24067           | -57.22417           | 51.25317         | -57.21933         | 2.70                  |
| 2009 | NED2009902068              | 47.53500           | -59.27333           | 47.52667         | -59.25833         | 2.68                  |
| 2006 | TEL2006003152              | 49.89817           | -61.48833           | 49.89817         | -61.47183         | 2.68                  |
| 2014 | TEL2014011089              | 48.31033           | -59.34767           | 48.32283         | -59.35183         | 2.64                  |
| 2006 | TEL2006003141              | 48.97967           | -60.85600           | 48.97283         | -60.87200         | 2.64                  |
| 2010 | TEL2010007053              | 49.45350           | -59.25150           | 49.45417         | -59.23150         | 2.62                  |
| 2007 | TEL2007004063              | 51.63733           | -56.40533           | 51.64800         | -56.39733         | 2.50                  |
| 2010 | TEL2010007152              | 49.30000           | -63.63000           | 49.29333         | -63.61000         | 2.44                  |
| 2012 | TEL2012009146              | 50.07450           | -65.35817           | 50.07533         | -65.33917         | 2.30                  |
| 2008 | TEL2008005014              | 48.04867           | -60.78450           | 48.04183         | -60.76867         | 2.30                  |
| 2006 | TEL2006003143              | 49.04300           | -61.09617           | 49.05567         | -61.09800         | 2.30                  |
| 2011 | TEL2011008029              | 49.84700           | -58.96083           | 49.83667         | -58.97450         | 2.30                  |
| 2007 | TEL2007004061              | 51.06100           | -57.26967           | 51.04767         | -57.27683         | 2.26                  |
| 2009 | TEL2009006045              | 48.98267           | -59.22017           | 48.97217         | -59.23300         | 2.25                  |
| 2009 | TEL2009006068              | 50.56067           | -58.03900           | 50.56683         | -58.02150         | 2.25                  |
| 2012 | TEL2012009201              | 48.60700           | -68.90883           | 48.61433         | -68.89283         | 2.21                  |
| 2008 | TEL2008005111              | 48.40600           | -61.22217           | 48.41450         | -61.20883         | 2.20                  |
| 2007 | TEL2007004081              | 49.21550           | -59.81050           | 49.20450         | -59.81833         | 2.20                  |
| 2010 | TEL2010007025              | 49.94750           | -59.52100           | 49.93600         | -59.52950         | 2.17                  |
| 2009 | TEL2009006049              | 49.43783           | -59.06967           | 49.42750         | -59.08333         | 2.15                  |
| 2011 | TEL2011008117              | 48.90683           | -61.31300           | 48.90167         | -61.29550         | 2.09                  |
| 2015 | TEL2015012211              | 49.16733           | -61.04583           | 49.17217         | -61.05717         | 2.08                  |
| 2009 | TEL2009006080              | 49.89183           | -60.17033           | 49.89317         | -60.15100         | 2.05                  |

| Voar  | Mission Number | Start Lat. | Start Long. | End Lat. | End Long. | Sponge<br>Weight (kg) |
|-------|----------------|------------|-------------|----------|-----------|-----------------------|
| i eai |                |            | (סט)        |          |           | Weight (Kg)           |
| 2012  | TEL2012009137  | 49.59983   | -64.06417   | 49.59367 | -64.04750 | 2.03                  |
| 2011  | TEL2011008188  | 49.75717   | -64.48533   | 49.76367 | -64.50167 | 2.03                  |
| 2008  | TEL2008005058  | 49.93800   | -58.19167   | 49.95000 | -58.18467 | 2.00                  |
| 2008  | TEL2008005229  | 49.33800   | -66.28983   | 49.33450 | -66.30850 | 2.00                  |

**Table A1.7.** Northern Portion of the Gulf Biogeographic Zone: Details of the Location of Research Vessel Sea Pen Catches used to identify the Significant Area Polygons. \*Set number is the last 3 digits of the string.

| Year | Mission Number<br>and Set* | Start Lat.<br>(DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sea Pen<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|------------------------|
| 2015 | TEL2015012096              | 47.87083           | -60.64533           | 47.88300         | -60.65600         | 128.520                |
| 2008 | TEL2008005238              | 49.33050           | -64.27450           | 49.31733         | -64.27633         | 93.100                 |
| 2013 | TEL2013010068              | 47.68083           | -60.45133           | 47.66783         | -60.44500         | 85.430                 |
| 2010 | TEL2010007110              | 49.48433           | -64.98183           | 49.47983         | -64.96450         | 80.400                 |
| 2010 | TEL2010007108              | 49.45100           | -64.68600           | 49.45150         | -64.70633         | 68.280                 |
| 2012 | TEL2012009135              | 49.33850           | -64.13800           | 49.32817         | -64.14983         | 67.981                 |
| 2012 | TEL2012009110              | 47.84017           | -60.61800           | 47.85017         | -60.62867         | 63.904                 |
| 2009 | TEL2009006167              | 49.45500           | -64.78167           | 49.45517         | -64.76283         | 49.450                 |
| 2010 | TEL2010007111              | 49.44900           | -65.47517           | 49.44650         | -65.49483         | 48.670                 |
| 2015 | TEL2015012125              | 49.10983           | -63.71917           | 49.09733         | -63.72467         | 45.333                 |
| 2013 | TEL2013010176              | 48.79100           | -63.26050           | 48.79983         | -63.27517         | 40.613                 |
| 2011 | TEL2011008095              | 47.90183           | -60.71850           | 47.89367         | -60.70283         | 36.714                 |
| 2007 | TEL2007004018              | 47.83667           | -60.60500           | 47.82800         | -60.59150         | 30.350                 |
| 2008 | TEL2008005122              | 48.54283           | -62.78617           | 48.55067         | -62.80150         | 27.960                 |
| 2009 | TEL2009006100              | 48.75767           | -62.79217           | 48.76317         | -62.81050         | 24.400                 |
| 2004 | TEL2004001137              | 48.39500           | -62.09117           | 48.39750         | -62.10800         | 24.100                 |
| 2012 | TEL2012009108              | 47.59817           | -60.38400           | 47.61117         | -60.38383         | 23.200                 |
| 2014 | TEL2014011180              | 49.86267           | -66.30883           | 49.85683         | -66.32567         | 21.372                 |
| 2006 | TEL2006003219              | 49.19483           | -63.97217           | 49.18967         | -63.95550         | 20.850                 |
| 2011 | TEL2011008164              | 49.27500           | -64.08667           | 49.27000         | -64.08500         | 20.515                 |
| 2008 | TEL2008005135              | 49.16467           | -64.09983           | 49.16100         | -64.08200         | 20.050                 |
| 2006 | TEL2006003177              | 49.54733           | -64.97450           | 49.54917         | -64.95583         | 19.850                 |
| 2010 | TEL2010007107              | 49.40417           | -64.45617           | 49.41250         | -64.47117         | 19.560                 |
| 2013 | TEL2013010080              | 48.44917           | -61.99067           | 48.45200         | -62.00883         | 17.900                 |
| 2008 | TEL2008005120              | 48.55183           | -62.49133           | 48.55900         | -62.50683         | 17.244                 |
| 2008 | TEL2008005012              | 47.78283           | -60.55283           | 47.79283         | -60.56550         | 16.750                 |
| 2012 | TEL2012009124              | 48.49717           | -62.44300           | 48.50583         | -62.45733         | 16.227                 |
| 2010 | TEL2010007003              | 48.69083           | -62.71167           | 48.69450         | -62.72983         | 16.050                 |
| 2012 | TEL2012009114              | 48.38833           | -60.89667           | 48.39667         | -60.90983         | 15.347                 |
| 2006 | TEL2006003124              | 49.22467           | -63.90917           | 49.21150         | -63.90517         | 15.150                 |
| 2010 | TEL2010007191              | 48.47150           | -61.76500           | 48.48183         | -61.77850         | 14.700                 |
| 2012 | TEL2012009102              | 47.89817           | -59.94483           | 47.90000         | -59.96233         | 14.260                 |
| Year | Mission Number<br>and Set* | Start Lat.<br>(DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sea Pen<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|------------------------|
| 2004 | TEL2004001140              | 48.01433           | -60.90850           | 48.00650         | -60.89350         | 13.800                 |
| 2012 | TEL2012009129              | 48.61900           | -62.98300           | 48.62683         | -62.99900         | 13.210                 |
| 2007 | TEL2007004017              | 47.75233           | -60.39017           | 47.75833         | -60.40467         | 12.550                 |
| 2013 | TEL2013010178              | 48.70667           | -62.77000           | 48.70667         | -62.79167         | 12.185                 |
| 2013 | TEL2013010085              | 49.07117           | -63.72267           | 49.07367         | -63.70200         | 12.111                 |
| 2010 | TEL2010007109              | 49.39200           | -64.88533           | 49.38817         | -64.90433         | 12.040                 |
| 2012 | TEL2012009118              | 48.44800           | -61.37800           | 48.46067         | -61.37933         | 12.010                 |
| 2010 | TEL2010007198              | 48.71817           | -63.22967           | 48.70983         | -63.21450         | 11.800                 |
| 2009 | TEL2009006165              | 49.33000           | -64.20333           | 49.33333         | -64.22333         | 11.550                 |
| 2007 | TEL2007004189              | 49.44217           | -64.80533           | 49.43217         | -64.79383         | 11.200                 |
| 2009 | TEL2009006108              | 48.74367           | -63.15783           | 48.73617         | -63.14200         | 11.000                 |
| 2006 | TEL2006003181              | 49.51683           | -66.04100           | 49.52150         | -66.02417         | 10.600                 |
| 2009 | TEL2009006023              | 48.28017           | -60.43117           | 48.27950         | -60.41250         | 10.000                 |
| 2007 | TEL2007004190              | 49.34083           | -64.49033           | 49.34750         | -64.50767         | 9.950                  |
| 2012 | TEL2012009119              | 48.50583           | -61.51883           | 48.51067         | -61.53750         | 9.710                  |
| 2013 | TEL2013010177              | 48.76150           | -63.04433           | 48.77333         | -63.05567         | 9.543                  |
| 2010 | TEL2010007143              | 49.14517           | -67.16300           | 49.15450         | -67.15200         | 8.440                  |
| 2011 | TEL2011008094              | 47.75567           | -60.39183           | 47.74233         | -60.39800         | 8.430                  |
| 2010 | TEL2010007144              | 49.15433           | -66.79017           | 49.15617         | -66.77083         | 8.390                  |
| 2015 | TEL2015012119              | 48.66633           | -63.17333           | 48.65917         | -63.15283         | 8.288                  |
| 2013 | TEL2013010067              | 47.56633           | -60.35767           | 47.55833         | -60.34300         | 8.110                  |
| 2008 | TEL2008005121              | 48.61833           | -62.62333           | 48.61133         | -62.60867         | 7.974                  |
| 2008 | TEL2008005229              | 49.33800           | -66.28983           | 49.33450         | -66.30850         | 7.700                  |
| 2013 | TEL2013010109              | 49.16400           | -66.73500           | 49.15717         | -66.75167         | 7.527                  |
| 2009 | TEL2009006199              | 49.18367           | -66.65767           | 49.18633         | -66.63950         | 7.500                  |
| 2013 | TEL2013010086              | 49.18550           | -63.59483           | 49.17650         | -63.59067         | 7.487                  |
| 2014 | TEL2014011145              | 49.47350           | -65.01417           | 49.46250         | -65.02633         | 7.412                  |
| 2013 | TEL2013010069              | 47.83600           | -60.31933           | 47.85000         | -60.32150         | 7.350                  |
| 2015 | TEL2015012110              | 48.45933           | -61.98600           | 48.45367         | -61.96683         | 7.251                  |
| 2006 | TEL2006003103              | 48.40933           | -61.34517           | 48.41783         | -61.35800         | 7.050                  |
| 2012 | TEL2012009120              | 48.48983           | -61.72817           | 48.48567         | -61.71067         | 7.050                  |
| 2012 | TEL2012009155              | 49.76250           | -65.75367           | 49.76550         | -65.73550         | 6.847                  |
| 2007 | TEL2007004198              | 49.28133           | -63.82600           | 49.27283         | -63.81300         | 6.700                  |
| 2012 | TEL2012009112              | 48.13233           | -60.26233           | 48.14133         | -60.27467         | 6.670                  |
| 2011 | TEL2011008169              | 49.49567           | -64.83317           | 49.49650         | -64.85267         | 6.554                  |
| 2010 | TEL2010007112              | 49.46850           | -66.05883           | 49.47067         | -66.07750         | 6.550                  |
| 2012 | TEL2012009157              | 49.48267           | -65.74700           | 49.48367         | -65.72833         | 6.492                  |
| 2006 | TEL2006003214              | 49.30400           | -66.23400           | 49.30867         | -66.21633         | 6.450                  |
| 2015 | IEL2015012111              | 48.49500           | -62.12300           | 48.49067         | -62.10217         | 6.323                  |
| 2013 | IEL2013010103              | 49.36900           | -64.56333           | 49.36500         | -64.58450         | 6.310                  |
| 2009 | TEL2009006126              | 49.56633           | -65.54250           | 49.56817         | -65.52367         | 6.300                  |

| Year | Mission Number<br>and Set* | Start Lat.<br>(DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sea Pen<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|------------------------|
| 2006 | TEL2006003178              | 49.46917           | -65.21850           | 49.47717         | -65.20333         | 6.150                  |
| 2011 | NED2011401057              | 47.39500           | -59.41000           | 47.38667         | -59.39833         | 6.000                  |
| 2012 | TEL2012009125              | 48.62767           | -62.66183           | 48.63450         | -62.67750         | 5.976                  |
| 2006 | TEL2006003125              | 49.32417           | -64.02700           | 49.32500         | -64.04650         | 5.950                  |
| 2013 | TEL2013010076              | 48.51850           | -61.68250           | 48.52917         | -61.66983         | 5.890                  |
| 2010 | TEL2010007113              | 49.64967           | -65.97767           | 49.63983         | -65.98867         | 5.800                  |
| 2006 | TEL2006003182              | 49.56067           | -65.89783           | 49.55017         | -65.91017         | 5.800                  |
| 2011 | TEL2011008167              | 49.36617           | -64.64700           | 49.36717         | -64.66550         | 5.629                  |
| 2015 | TEL2015012116              | 48.65483           | -62.80317           | 48.66783         | -62.79483         | 5.561                  |
| 2014 | TEL2014011140              | 49.33600           | -64.49167           | 49.32817         | -64.50900         | 5.504                  |
| 2011 | TEL2011008099              | 48.24983           | -60.51683           | 48.26033         | -60.50400         | 5.377                  |
| 2006 | TEL2006003126              | 49.37383           | -64.23667           | 49.38300         | -64.24917         | 5.350                  |
| 2013 | TEL2013010100              | 49.49283           | -65.88333           | 49.47917         | -65.88583         | 5.330                  |
| 2012 | TEL2012009104              | 47.71517           | -59.66083           | 47.70400         | -59.65150         | 5.271                  |
| 2009 | TEL2009006012              | 48.00267           | -60.80267           | 47.99517         | -60.78883         | 5.100                  |
| 2015 | TEL2015012106              | 48.50250           | -61.28917           | 48.50350         | -61.26917         | 5.060                  |
| 2007 | TEL2007004088              | 48.51800           | -60.98500           | 48.51383         | -60.96717         | 5.000                  |
| 2015 | TEL2015012104              | 48.42800           | -60.84617           | 48.42617         | -60.86817         | 4.960                  |
| 2015 | TEL2015012105              | 48.49533           | -61.07317           | 48.50167         | -61.09150         | 4.930                  |
| 2010 | TEL2010007106              | 49.10217           | -64.02617           | 49.09500         | -64.01133         | 4.920                  |
| 2015 | TEL2015012107              | 48.54200           | -61.62533           | 48.53950         | -61.60450         | 4.907                  |
| 2009 | TEL2009006101              | 48.66133           | -62.77867           | 48.66700         | -62.79633         | 4.650                  |
| 2009 | TEL2009006014              | 48.05133           | -61.01450           | 48.04467         | -60.99967         | 4.600                  |
| 2013 | TEL2013010084              | 49.05933           | -63.90617           | 49.07017         | -63.91933         | 4.587                  |
| 2012 | TEL2012009113              | 48.24167           | -60.58400           | 48.24733         | -60.60033         | 4.538                  |
| 2011 | TEL2011008176              | 49.23900           | -66.89000           | 49.24033         | -66.87167         | 4.511                  |
| 2014 | TEL2014011150              | 49.49767           | -66.29817           | 49.49267         | -66.27933         | 4.511                  |
| 2006 | TEL2006003108              | 48.32850           | -61.85867           | 48.33717         | -61.87200         | 4.400                  |
| 2011 | TEL2011008011              | 48.48367           | -60.63383           | 48.49400         | -60.64700         | 4.390                  |
| 2008 | TEL2008005134              | 49.12017           | -63.94483           | 49.11383         | -63.92900         | 4.350                  |
| 2009 | TEL2009006130              | 49.84917           | -66.25333           | 49.83633         | -66.25733         | 4.350                  |
| 2011 | TEL2011008173              | 49.20050           | -66.58417           | 49.20317         | -66.56567         | 4.312                  |
| 2007 | TEL2007004188              | 49.43350           | -64.85133           | 49.42450         | -64.83717         | 4.300                  |
| 2008 | TEL2008005109              | 48.62050           | -61.14600           | 48.62533         | -61.16417         | 4.100                  |
| 2014 | TEL2014011131              | 48.61767           | -62.60883           | 48.62067         | -62.58967         | 4.062                  |
| 2008 | TEL2008005126              | 48.96700           | -63.21200           | 48.97467         | -63.22683         | 4.050                  |

**Table A1.8.** Newfoundland and Labrador Shelves Biogeographic Zone: Details of the Location of Research Vessel Sponge Catches used to identify the Significant Area Polygons. \*Set number is the last 3 digits of the string.

|      | Mission Number | Start     | Start Long. | End Lat. | End Long. | Sponge      |
|------|----------------|-----------|-------------|----------|-----------|-------------|
| Year | and Set*       | Lat. (DD) | (DD)        | (DD)     | (DD)      | Weight (kg) |
| 2011 | BAL2011106067  | 60.47233  | -61.28593   | 60.45592 | -61.27250 | 1226.29     |
| 2008 | BAL2008103072  | 60.75800  | -61.21000   | 60.74800 | -61.21200 | 1200.00     |
| 2008 | BAL2008103070  | 60.37500  | -61.25000   | 60.39500 | -61.24300 | 1043.21     |
| 2010 | BAL2010105080  | 60.64632  | -61.32495   | 60.63208 | -61.31115 | 1010.30     |
| 1997 | TEL1997053051  | 60.81167  | -61.19500   | 60.81167 | -61.19500 | 1000.00     |
| 2012 | NED2012415019  | 46.52000  | -55.00000   | 46.53167 | -55.00000 | 823.68      |
| 2008 | BAL2008103071  | 60.61617  | -61.27033   |          |           | 800.00      |
| 2006 | BAL2006101084  | 60.64300  | -61.43300   | 60.65000 | -61.45700 | 800.00      |
| 2010 | BAL2010105077  | 60.22763  | -61.09982   | 60.24343 | -61.11322 | 795.61      |
| 2010 | TEL2010978067  | 51.59833  | -50.09667   | 51.59000 | -50.08500 | 779.52      |
| 2009 | TEL2009896013  | 54.69000  | -52.85833   | 54.69667 | -52.84333 | 750.00      |
| 2010 | BAL2010105079  | 60.57203  | -61.37953   | 60.55917 | -61.35598 | 745.62      |
| 2007 | TEL2007753044  | 55.03333  | -53.65833   | 55.02167 | -53.65667 | 602.75      |
| 2009 | BAL2009104061  | 60.04833  | -61.00250   | 60.03750 | -60.98633 | 600.00      |
| 2014 | TEL2014135048  | 54.78833  | -52.98500   | 54.78500 | -52.96500 | 599.22      |
| 2001 | TEL2001361039  | 54.72167  | -52.77667   | 54.71167 | -52.79000 | 591.80      |
| 2007 | TEL2007753045  | 55.08167  | -53.98833   | 55.07000 | -53.97833 | 580.90      |
| 2007 | BAL2007102056  | 60.02500  | -60.99200   | 60.03500 | -61.00200 | 579.65      |
| 2009 | BAL2009104068  | 60.60733  | -61.39233   | 60.61993 | -61.38900 | 550.00      |
| 1996 | TEL1996039053  | 54.78167  | -52.95667   | 54.79000 | -52.97333 | 550.00      |
| 2012 | AQV2012107062  | 59.84260  | -60.77070   | 59.85222 | -60.78702 | 538.66      |
| 2004 | TEL2004539034  | 55.09167  | -53.97000   | 55.08000 | -53.97333 | 521.20      |
| 2004 | TEL2004539092  | 52.00000  | -50.66000   | 52.01000 | -50.67167 | 519.05      |
| 2005 | TEL2005611034  | 53.93500  | -52.54500   | 53.92500 | -52.53667 | 514.01      |
| 2014 | TEL2014136024  | 54.21833  | -52.83833   | 54.20667 | -52.82667 | 500.00      |
| 1997 | TEL1997053054  | 60.63667  | -61.29667   | 60.65167 | -61.29667 | 500.00      |
| 2006 | BAL2006101075  | 60.48300  | -61.30000   | 60.49700 | -61.30800 | 500.00      |
| 1999 | TEL1999084043  | 60.40000  | -61.25667   | 60.41167 | -61.26167 | 500.00      |
| 2006 | TEL2006681062  | 54.72667  | -52.91500   | 54.71500 | -52.92833 | 500.00      |
| 2001 | TEL2001361036  | 54.11167  | -52.74667   | 54.10000 | -52.73833 | 500.00      |
| 2001 | TEL2001361038  | 54.41167  | -53.17000   | 54.39833 | -53.16167 | 500.00      |
| 2005 | TEL2005542020  | 51.57667  | -50.10000   | 51.56667 | -50.09167 | 500.00      |
| 2005 | TEL2005611039  | 54.63833  | -52.74500   | 54.62667 | -52.75167 | 487.60      |
| 2013 | TEL2013121046  | 54.78833  | -52.98333   | 54.79167 | -53.00167 | 465.83      |
| 2001 | TEL2001361037  | 54.15667  | -52.70833   | 54.17000 | -52.71333 | 446.65      |
| 2007 | TEL2007753043  | 54.94667  | -53.53500   | 54.94833 | -53.54833 | 436.70      |
| 2001 | TEL2001361041  | 54.68333  | -53.08333   | 54.67167 | -53.09667 | 400.00      |
| 2006 | TEL2006681061  | 54.76000  | -52.92667   | 54.76667 | -52.94333 | 400.00      |

| Year | Mission Number<br>and Set* | Start<br>Lat. (DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sponge<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|-----------------------|
| 2001 | TEL2001361040              | 54.78000           | -52.91500           | 54.77167         | -52.90000         | 400.00                |
| 2012 | AQV2012107078              | 60.21723           | -61.11555           | 60.20432         | -61.11498         | 396.73                |
| 2013 | AQV2013108084              | 60.43920           | -61.74747           | 60.43775         | -61.77600         | 395.16                |
| 2012 | AQV2012107084              | 60.80692           | -61.25992           | 60.81952         | -61.25648         | 394.07                |
| 2013 | AQV2013108081              | 60.59977           | -61.40927           | 60.59807         | -61.38543         | 374.32                |
| 1996 | TEL1996023021              | 54.54167           | -53.13167           | 54.54667         | -53.11000         | 368.40                |
| 1996 | TEL1996039052              | 54.66333           | -53.10500           | 54.67500         | -53.11333         | 360.00                |
| 2010 | BAL2010105084              | 60.58233           | -61.91133           | 60.59050         | -61.93028         | 357.72                |
| 2004 | TEL2004539035              | 55.06833           | -54.02833           | 55.05500         | -54.03333         | 350.00                |
| 2009 | TEL2009896019              | 55.21167           | -54.33000           | 55.22000         | -54.34333         | 338.95                |
| 2009 | TEL2009896006              | 54.12000           | -52.68333           | 54.11000         | -52.67500         | 320.25                |
| 2004 | TEL2004539093              | 51.85667           | -50.46500           | 51.86833         | -50.47500         | 320.00                |
| 2012 | TEL2012108030              | 54.21667           | -52.84167           | 54.20833         | -52.83000         | 318.30                |
| 2010 | BAL2010105061              | 59.90217           | -60.86700           | 59.89300         | -60.85767         | 311.97                |
| 2011 | TEL2011096039              | 54.73000           | -52.75833           | 54.71833         | -52.76000         | 305.82                |
| 2009 | TEL2009896015              | 54.84833           | -53.27333           | 54.84167         | -53.25667         | 300.00                |
| 2014 | TEL2014136051              | 53.23000           | -51.99667           | 53.21667         | -51.98833         | 300.00                |
| 2012 | TEL2012109033              | 53.43167           | -51.99500           | 53.44333         | -51.99667         | 293.55                |
| 1996 | TEM1996188012              | 45.86000           | -53.95667           | 45.86500         | -53.97500         | 275.88                |
| 2005 | TEL2005611040              | 54.62667           | -52.96000           | 54.61667         | -52.96000         | 265.70                |
| 1998 | TEL1998072071              | 55.44833           | -55.80333           | 55.44500         | -55.81833         | 257.60                |
| 2003 | TEL2003509014              | 53.23333           | -52.00000           | 53.24500         | -52.01167         | 256.00                |
| 2013 | AQV2013108080              | 60.55852           | -61.25612           | 60.57257         | -61.25610         | 253.71                |
| 2012 | TEL2012108037              | 53.56667           | -52.12000           | 53.55833         | -52.10000         | 253.19                |
| 1998 | TEL1998073076              | 54.34833           | -52.96667           | 54.36167         | -52.96833         | 250.00                |
| 2006 | TEL2006681063              | 54.45500           | -53.00167           | 54.44333         | -53.00833         | 250.00                |
| 2012 | AQV2012107076              | 60.12607           | -61.14112           | 60.13403         | -61.16133         | 249.20                |
| 2009 | TEL2009897037              | 52.27667           | -50.92833           | 52.26667         | -50.91500         | 246.20                |
| 2014 | TEL2014135040              | 55.07667           | -53.98000           | 55.06833         | -53.97333         | 242.00                |
| 1996 | TEL1996037053              | 60.58333           | -60.78333           | 60.58500         | -60.80833         | 239.53                |
| 2013 | TEL2013121041              | 54.38000           | -52.93333           | 54.39000         | -52.94000         | 238.60                |
| 2007 | TEL2007753050              | 55.23833           | -54.94667           | 55.23833         | -54.93167         | 235.70                |
| 2013 | TEL2013121044              | 54.44833           | -53.08333           | 54.45833         | -53.09500         | 235.33                |
| 2003 | TEL2003457036              | 54.58000           | -53.27000           | 54.59333         | -53.26833         | 230.75                |
| 2010 | TEL2010975021              | 56.20833           | -57.25500           | 56.20333         | -57.24333         | 224.30                |
| 2011 | TEL2011096028              | 53.91833           | -52.50833           | 53.90667         | -52.50500         | 219.90                |
| 2009 | TEL2009896018              | 55.08500           | -54.13667           | 55.09000         | -54.15500         | 219.45                |
| 2014 | TEL2014135047              | 54.95833           | -53.46333           | 54.96667         | -53.46500         | 217.93                |
| 2011 | TEL2011096014              | 53.17000           | -51.94667           | 53.16000         | -51.93833         | 216.96                |
| 2014 | TEL2014137036              | 51.70667           | -50.31167           | 51.69833         | -50.29500         | 215.80                |
| 2008 | TEL2008820013              | 53.38667           | -52.06333           | 53.39833         | -52.07167         | 215.50                |

| Year | Mission Number<br>and Set* | Start<br>Lat. (DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sponge<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|-----------------------|
| 2001 | TEL2001362015              | 51.89000           | -50.45667           | 51.87833         | -50.44500         | 215.20                |
| 2002 | TEL2002415045              | 53.50167           | -52.14000           | 53.49000         | -52.13000         | 214.55                |
| 2014 | TEL2014137037              | 51.60833           | -50.10833           | 51.61667         | -50.12000         | 212.28                |
| 2008 | TEL2008820010              | 53.07833           | -51.79667           | 53.09167         | -51.80667         | 210.40                |
| 2007 | TEL2007753009              | 53.03500           | -51.75000           | 53.04333         | -51.75500         | 207.90                |
| 2014 | KIN2014109082              | 60.29810           | -61.14847           | 60.30688         | -61.15910         | 203.70                |
| 2012 | TEL2012107071              | 54.76000           | -53.16667           | 54.76500         | -53.18833         | 200.63                |
| 2010 | TEL2010975026              | 56.50167           | -57.83500           | 56.49667         | -57.84667         | 200.00                |
| 2014 | TEL2014136040              | 53.78333           | -52.43167           | 53.77167         | -52.41833         | 200.00                |
| 2014 | TEL2014136038              | 54.09000           | -52.71333           | 54.10000         | -52.71333         | 200.00                |
| 2012 | TEL2012107067              | 55.13667           | -54.03333           | 55.13000         | -54.02000         | 200.00                |
| 2007 | BAL2007102079              | 60.61200           | -61.27000           | 60.62500         | -61.27500         | 200.00                |
| 1999 | TEL1999085055              | 56.95000           | -58.24667           | 56.96000         | -58.25833         | 200.00                |
| 2006 | TEL2006681060              | 54.73333           | -53.12500           | 54.72333         | -53.11333         | 200.00                |
| 2000 | TEL2000340078              | 54.19167           | -52.80167           | 54.20167         | -52.82667         | 200.00                |
| 1999 | TEL1999086073              | 54.10833           | -52.68333           | 54.12167         | -52.69000         | 200.00                |
| 2003 | TEL2003509016              | 53.34833           | -51.95667           | 53.33667         | -51.94833         | 200.00                |
| 2000 | TEL2000340098              | 53.08667           | -51.80667           | 53.09500         | -51.81833         | 200.00                |
| 2000 | TEL2000340067              | 54.52500           | -53.11500           | 54.51333         | -53.11833         | 200.00                |
| 2011 | TEL2011096013              | 53.10500           | -51.83500           | 53.09000         | -51.82333         | 193.84                |
| 2010 | TEL2010975020              | 56.15000           | -57.26000           | 56.14333         | -57.25500         | 178.40                |
| 1996 | TEL1996039046              | 53.98833           | -52.57333           | 54.00000         | -52.57833         | 177.50                |
| 1999 | TEL1999086042              | 54.86000           | -53.13500           | 54.86333         | -53.15500         | 177.20                |
| 2010 | TEL2010975047              | 57.56500           | -59.12667           | 57.55667         | -59.11167         | 175.11                |
| 1997 | TEL1997054021              | 56.71833           | -58.07667           | 56.73000         | -58.08667         | 175.00                |
| 2013 | TEL2013121051              | 55.07000           | -53.71833           | 55.06167         | -53.70333         | 174.33                |
| 1996 | TEL1996037056              | 60.45333           | -61.77500           | 60.45000         | -61.80167         | 173.44                |
| 2011 | TEL2011097035              | 55.07500           | -53.80000           | 55.06667         | -53.78833         | 171.41                |
| 2013 | AQV2013108082              | 60.57968           | -61.58652           | 60.57465         | -61.55745         | 170.98                |
| 1997 | TEL1997055050              | 54.08333           | -52.70833           | 54.07167         | -52.69667         | 170.35                |
| 2011 | TEL2011097032              | 55.16167           | -54.30000           | 55.16167         | -54.28167         | 169.65                |
| 2014 | TEL2014136022              | 54.62500           | -53.15333           | 54.63667         | -53.14667         | 165.25                |
| 2012 | TEL2012107069              | 54.97833           | -53.67000           | 54.97333         | -53.65500         | 162.11                |
| 2011 | TEL2011096027              | 53.87000           | -52.58167           | 53.86000         | -52.57500         | 158.70                |
| 2008 | TEL2008820011              | 53.25833           | -51.91333           | 53.27000         | -51.92000         | 157.00                |
| 2007 | BAL2007102070              | 60.62300           | -61.70800           | 60.62300         | -61.68000         | 156.94                |
| 2011 | BAL2011106056              | 59.85215           | -60.78207           | 59.86042         | -60.79050         | 156.40                |
| 2014 | TEL2014135039              | 55.18833           | -54.29667           | 55.18167         | -54.28500         | 156.40                |
| 2013 | IEL2013121043              | 54.49167           | -53.24167           | 54.50167         | -53.24333         | 155.50                |
| 2011 | IEL2011096037              | 54.52000           | -53.23167           | 54.50667         | -53.22333         | 152.30                |
| 2013 | AQV2013108063              | 59.84552           | -60.69705           | 59.85598         | -60.71150         | 151.68                |

| Year | Mission Number<br>and Set* | Start<br>Lat. (DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sponge<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|-----------------------|
| 2002 | TEL2002415038              | 52.27833           | -50.94167           | 52.26833         | -50.92667         | 150.00                |
| 1996 | TEL1996023019              | 54,74500           | -53.08000           | 54.73667         | -53.06167         | 150.00                |
| 2006 | TEL2006681068              | 53.92333           | -52.53333           | 53.91333         | -52.52333         | 150.00                |
| 2003 | TEL2003457041              | 55.10167           | -53.84500           | 55.10667         | -53.82833         | 150.00                |
| 2007 | BAL2007102054              | 59.77300           | -60.67000           | 59.76200         | -60.65300         | 150.00                |
| 2014 | TEL2014136052              | 53.22833           | -51.90667           | 53.21833         | -51.89500         | 150.00                |
| 2010 | TEL2010975031              | 56.75667           | -58.07000           | 56.76333         | -58.05333         | 150.00                |
| 2009 | BAL2009104055              | 59.77233           | -60.66683           | 59.76133         | -60.65083         | 150.00                |
| 2003 | TEL2003509048              | 54.68000           | -52.99167           | 54.66833         | -53.00000         | 143.20                |
| 2012 | TEL2012109041              | 52.39333           | -51.19500           | 52.40167         | -51.20500         | 142.30                |
| 1999 | TEL1999086067              | 54.42333           | -53.06833           | 54.41333         | -53.06000         | 140.95                |
| 2013 | TEL2013121040              | 54.27667           | -52.78000           | 54.28667         | -52.78667         | 139.53                |
| 2011 | TEL2011094025              | 56.26500           | -57.26333           | 56.27833         | -57.26167         | 133.90                |
| 2014 | KIN2014109060              | 59.84283           | -60.69052           | 59.85405         | -60.70373         | 133.62                |
| 2013 | TEL2013122021              | 52.73833           | -51.53833           | 52.72833         | -51.53000         | 131.18                |
| 2003 | TEL2003509013              | 53.14667           | -51.96500           | 53.13500         | -51.95833         | 129.75                |
| 2014 | TEL2014136026              | 54.30333           | -53.15667           | 54.31000         | -53.17000         | 126.81                |
| 1997 | TEL1997053055              | 60.57667           | -61.51167           | 60.58833         | -61.50167         | 126.65                |
| 2010 | TEL2010977038              | 53.95333           | -52.55833           | 53.96667         | -52.56167         | 123.93                |
| 2009 | TEL2009896007              | 54.23500           | -52.87167           | 54.22667         | -52.85667         | 122.10                |
| 2013 | TEL2013122017              | 53.21500           | -51.89167           | 53.20667         | -51.87667         | 120.00                |
| 2009 | TEL2009896012              | 54.51667           | -52.96500           | 54.52667         | -52.95500         | 118.35                |
| 2012 | TEL2012108029              | 54.21500           | -52.75500           | 54.20500         | -52.74333         | 117.69                |
| 1999 | TEL1999086084              | 53.29500           | -52.02667           | 53.28500         | -52.02167         | 117.30                |
| 1996 | TEL1996039045              | 53.93500           | -52.53000           | 53.94667         | -52.53333         | 116.75                |
| 1999 | TEL1999086068              | 54.63667           | -52.87500           | 54.64500         | -52.86000         | 116.45                |
| 2004 | TEL2004537005              | 56.50833           | -57.64167           | 56.51833         | -57.64333         | 116.40                |
| 2001 | TEL2001361024              | 53.36333           | -52.07667           | 53.35000         | -52.07000         | 115.00                |
| 2010 | BAL2010105035              | 58.28460           | -61.43172           | 58.28708         | -61.45308         | 114.85                |
| 2001 | TEL2001362020              | 51.73333           | -50.25833           | 51.72333         | -50.24333         | 114.60                |
| 1996 | TEL1996037059              | 60.25667           | -61.26000           | 60.27000         | -61.26667         | 112.35                |
| 2012 | TEL2012110039              | 51.26667           | -49.85000           | 51.26000         | -49.83500         | 111.60                |
| 1997 | TEL1997055041              | 54.93167           | -53.43500           | 54.93667         | -53.45333         | 108.65                |
| 2011 | BAL2011106066              | 60.34152           | -61.21635           | 60.35422         | -61.22807         | 108.11                |
| 1999 | TEL1999088028              | 51.26333           | -49.72000           | 51.27333         | -49.73167         | 107.65                |
| 2014 | TEL2014137038              | 51.37500           | -49.94833           | 51.38500         | -49.94833         | 107.09                |
| 2006 | TEL2006681065              | 54.18667           | -52.92333           | 54.19833         | -52.93500         | 106.50                |
| 2003 | TEL2003509059              | 55.17500           | -54.55333           | 55.16667         | -54.53833         | 106.50                |
| 1996 | TEL1996039066              | 55.09833           | -53.87833           | 55.09333         | -53.89167         | 106.30                |
| 1996 | TEL1996036066              | 57.44833           | -58.84333           | 57.45333         | -58.85333         | 105.40                |
| 2011 | TEL2011096009              | 52.77500           | -51.47000           | 52.76333         | -51.45167         | 103.10                |

| Year | Mission Number<br>and Set* | Start<br>Lat. (DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sponge<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|-----------------------|
| 2013 | TEL2013121042              | 54.38333           | -53.24667           | 54.39333         | -53.25833         | 102.88                |
| 1997 | TEL1997055067              | 53.28500           | -51.91667           | 53.29667         | -51.92333         | 102.80                |
| 2005 | TEL2005611023              | 52.97667           | -51.78333           | 52.96667         | -51.77167         | 102.00                |
| 1997 | TEL1997055044              | 54.63667           | -53.05500           | 54.64833         | -53.05000         | 102.00                |
| 2006 | TEL2006679020              | 56.31500           | -57.36500           | 56.32500         | -57.36500         | 101.85                |
| 1999 | TEL1999086031              | 55.28667           | -55.32167           | 55.28000         | -55.30167         | 101.70                |
| 2001 | TEL2001361012              | 52.46667           | -51.23167           | 52.47500         | -51.24333         | 101.50                |
| 2003 | TEL2003509047              | 54.70667           | -52.76000           | 54.72000         | -52.76167         | 101.45                |
| 1996 | TEL1996039044              | 53.89667           | -52.60000           | 53.90333         | -52.61500         | 101.15                |
| 2010 | TEL2010978064              | 52.02167           | -50.66333           | 52.01167         | -50.65167         | 100.98                |
| 1997 | TEL1997055042              | 54.82000           | -53.27833           | 54.83000         | -53.29333         | 100.80                |
| 2012 | AQV2012107083              | 60.70608           | -61.21222           | 60.69643         | -61.21550         | 100.40                |
| 2007 | TEL2007755041              | 51.56500           | -50.14833           | 51.56000         | -50.13500         | 100.00                |
| 2001 | TEL2001361010              | 52.43167           | -51.23667           | 52.44167         | -51.24500         | 100.00                |
| 2000 | TEL2000340068              | 54.41667           | -53.16667           | 54.43000         | -53.16500         | 100.00                |
| 2006 | TEL2006681066              | 54.19500           | -52.82500           | 54.20667         | -52.83500         | 100.00                |
| 1997 | TEL1997053026              | 60.28667           | -61.28667           | 60.29500         | -61.31333         | 100.00                |
| 2012 | TEL2012107072              | 54.68333           | -53.08000           | 54.67333         | -53.09333         | 100.00                |
| 2012 | TEL2012110040              | 51.32500           | -49.91333           | 51.31500         | -49.90333         | 98.83                 |
| 1999 | TEL1999086043              | 54.85167           | -53.44333           | 54.84833         | -53.42500         | 98.75                 |
| 2006 | TEL2006680017              | 57.24167           | -58.76833           | 57.25167         | -58.75833         | 98.20                 |
| 1997 | TEL1997054062              | 55.42667           | -55.77000           | 55.43833         | -55.77167         | 97.05                 |
| 2001 | TEL2001361029              | 53.78000           | -52.52833           | 53.79833         | -52.50333         | 96.60                 |
| 1999 | TEL1999087048              | 52.45167           | -51.25833           | 52.46167         | -51.27000         | 95.95                 |
| 2005 | BAL2005100038              | 58.79200           | -62.12300           | 58.80000         | -62.13500         | 95.06                 |
| 2013 | TEL2013120006              | 56.72167           | -58.13333           | 56.71000         | -58.13167         | 93.81                 |
| 1997 | TEL1997055043              | 54.60667           | -53.15833           | 54.59500         | -53.16000         | 93.00                 |
| 2010 | TEL2010977037              | 53.92667           | -52.61500           | 53.93833         | -52.61167         | 91.38                 |
| 1997 | TEL1997055046              | 54.50833           | -53.22167           | 54.52167         | -53.22333         | 91.00                 |
| 1999 | TEL1999085028              | 58.46667           | -59.70333           | 58.45500         | -59.70167         | 88.80                 |
| 2008 | TEL2008821010              | 52.15333           | -50.71500           | 52.14167         | -50.70667         | 87.00                 |
| 2004 | TEL2004539027              | 54.40000           | -52.97000           | 54.41167         | -52.97000         | 86.40                 |
| 2012 | AQV2012107081              | 60.51368           | -61.52357           | 60.51998         | -61.53758         | 84.85                 |
| 1999 | TEL1999086114              | 52.93333           | -51.76000           | 52.94333         | -51.76667         | 84.60                 |
| 2010 | TEL2010977018              | 53.17167           | -51.91667           | 53.18333         | -51.92167         | 83.98                 |
| 2006 | TEM2006707067              | 49.55833           | -51.65167           | 49.56167         | -51.66833         | 82.05                 |
| 1999 | TEL1999085029              | 58.45500           | -59.54500           | 58.45833         | -59.56667         | 80.00                 |
| 2014 | TEL2014136023              | 54.37167           | -52.93000           | 54.38333         | -52.93333         | 79.51                 |
| 2012 | TEL2012107073              | 54.61667           | -53.04667           | 54.60333         | -53.04833         | 79.15                 |
| 1999 | TEL1999086028              | 55.39833           | -55.76500           | 55.39667         | -55.78333         | 78.30                 |
| 1998 | TEL1998071027              | 59.43667           | -59.78167           | 59.44833         | -59.77500         | 77.10                 |

| Year | Mission Number<br>and Set* | Start<br>Lat. (DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sponge<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|-----------------------|
| 2010 | TEL2010975033              | 57.00333           | -58.44000           | 56.99500         | -58.42500         | 76.46                 |
| 1997 | TEL1997054029              | 56.24667           | -57.31500           | 56.25667         | -57.32333         | 76.30                 |
| 1998 | TEL1998071010              | 58.56667           | -59.59500           | 58.57667         | -59.61000         | 75.80                 |
| 2007 | TEL2007753038              | 54.50167           | -52.99833           | 54.49667         | -53.01500         | 75.05                 |
| 2003 | TEL2003509020              | 53.83500           | -52.53500           | 53.84667         | -52.53667         | 75.00                 |
| 1996 | TEL1996039048              | 54.18000           | -52.97333           | 54.19000         | -52.98833         | 75.00                 |
| 2006 | TEL2006681049              | 55.08667           | -53.82167           | 55.09833         | -53.83333         | 75.00                 |
| 1998 | TEL1998071034              | 59.62833           | -60.51167           | 59.64000         | -60.51333         | 75.00                 |
| 1998 | TEL1998073079              | 54.08500           | -52.82500           | 54.07333         | -52.81500         | 74.15                 |
| 2014 | TEL2014135046              | 54.90000           | -53.56833           | 54.90833         | -53.58333         | 73.35                 |
| 2001 | TEL2001362011              | 52.15167           | -50.81333           | 52.16333         | -50.82167         | 73.25                 |
| 2001 | TEL2001397015              | 50.73500           | -52.46000           | 50.73167         | -52.47833         | 72.60                 |
| 2010 | TEL2010977030              | 53.44500           | -52.12833           | 53.43167         | -52.12000         | 72.45                 |
| 2008 | BAL2008103048              | 59.74500           | -60.68000           | 59.75700         | -60.69200         | 72.14                 |
| 2008 | TEL2008818026              | 57.10667           | -58.76167           | 57.09667         | -58.75667         | 71.25                 |
| 2011 | TEL2011096008              | 52.53167           | -51.31167           | 52.54167         | -51.32167         | 71.20                 |
| 1996 | TEL1996036018              | 56.00500           | -57.13167           | 56.00667         | -57.11000         | 69.70                 |
| 2008 | TEL2008821009              | 52.10833           | -50.74167           | 52.09833         | -50.73000         | 69.40                 |
| 1999 | TEL1999084023              | 59.55167           | -60.52000           | 59.56500         | -60.52500         | 67.35                 |
| 1996 | TEL1996037060              | 60.38167           | -61.40500           | 60.39500         | -61.40833         | 66.62                 |
| 2010 | TEL2010976032              | 54.40500           | -52.97500           | 54.41667         | -52.97167         | 66.49                 |
| 2007 | BAL2007102081              | 60.80700           | -61.66000           | 60.81700         | -61.67500         | 65.63                 |
| 2002 | TEL2002415037              | 52.13167           | -50.76500           | 52.14167         | -50.77667         | 65.40                 |
| 2011 | BAL2011106055              | 59.61822           | -60.50757           | 59.62790         | -60.52223         | 64.94                 |
| 1997 | TEL1997056070              | 51.25333           | -49.74000           | 51.24333         | -49.72667         | 64.60                 |
| 2005 | BAL2005100073              | 60.49300           | -61.44300           | 60.48000         | -61.43700         | 64.60                 |
| 1996 | TEM1996198070              | 49.97167           | -54.11500           | 49.98333         | -54.11000         | 63.32                 |
| 1997 | TEL1997053060              | 59.62333           | -60.28833           | 59.62833         | -60.28833         | 63.05                 |
| 2011 | TEL2011096038              | 54.44500           | -53.09333           | 54.43667         | -53.07333         | 61.76                 |
| 1998 | TEL1998074042              | 51.85333           | -50.49167           | 51.86167         | -50.50333         | 60.70                 |
| 2003 | TEL2003509054              | 55.08833           | -53.82333           | 55.10000         | -53.83333         | 60.60                 |
| 1996 | TEL1996023015              | 55.03000           | -54.05500           | 55.03500         | -54.06500         | 60.00                 |
| 1995 | TEM1995177107              | 45.47667           | -48.57833           | 45.48333         | -48.56333         | 59.41                 |
| 2013 | AQV2013108086              | 60.57042           | -62.23882           | 60.57502         | -62.26290         | 59.18                 |
| 1996 | TEL1996039054              | 54.69000           | -53.18000           | 54.70167         | -53.18500         | 58.80                 |
| 1999 | TEL1999086074              | 53.97667           | -52.81000           | 53.98667         | -52.82167         | 58.75                 |
| 2003 | TEL2003509046              | 54.37833           | -52.96333           | 54.36833         | -52.95167         | 58.40                 |
| 1996 | TEL1996036028              | 56.28833           | -57.40000           | 56.29500         | -57.41667         | 58.35                 |
| 2007 | TEL2007752034              | 52.42333           | -51.24000           | 52.43167         | -51.24667         | 57.95                 |
| 2009 | BAL2009104069              | 60.80050           | -61.36567           | 60.80000         | -61.33817         | 56.68                 |
| 1997 | TEL1997053029              | 60.39000           | -61.71167           | 60.39167         | -61.73833         | 55.75                 |

| Year | Mission Number<br>and Set* | Start<br>Lat. (DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sponge<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|-----------------------|
| 2010 | TEL2010977039              | 53.95667           | -52.78167           | 53.94667         | -52.76833         | 55.65                 |
| 1999 | TEL1999086083              | 53.38333           | -52.00167           | 53.37500         | -51.98833         | 55.00                 |
| 2006 | BAL2006101024              | 58.80800           | -62.13200           | 58.79500         | -62.12800         | 55.00                 |
| 2013 | TEL2013121054              | 55.07000           | -54.08333           | 55.07667         | -54.10167         | 54.80                 |
| 1996 | TEL1996040033              | 51.97000           | -50.61000           | 51.97833         | -50.61500         | 54.70                 |
| 2003 | TEL2003457052              | 55.27667           | -55.23167           | 55.28167         | -55.25167         | 54.70                 |
| 1998 | TEL1998072022              | 56.56000           | -58.10167           | 56.56333         | -58.11833         | 54.45                 |
| 2010 | TEL2010977031              | 53.52000           | -52.18500           | 53.51000         | -52.17667         | 53.75                 |
| 2009 | TEL2009897062              | 51.43000           | -49.98000           | 51.42000         | -49.97000         | 53.20                 |
| 2010 | BAL2010105055              | 59.49500           | -60.36617           | 59.50500         | -60.38000         | 52.83                 |
| 1999 | TEL1999086069              | 54.44000           | -53.01500           | 54.45167         | -53.00667         | 52.70                 |
| 2011 | TEL2011096026              | 53.76667           | -52.41833           | 53.75667         | -52.40833         | 52.28                 |
| 2009 | TEL2009897016              | 53.71333           | -52.44167           | 53.70333         | -52.42667         | 51.00                 |
| 2009 | BAL2009104070              | 60.60117           | -61.57650           | 60.59217         | -61.55600         | 50.89                 |
| 2014 | KIN2014109089              | 60.57313           | -61.88760           | 60.57918         | -61.90172         | 50.85                 |
| 2013 | TEL2013122022              | 52.55833           | -51.30000           | 52.54667         | -51.29000         | 50.56                 |
| 2002 | TEL2002415040              | 52.77833           | -51.50333           | 52.76833         | -51.49167         | 50.00                 |
| 1998 | TEL1998073081              | 54.01667           | -52.65833           | 54.00333         | -52.65333         | 50.00                 |
| 2006 | TEL2006681067              | 54.13333           | -52.76667           | 54.14500         | -52.77500         | 50.00                 |
| 1999 | TEL1999085085              | 55.99167           | -57.12000           | 55.98500         | -57.10000         | 50.00                 |
| 2009 | BAL2009104065              | 60.36383           | -61.55050           | 60.36250         | -61.52450         | 50.00                 |
| 2009 | BAL2009104071              | 60.41367           | -61.87533           | 60.40650         | -61.85317         | 50.00                 |
| 2010 | TEL2010977011              | 52.56000           | -51.30000           | 52.54833         | -51.29000         | 49.35                 |
| 1996 | TEL1996036072              | 56.85833           | -58.24500           | 56.86833         | -58.25333         | 49.00                 |
| 1997 | TEL1997056039              | 52.11667           | -50.76167           | 52.12833         | -50.76333         | 48.60                 |
| 2014 | KIN2014109081              | 60.27243           | -61.14712           | 60.26552         | -61.13567         | 47.65                 |
| 2005 | TEL2005611033              | 53.72833           | -52.50667           | 53.72000         | -52.49500         | 47.50                 |
| 2005 | TEL2005611018              | 52.29500           | -51.07333           | 52.30333         | -51.08667         | 47.45                 |
| 1998 | TEL1998072018              | 56.86333           | -58.30500           | 56.87333         | -58.31333         | 46.25                 |
| 2002 | TEL2002415044              | 53.23000           | -51.91000           | 53.21833         | -51.89833         | 45.75                 |
| 2008 | TEL2008817001              | 55.35000           | -55.54000           | 55.34667         | -55.52167         | 45.50                 |
| 2012 | TEL2012109034              | 53.26167           | -51.99833           | 53.27167         | -52.01000         | 45.46                 |
| 1998 | TEL1998072069              | 55.36667           | -56.21833           | 55.36833         | -56.24000         | 44.85                 |
| 2005 | TEL2005611032              | 53.68333           | -52.36667           | 53.68000         | -52.34833         | 44.85                 |
| 1996 | TEL1996039022              | 52.47500           | -51.24833           | 52.48500         | -51.26000         | 44.45                 |
| 2012 | TEL2012107068              | 54.99833           | -53.57833           | 55.00833         | -53.57500         | 44.04                 |
| 2006 | TEL2006682025              | 52.55500           | -51.29833           | 52.54500         | -51.28667         | 44.00                 |
| 2004 | TEL2004536015              | 55.66333           | -56.72833           | 55.65500         | -56.72000         | 43.90                 |
| 2008 | IEL2008821008              | 51.72500           | -50.39500           | 51.73500         | -50.40667         | 43.85                 |
| 2003 | IEL2003510031              | 51.65000           | -50.23667           | 51.64167         | -50.22500         | 43.60                 |
| 2000 | TEM2000319003              | 45.73167           | -53.96167           | 45.72333         | -53.97333         | 43.55                 |

| Year | Mission Number<br>and Set* | Start<br>Lat. (DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sponge<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|-----------------------|
| 2005 | TEL2005611020              | 52.57000           | -51.27167           | 52.56167         | -51.25667         | 43.20                 |
| 2014 | TEL2014137039              | 51.26833           | -49.75667           | 51.27833         | -49.75500         | 41.80                 |
| 2004 | TEL2004539012              | 52.93833           | -51.75333           | 52.92667         | -51.74500         | 41.45                 |
| 2004 | TEL2004539008              | 52.37000           | -51.18833           | 52.38000         | -51.20167         | 40.85                 |
| 2010 | TEL2010976020              | 55.28167           | -55.21333           | 55.28667         | -55.22500         | 40.85                 |
| 2002 | TEL2002415029              | 51.23000           | -49.71833           | 51.22000         | -49.71000         | 40.10                 |
| 2007 | TEL2007755042              | 51.47000           | -49.97833           | 51.46333         | -49.96000         | 40.00                 |
| 2006 | BAL2006101082              | 60.50200           | -62.07200           | 60.51200         | -62.09300         | 40.00                 |

**Table A1.9.** Newfoundland and Labrador Shelves Biogeographic Zone: Details of the Location of Research Vessel Sea Pen Catches used to identify the Significant Area Polygons. \*Set number is the last 3 digits of the string.C=Campelen trawl; W=Western IIA trawl.

|      |                |           |            |          |           | Sea<br>Pen |      |
|------|----------------|-----------|------------|----------|-----------|------------|------|
|      | Mission Number | Start     | Start      | End Lat. | End Long. | Weight     | Gear |
| Year | and Set*       | Lat. (DD) | Long. (DD) | (DD)     | (DD)      | (kg)       | Туре |
| 2010 | NED2010931042  | 46.22500  | -57.52000  | 46.21500 | -57.53000 | 40.00      | С    |
| 2013 | NED2013022211  | 45.74617  | -58.00417  | 45.77033 | -58.02667 | 30.62      | W    |
| 2014 | TEL2014134050  | 56.51333  | -60.00500  | 56.50333 | -59.98667 | 28.60      | С    |
| 2010 | NED2010931044  | 45.96667  | -57.38500  | 45.95500 | -57.38833 | 24.40      | С    |
| 2009 | NED2009027158  | 45.90567  | -58.14283  | 45.88283 | -58.11650 | 21.22      | W    |
| 2009 | NED2009903065  | 46.14833  | -57.54667  | 46.14167 | -57.54000 | 19.50      | С    |
| 2010 | NED2010931041  | 46.27333  | -57.53167  | 46.27333 | -57.55000 | 17.36      | С    |
| 2009 | NED2009903066  | 45.98000  | -57.39167  | 45.97000 | -57.37833 | 13.00      | С    |
| 2010 | NED2010942015  | 44.69333  | -54.11833  | 44.68833 | -54.12833 | 10.65      | С    |
| 2010 | NED2010002043  | 45.31233  | -57.18950  | 45.29150 | -57.16433 | 10.36      | W    |
| 2012 | NED2012022182  | 46.13517  | -58.42833  | 46.15217 | -58.46317 | 10.22      | W    |
| 2015 | NED2015451089  | 45.65167  | -57.04167  | 45.64333 | -57.04000 | 10.20      | С    |
| 2014 | TEL2014130040  | 46.18500  | -57.50833  | 46.17333 | -57.49833 | 9.59       | С    |
| 2010 | NED2010931092  | 45.04000  | -54.96833  | 45.03000 | -54.97667 | 9.40       | С    |
| 2008 | TEM2008830153  | 45.58317  | -57.89633  | 45.56067 | -57.87167 | 8.65       | W    |
| 2011 | NED2011402026  | 46.70667  | -58.53833  | 46.69667 | -58.52833 | 8.10       | С    |
| 2010 | NED2010931043  | 46.03333  | -57.43333  | 46.02167 | -57.42667 | 8.10       | С    |
| 2005 | NED2005656107  | 46.48167  | -57.77333  | 46.49500 | -57.77167 | 7.60       | С    |
| 2011 | NED2011402036  | 46.15167  | -57.49333  | 46.16167 | -57.50000 | 7.50       | С    |
| 2010 | NED2010931047  | 45.76500  | -56.96500  | 45.75500 | -56.95333 | 6.70       | С    |
| 2008 | TEM2008835015  | 44.71333  | -54.05667  | 44.72167 | -54.04833 | 6.40       | С    |
| 2007 | TEM2007758057  | 46.37000  | -57.62000  | 46.37333 | -57.60333 | 5.55       | С    |
| 2010 | NED2010002041  | 45.47883  | -57.60100  | 45.46000 | -57.58467 | 5.49       | W    |
| 2007 | TEM2007686041  | 45.52283  | -57.64250  | 45.51583 | -57.68083 | 5.45       | W    |
| 2012 | NED2012416075  | 46.70500  | -58.58833  | 46.70500 | -58.60500 | 5.38       | С    |
| 2013 | NED2013431047  | 46.30833  | -57.57500  | 46.29500 | -57.57167 | 5.36       | С    |

|      |                            |                    |                     |                  |                   | Sea<br>Pen     |              |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|----------------|--------------|
| Year | Mission Number<br>and Set* | Start<br>Lat. (DD) | Start<br>Long. (DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Weight<br>(kg) | Gear<br>Type |
| 2008 | TEM2008826058              | 45.95500           | -57.40667           | 45.96667         | -57.40167         | 5.10           | С            |
| 2011 | NED2011403054              | 44.73167           | -54.21000           | 44.72667         | -54.22000         | 4.92           | С            |
| 2005 | NED2005656075              | 45.48167           | -56.60500           | 45.47833         | -56.62333         | 4.70           | С            |
| 2010 | NED2010002042              | 45.39167           | -57.31283           | 45.37383         | -57.28617         | 4.54           | W            |
| 2014 | TEL2014130030              | 46.87667           | -58.63500           | 46.87500         | -58.65000         | 4.42           | С            |
| 2014 | TEL2014134015              | 56.13500           | -57.59000           | 56.12667         | -57.60667         | 4.38           | С            |
| 2007 | TEM2007686039              | 45.34950           | -57.50700           | 45.36150         | -57.54317         | 4.35           | W            |
| 2011 | NED2011402050              | 45.36000           | -56.71833           | 45.37000         | -56.72833         | 4.20           | С            |
| 2014 | TEL2014130031              | 46.83500           | -58.69333           | 46.83500         | -58.71333         | 4.10           | С            |
| 2008 | TEM2008826055              | 45.65333           | -57.01333           | 45.66667         | -57.01667         | 4.05           | С            |
| 2007 | TEL2007745155              | 46.11767           | -58.32483           | 46.14483         | -58.34483         | 3.95           | W            |
| 2015 | NED2015451076              | 46.37667           | -57.70167           | 46.38333         | -57.71167         | 3.92           | С            |
| 2007 | TEM2007758048              | 46.78167           | -58.70167           | 46.78000         | -58.68500         | 3.90           | С            |
| 2013 | NED2013431032              | 47.26167           | -58.91333           | 47.26167         | -58.90167         | 3.86           | С            |
| 2013 | NED2013431038              | 46.82500           | -58.56000           | 46.82167         | -58.54833         | 3.82           | С            |
| 2011 | NED2011401062              | 46.92000           | -58.65333           | 46.92833         | -58.64333         | 3.77           | С            |
| 2007 | TEM2007759043              | 45.24833           | -56.88167           | 45.24333         | -56.89833         | 3.75           | С            |
| 2009 | NED2009903060              | 46.35833           | -57.68667           | 46.35167         | -57.69167         | 3.75           | С            |
| 2015 | NED2015451090              | 45.47167           | -57.04333           | 45.46500         | -57.04000         | 3.72           | С            |
| 2008 | TEM2008826056              | 45.73500           | -57.03000           | 45.74167         | -57.04667         | 3.70           | С            |
| 2011 | NED2011401035              | 47.23167           | -57.03000           | 47.22833         | -57.04333         | 3.50           | С            |
| 2011 | NED2011402048              | 45.45667           | -57.08000           | 45.44833         | -57.06667         | 3.50           | С            |
| 2012 | NED2012419025              | 44.09000           | -52.96000           | 44.08500         | -52.95000         | 3.41           | С            |
| 2010 | NED2010932044              | 44.42167           | -53.55833           | 44.41833         | -53.54167         | 3.40           | С            |
| 2008 | TEM2008826057              | 45.84333           | -57.44500           | 45.84667         | -57.46333         | 3.40           | С            |
| 2007 | TEM2007759036              | 45.70833           | -57.38667           | 45.70833         | -57.37000         | 3.30           | С            |
| 2009 | NED2009902077              | 46.88167           | -58.49667           | 46.88333         | -58.47833         | 3.30           | С            |
| 2014 | NED2014018189              | 45.89117           | -58.15417           | 45.91567         | -58.17683         | 3.26           | W            |
| 2008 | TEM2008826024              | 46.82167           | -58.71333           | 46.81000         | -58.71500         | 3.20           | С            |
| 2013 | NED2013431043              | 46.64833           | -57.93500           | 46.65667         | -57.94500         | 3.00           | С            |
| 2007 | TEM2007759033              | 46.07167           | -57.54833           | 46.06500         | -57.51833         | 2.95           | С            |
| 2014 | TEL2014130041              | 45.89500           | -57.26833           | 45.90667         | -57.28000         | 2.83           | С            |
| 2011 | NED2011402022              | 46.55333           | -57.84667           | 46.56000         | -57.86000         | 2.72           | С            |
| 2015 | NED2015451083              | 46.09000           | -57.75000           | 46.08167         | -57.74833         | 2.70           | С            |
| 2007 | TEM2007686040              | 45.51600           | -57.48517           | 45.54400         | -57.48467         | 2.70           | W            |
| 2004 | TEL2004537065              | 55.80667           | -58.92667           | 55.80000         | -58.94500         | 2.55           | С            |
| 2008 | TEM2008826032              | 46.41500           | -57.69167           | 46.41833         | -57.77333         | 2.55           | С            |
| 2013 | NED2013433004              | 44.93000           | -54.49167           | 44.92167         | -54.50500         | 2.52           | С            |
| 2011 | NED2011401061              | 46.92833           | -58.75833           | 46.93833         | -58.74833         | 2.50           | С            |

|      |                            |                    |                     |                  |                   | Sea<br>Pen     |              |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|----------------|--------------|
| Year | Mission Number<br>and Set* | Start<br>Lat. (DD) | Start<br>Long. (DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Weight<br>(kg) | Gear<br>Type |
| 2011 | NED2011402049              | 45.28333           | -56.95333           | 45.27667         | -56.94000         | 2.50           | С            |
| 2011 | NED2011402053              | 45.87833           | -56.46667           | 45.87000         | -56.45333         | 2.50           | С            |
| 2008 | BAL2008103004              | 57.99167           | -59.71350           | 58.00050         | -59.73050         | 2.49           | С            |
| 2009 | NED2009913029              | 44.74000           | -54.13167           | 44.72833         | -54.12500         | 2.46           | С            |
| 2005 | NED2005656108              | 46.55833           | -57.87833           | 46.56333         | -57.89333         | 2.40           | С            |
| 2010 | NED2010931033              | 46.77000           | -58.45500           | 46.77333         | -58.43667         | 2.40           | С            |
| 2009 | NED2009903067              | 45.98833           | -57.29000           | 45.98000         | -57.27500         | 2.38           | С            |
| 2014 | TEL2014130035              | 46.55000           | -57.74333           | 46.54333         | -57.75833         | 2.34           | С            |
| 2007 | TEM2007759034              | 45.92000           | -57.31500           | 45.91333         | -57.28500         | 2.30           | С            |
| 2013 | NED2013431039              | 46.69000           | -58.62167           | 46.68500         | -58.61167         | 2.29           | С            |
| 2011 | NED2011401058              | 47.37833           | -59.11500           | 47.37167         | -59.09833         | 2.27           | С            |
| 2015 | NED2015451011              | 47.38333           | -56.42500           | 47.37667         | -56.41833         | 2.22           | С            |
| 2007 | TEM2007759035              | 45.86000           | -57.12667           | 45.85833         | -57.11000         | 2.20           | С            |
| 2011 | NED2011402047              | 45.64667           | -57.38000           | 45.63667         | -57.37167         | 2.20           | С            |
| 2010 | NED2010931046              | 45.73167           | -57.39000           | 45.72000         | -57.38833         | 2.20           | С            |
| 2007 | TEM2007759031              | 46.11333           | -57.59500           | 46.11167         | -57.61333         | 2.15           | С            |
| 2007 | TEM2007758031              | 47.52000           | -57.81333           | 47.51333         | -57.79833         | 2.15           | С            |
| 2012 | NED2012417011              | 46.36333           | -57.67833           | 46.37333         | -57.67000         | 2.10           | С            |
| 2010 | NED2010930065              | 45.89500           | -56.99500           | 45.88333         | -56.98833         | 2.07           | С            |
| 2012 | NED2012417004              | 45.97833           | -57.34667           | 45.97000         | -57.33333         | 2.00           | С            |
| 2011 | NED2011402035              | 46.09333           | -57.50500           | 46.08500         | -57.49333         | 2.00           | С            |

**Table A1.10.** Newfoundland and Labrador Shelves Biogeographic Zone: Details of the Location of Research Vessel Large Gorgonian Coral Catches used to identify the Significant Area Polygons. \*Set number is the last 3 digits of the string.

| Veer | Mission Number | Start     | Start      | End Lat. | End Long. | Large<br>Gorgonian<br>Coral<br>Weight |
|------|----------------|-----------|------------|----------|-----------|---------------------------------------|
| rear | and Set"       | Lat. (DD) | Long. (DD) | (עט)     | (עט)      | (KG)                                  |
| 2013 | AQV2013108080  | 60.55852  | -61.25612  | 60.57257 | -61.25610 | 866.90                                |
| 2011 | BAL2011106067  | 60.47233  | -61.28593  | 60.45592 | -61.27250 | 412.65                                |
| 2010 | BAL2010105080  | 60.64632  | -61.32495  | 60.63208 | -61.31115 | 307.02                                |
| 2008 | BAL2008103072  | 60.75817  | -61.21017  | 60.74900 | -61.21183 | 200.00                                |
| 2010 | BAL2010105079  | 60.57203  | -61.37953  | 60.55917 | -61.35598 | 173.85                                |
| 2008 | BAL2008103070  | 60.37483  | -61.25067  | 60.39567 | -61.24267 | 156.67                                |
| 2012 | AQV2012107083  | 60.70608  | -61.21222  | 60.69643 | -61.21550 | 154.39                                |
| 2006 | BAL2006101073  | 60.49333  | -61.39000  | 60.50333 | -61.40000 | 150.00                                |
| 2007 | 3LCANZEE07009  | 48.09950  | -48.28667  | 48.09767 | -48.24733 | 66.25                                 |
| 2012 | AQV2012107084  | 60.80692  | -61.25992  | 60.81952 | -61.25648 | 58.67                                 |

| Year | Mission Number<br>and Set* | Start<br>Lat. (DD) | Start<br>Long. (DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Large<br>Gorgonian<br>Coral<br>Weight<br>(kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|-----------------------------------------------|
| 2006 | NED2006036055              | 44.38183           | -57.34517           | 44.38483         | -57.39633         | 54.20                                         |
| 2006 | BAL2006101075              | 60.48333           | -61.30000           | 60.49667         | -61.30833         | 50.19                                         |
| 2007 | BAL2007102079              | 60.61200           | -61.27067           | 60.62500         | -61.27517         | 40.00                                         |
| 2013 | TEL2013119019              | 55.86500           | -57.33333           | 55.87500         | -57.34500         | 35.70                                         |
| 2010 | BAL2010105085              | 60.68282           | -62.30657           | 60.68615         | -62.33322         | 35.00                                         |
| 2011 | NED2011409009              | 44.83667           | -54,46333           | 44.84500         | -54.45000         | 33.40                                         |
| 2010 | BAL2010105077              | 60.22763           | -61.09982           | 60.24343         | -61.11322         | 32.00                                         |
| 2010 | TEL2010975017              | 56.02500           | -57.43833           | 56.01167         | -57.43833         | 25.00                                         |
| 2012 | NED2012022203              | 44.36533           | -57.45100           | 44.35150         | -57.47183         | 23.95                                         |
| 2007 | BAL2007102080              | 60.77350           | -61.22000           | 60.78600         | -61.22483         | 22.05                                         |
| 2013 | AQV2013108082              | 60.57968           | -61.58652           | 60.57465         | -61.55745         | 21.14                                         |
| 2009 | BAL2009104069              | 60.80050           | -61.36567           | 60.80000         | -61.33817         | 20.73                                         |
| 2011 | BAL2011106071              | 59.79310           | -62.87933           | 59.80647         | -62.87872         | 20.11                                         |
| 2008 | 3LCANZEE08011              | 48.15467           | -48.55483           | 48.17267         | -48.57883         | 19.00                                         |
| 2013 | NED2013432041              | 44.93667           | -55.01667           | 44.92833         | -55.01667         | 16.88                                         |
| 2007 | BAL2007102081              | 60.80583           | -61.65950           | 60.81717         | -61.67567         | 14.55                                         |
| 2009 | NED2009904037              | 44.81000           | -55.64167           | 44.80667         | -55.66000         | 13.70                                         |
| 2010 | NED2010931088              | 44.95667           | -55.00667           | 44.96333         | -54.99833         | 12.10                                         |
| 2013 | AQV2013108081              | 60.59977           | -61.40927           | 60.59807         | -61.38543         | 11.14                                         |
| 2010 | NED2010027138              | 44.38250           | -57.37967           | 44.37583         | -57.40217         | 11.04                                         |
| 2010 | BAL2010105082              | 60.81687           | -61.83453           | 60.80713         | -61.85832         | 10.86                                         |
| 2006 | TEL2006682045              | 50.44667           | -50.59500           | 50.46000         | -50.59667         | 10.00                                         |
| 2010 | BAL2010105055              | 59.49500           | -60.36617           | 59.50500         | -60.38000         | 9.77                                          |
| 2012 | AQV2012107085              | 60.77850           | -61.71733           | 60.78015         | -61.74267         | 9.44                                          |
| 2010 | BAL2010105078              | 60.35708           | -61.43043           | 60.37093         | -61.45083         | 9.00                                          |
| 2010 | TEL2010978063              | 52.16167           | -50.92667           | 52.16167         | -50.91500         | 8.96                                          |
| 2008 | TEL2008820016              | 53.71167           | -52.53000           | 53.72333         | -52.53833         | 8.40                                          |
| 2006 | TEM2006707032              | 48.75667           | -49.81000           | 48.74500         | -49.80167         | 8.25                                          |
| 2010 | BAL2010105084              | 60.58233           | -61.91133           | 60.59050         | -61.93028         | 6.06                                          |
| 2009 | 3LCANZEE09022              | 48.34967           | -49.06700           | 48.36133         | -49.09267         | 6.00                                          |
| 2010 | NED2010931089              | 45.06000           | -55.27667           | 45.07333         | -55.27833         | 5.23                                          |
| 2008 | 3LCANZEE08010              | 48.11067           | -48.23950           | 48.11350         | -48.20350         | 4.80                                          |
| 2006 | BAL2006101084              | 60.64333           | -61.43333           | 60.65000         | -61.45667         | 4.61                                          |
| 2015 | NED2015452053              | 44.92333           | -55.49333           | 44.93333         | -55.50167         | 4.11                                          |
| 2009 | BAL2009104068              | 60.60733           | -61.39233           | 60.61993         | -61.38900         | 4.00                                          |
| 2005 | BAL2005100066              | 60.18167           | -61.72167           | 60.19333         | -61.73833         | 3.75                                          |
| 2014 | TEL2014137018              | 51.98833           | -50.73833           | 52.00000         | -50.74833         | 3.50                                          |
| 2004 | TEL2004539008              | 52.37000           | -51.18833           | 52.38000         | -51.20167         | 3.40                                          |

|      | Mission Number | Start     | Start      | End Lat. | End Long. | Large<br>Gorgonian<br>Coral<br>Weight |
|------|----------------|-----------|------------|----------|-----------|---------------------------------------|
| Year | and Set*       | Lat. (DD) | Long. (DD) | (DD)     | (DD)      | (kg)                                  |
| 2013 | TEL2013123041  | 51.67500  | -50.39333  | 51.68333 | -50.39833 | 3.36                                  |
| 2009 | NED2009913026  | 44.82333  | -54.49333  | 44.83167 | -54.49500 | 3.29                                  |
| 2007 | TEM2007760037  | 43.87167  | -52.58833  | 43.88000 | -52.60000 | 2.96                                  |
| 2009 | BAL2009104061  | 60.04833  | -61.00250  | 60.03750 | -60.98633 | 2.86                                  |
| 2012 | NED2012420097  | 48.78333  | -49.82833  | 48.77333 | -49.82333 | 2.81                                  |
| 2006 | BAL2006101077  | 60.17000  | -61.78833  | 60.18167 | -61.79000 | 2.80                                  |
| 2009 | TEL2009895020  | 48.39167  | -49.07167  | 48.38833 | -49.05833 | 2.75                                  |
| 2012 | NED2012424030  | 44.63667  | -54.07000  | 44.63500 | -54.08667 | 2.68                                  |
| 2007 | TEL2007755037  | 51.94833  | -50.71500  | 51.95833 | -50.72833 | 2.63                                  |
| 2010 | TEL2010975021  | 56.20833  | -57.25500  | 56.20333 | -57.24333 | 2.53                                  |
| 2005 | TEM2005618061  | 44.82667  | -54.49167  | 44.83333 | -54.47667 | 2.52                                  |
| 2010 | TEL2010979032  | 48.73167  | -49.66333  | 48.74167 | -49.67667 | 2.50                                  |
| 2005 | TEL2005611039  | 54.63833  | -52.74500  | 54.62667 | -52.75167 | 2.42                                  |
| 2008 | BAL2008103074  | 60.77600  | -62.12500  | 60.77533 | -62.14283 | 2.25                                  |
| 2010 | NED2010930014  | 46.51500  | -54.61833  | 46.50167 | -54.61833 | 2.22                                  |
| 2005 | TEM2005627035  | 44.73333  | -54.28833  | 44.73333 | -54.27167 | 2.02                                  |
| 2012 | NED2012424033  | 44.43500  | -53.62000  | 44.43833 | -53.63000 | 1.96                                  |
| 2009 | TEL2009894002  | 44.61333  | -54.13167  | 44.61167 | -54.11333 | 1.83                                  |
| 2012 | NED2012424044  | 43.78833  | -52.48167  | 43.78667 | -52.49500 | 1.79                                  |
| 2009 | TEL2009898039  | 48.12167  | -48.36167  | 48.12000 | -48.38000 | 1.79                                  |
| 2014 | KIN2014109090  | 60.79007  | -61.38135  | 60.79203 | -61.41993 | 1.62                                  |
| 2007 | 3LCANZEE07008  | 48.14517  | -48.42867  | 48.14133 | -48.39350 | 1.54                                  |
| 2009 | BAL2009104070  | 60.60117  | -61.57650  | 60.59217 | -61.55600 | 1.53                                  |
| 2011 | BAL2011106073  | 60.38985  | -63.08163  | 60.39235 | -63.10705 | 1.46                                  |
| 2011 | BAL2011106068  | 60.40958  | -61.71427  | 60.41343 | -61.69083 | 1.43                                  |
| 2009 | TEL2009896006  | 54.12000  | -52.68333  | 54.11000 | -52.67500 | 1.40                                  |
| 2007 | BAL2007102082  | 60.74200  | -61.90500  | 60.75500 | -61.90983 | 1.36                                  |
| 2008 | TEL2008817011  | 55.71333  | -56.97167  | 55.71833 | -56.99167 | 1.35                                  |
| 2011 | BAL2011106072  | 60.07970  | -62.89383  | 60.09428 | -62.89113 | 1.32                                  |
| 2010 | TEL2010978064  | 52.02167  | -50.66333  | 52.01167 | -50.65167 | 1.30                                  |
| 2014 | TEL2014134016  | 56.33833  | -57.66667  | 56.32667 | -57.65167 | 1.24                                  |
| 2006 | TEM2006707011  | 47.65000  | -50.58167  | 47.64333 | -50.56833 | 1.03                                  |
| 2008 | TEM2008838013  | 46.36000  | -49.45333  | 46.35833 | -49.43667 | 1.00                                  |

**Table A1.11.** Newfoundland and Labrador Shelves Biogeographic Zone: Details of the Location of Research Vessel Small Gorgonian Coral Catches used to identify the Significant Area Polygons. \*Set number is the last 3 digits of the string.

|      | Missian Number | Ctort     | Clart      | Final Lat        | Fadlans           | Small<br>Gorgonian<br>Coral |
|------|----------------|-----------|------------|------------------|-------------------|-----------------------------|
| Year | and Set*       | Lat. (DD) | Long. (DD) | End Lat.<br>(DD) | End Long.<br>(DD) | (kg)                        |
| 2005 | NED2005656066  | 44.82667  | -56.10333  | 44.83000         | -56.09333         | 2.80                        |
| 2010 | NED2010942015  | 44.69333  | -54.11833  | 44.68833         | -54.12833         | 2.60                        |
| 2009 | TEL2009894010  | 43.93167  | -52.77667  | 43.94167         | -52.78667         | 1.75                        |
| 2005 | TEM2005619047  | 43.93667  | -52.62833  | 43.94000         | -52.64167         | 1.45                        |
| 2008 | TEL2008817027  | 56.26667  | -57.53500  | 56.27500         | -57.54833         | 1.40                        |
| 2015 | NED2015453013  | 44.45667  | -53.72000  | 44.46500         | -53.73000         | 1.18                        |
| 2008 | TEM2008836018  | 43.85667  | -52.58167  | 43.84667         | -52.58833         | 1.05                        |
| 2011 | NED2011409013  | 44.69333  | -54.12167  | 44.68667         | -54.13167         | 0.98                        |
| 2011 | BAL2011106018  | 58.21113  | -59.75405  | 58.22243         | -59.74613         | 0.83                        |
| 2005 | TEM2005588009  | 51.30833  | -50.11667  | 51.30000         | -50.11167         | 0.76                        |
| 2012 | NED2012417093  | 44.42833  | -53.53500  | 44.43500         | -53.52500         | 0.71                        |
| 2009 | TEL2009894001  | 44.76167  | -54.49833  | 44.76833         | -54.51500         | 0.70                        |
| 2013 | NED2013438018  | 44.43500  | -53.60667  | 44.43833         | -53.59000         | 0.64                        |
| 2014 | TEL2014138042  | 50.91833  | -49.74333  | 50.92667         | -49.73167         | 0.60                        |
| 2011 | NED2011403066  | 44.13333  | -52.96500  | 44.13500         | -52.98167         | 0.60                        |
| 2007 | TEM2007760031  | 44.69500  | -54.11333  | 44.69667         | -54.10167         | 0.56                        |
| 2008 | TEM2008827044  | 43.74333  | -52.22500  | 43.74833         | -52.23833         | 0.52                        |
| 2012 | NED2012419025  | 44.09000  | -52.96000  | 44.08500         | -52.95000         | 0.50                        |
| 2010 | NED2010932067  | 44.07833  | -52.91667  | 44.07167         | -52.90167         | 0.50                        |
| 2007 | TEL2007755066  | 50.52000  | -50.75167  | 50.53167         | -50.75333         | 0.45                        |
| 2009 | NED2009905023  | 43.76333  | -52.39333  | 43.77500         | -52.40333         | 0.44                        |
| 2010 | NED2010947022  | 50.67167  | -54.47500  | 50.67667         | -54.49167         | 0.40                        |
| 2010 | NED2010932044  | 44.42167  | -53.55833  | 44.41833         | -53.54167         | 0.40                        |
| 2013 | TEL2013119001  | 55.36833  | -55.69667  | 55.37333         | -55.70833         | 0.39                        |
| 2015 | NED2015453027  | 43.98167  | -52.64500  | 43.97667         | -52.63167         | 0.38                        |
| 2008 | TEL2008817028  | 56.33833  | -57.57333  | 56.34667         | -57.58667         | 0.37                        |
| 2013 | NED2013433010  | 44.09667  | -52.98333  | 44.09000         | -52.99833         | 0.31                        |
| 2009 | NED2009905022  | 43.82333  | -52.56667  | 43.82833         | -52.58000         | 0.29                        |
| 2007 | TEM2007771025  | 44.72667  | -54.30833  | 44.72667         | -54.32000         | 0.28                        |
| 2011 | TEL2011096011  | 52.84333  | -51.72667  | 52.83500         | -51.71333         | 0.26                        |
| 2007 | TEM2007771027  | 44.37500  | -53.38833  | 44.36833         | -53.37167         | 0.26                        |
| 2008 | TEM2008827040  | 43.93167  | -52.61167  | 43.92500         | -52.59833         | 0.23                        |
| 2014 | TEL2014139048  | 43.82167  | -52.54833  | 43.82500         | -52.53000         | 0.23                        |
| 2005 | TEM2005627035  | 44.73333  | -54.28833  | 44.73333         | -54.27167         | 0.22                        |
| 2008 | TEM2008835019  | 44.64333  | -53.95000  | 44.64000         | -53.96333         | 0.21                        |
| 2013 | NED2013433008  | 44.45167  | -53.70833  | 44.45000         | -53.69667         | 0.20                        |

| Year | Mission Number<br>and Set* | Start<br>Lat. (DD) | Start<br>Long. (DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Small<br>Gorgonian<br>Coral<br>Weight<br>(kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|-----------------------------------------------|
| 2008 | TEM2008835013              | 44.76667           | -54.42667           | 44.75833         | -54.41333         | 0.20                                          |
| 2008 | TEM2008838013              | 46.36000           | -49.45333           | 46.35833         | -49.43667         | 0.20                                          |
| 2006 | TEL2006680016              | 57.21500           | -59.07000           | 57.22667         | -59.08167         | 0.20                                          |
| 2006 | TEL2006679029              | 56.60000           | -58.18833           | 56.61000         | -58.20167         | 0.20                                          |
| 2013 | TEL2013123039              | 51.43333           | -49.95833           | 51.42333         | -49.94500         | 0.20                                          |
| 2007 | TEM2007759046              | 44.80667           | -56.14500           | 44.80500         | -56.16167         | 0.20                                          |
| 2007 | TEM2007759077              | 44.78500           | -54.43000           | 44.78333         | -54.41667         | 0.20                                          |

**Table A1.12.** Hudson Strait and Ungava Bay: Details of the Location of Research Vessel Sponge

 Catches used to identify the Significant Area Polygons. \*Set number is the last 3 digits of the string.

| Year | Mission Number<br>and Set* | Start<br>Lat. (DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sponge<br>Weight<br>(kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|--------------------------|
| 2011 | PAA2011117102              | 59.95787           | -66.96861           | 59.96161         | -66.94982         | 8.754                    |
| 2009 | PAA2009007119              | 62.97383           | -77.95183           | 62.96467         | -77.95167         | 4.613                    |
| 2009 | PAA2009007056              | 61.64667           | -66.23383           | 61.65683         | -66.23550         | 4.221                    |
| 2011 | PAA2011117045              | 61.59906           | -66.23395           | 61.59450         | -66.25588         | 3.404                    |
| 2009 | PAA2009007045              | 60.63767           | -68.60300           | 60.64683         | -68.59017         | 3.252                    |
| 2009 | PAA2009007147              | 63.29083           | -73.04150           | 63.28367         | -73.02450         | 3.147                    |
| 2009 | PAA2009007091              | 62.49350           | -70.06833           | 62.49317         | -70.08883         | 2.781                    |
| 2009 | PAA2009007046              | 60.88850           | -68.76117           | 60.89517         | -68.77450         | 2.754                    |
| 2011 | PAA2011117069              | 61.74660           | -69.40123           | 61.73596         | -69.40771         | 2.545                    |
| 2007 | PAA2009007037              | 62.20333           | -68.72517           | 62.20305         | -68.74778         | 2.542                    |
| 2011 | PAA2011117046              | 61.86658           | -66.76842           | 61.85627         | -66.76769         | 2.479                    |
| 2007 | PAA2009007073              | 61.21032           | -64.91152           | 61.21210         | -64.89832         | 2.444                    |
| 2007 | PAA2009007038              | 61.11483           | -69.11263           | 61.11278         | -69.08972         | 2.224                    |
| 2007 | PAA2009007010              | 61.59747           | -66.21477           | 61.58678         | -66.21282         | 2.184                    |
| 2007 | PAA2009007062              | 60.01433           | -66.42883           | 60.01767         | -66.42550         | 2.112                    |
| 2009 | PAA2009007120              | 63.02850           | -77.30883           | 63.01783         | -77.30433         | 2.055                    |

**Table A1.13.** Eastern Arctic Biogeographic Zone, Davis Strait: Details of the Location of Research Vessel Sponge Catches from Alfredo Trawls used to identify the Significant Area Polygons. \*Set number is the last 3 digits of the string.

| Year | Mission Number<br>and Set* | Start Lat.<br>(DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sponge<br>Weight<br>(kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|--------------------------|
| 2014 | PAA2014007142              | 63.02763           | -60.67272           | 63.01992         | -60.62243         | 1088.322                 |
| 2013 | PAA2013008137              | 61.70485           | -60.65048           | 61.71987         | -60.65288         | 528.998                  |
| 2012 | PAA2012007155              | 66.91700           | -60.16643           | 66.89253         | -60.15118         | 419.700                  |
| 2013 | PAA2013008136              | 61.68727           | -61.12232           | 61.68443         | -61.08505         | 413.100                  |

| Year | Mission Number<br>and Set* | Start Lat.<br>(DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sponge<br>Weight<br>(kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|--------------------------|
| 2014 | PAA2014007134              | 61.89890           | -60.13640           | 61.86890         | -60.13235         | 399.425                  |
| 2000 | PAA2000002017              | 61.79000           | -60.59000           | 61.77000         | -60.60000         | 350.000                  |
| 2011 | PAA2011117121              | 61.94133           | -61.27989           | 61.92167         | -61.26488         | 301.500                  |
| 2008 | PAA2008007067              | 67.06183           | -60.64783           | 67.03675         | -60.63187         | 250.000                  |
| 2011 | PAA2011117022              | 62.52859           | -59.20289           | 62.54439         | -59.23940         | 233.150                  |
| 2013 | PAA2013008056              | 61.87438           | -63.37695           | 61.85992         | -63.40908         | 215.750                  |
| 2013 | PAA2013008135              | 61.76735           | -61.72832           | 61.74850         | -61.70205         | 172.950                  |
| 2012 | PAA2012007194              | 66.82927           | -58.50340           | 66.83135         | -58.56127         | 168.224                  |
| 2010 | PAA2010009115              | 66.84350           | -59.99717           | 66.82003         | -59.98455         | 168.050                  |
| 2011 | PAA2011117023              | 62.55180           | -59.52723           | 62.57452         | -59.53568         | 162.900                  |
| 2014 | PAA2014007092              | 66.14090           | -58.61472           | 66.16238         | -58.64475         | 153.424                  |
| 2010 | PAA2010009161              | 66.55412           | -58.96755           | 66.53023         | -58.98213         | 152.750                  |
| 2000 | PAA2000002026              | 61.94000           | -61.27000           | 61.92000         | -61.25000         | 150.000                  |
| 2011 | PAA2011117114              | 61.90894           | -63.63715           | 61.92445         | -63.59632         | 140.579                  |
| 2006 | PAA2006008011              | 66.92167           | -60.18567           | 66.94050         | -60.21500         | 133.450                  |
| 2013 | PAA2013008052              | 62.04287           | -61.47677           | 62.02062         | -61.50008         | 132.364                  |
| 2011 | PAA2011117037              | 61.75708           | -63.17784           | 61.74090         | -63.18217         | 131.768                  |
| 2013 | PAA2013008045              | 62.98347           | -60.30927           | 62.95920         | -60.31075         | 126.473                  |
| 2014 | PAA2014007004              | 66.78685           | -60.09917           | 66.76540         | -60.11338         | 124.100                  |
| 2010 | PAA2010009155              | 66.81430           | -58.45597           | 66.80987         | -58.39535         | 123.850                  |
| 2011 | PAA2011117124              | 62.17897           | -61.21684           | 62.20351         | -61.21690         | 123.826                  |
| 2000 | PAA2000002033              | 62.33000           | -61.00000           | 62.35000         | -61.00000         | 120.000                  |
| 2014 | PAA2014007088              | 66.82693           | -58.49283           | 66.82817         | -58.55197         | 117.793                  |
| 2013 | PAA2013008147              | 62.62903           | -59.67562           | 62.60567         | -59.68063         | 115.396                  |
| 2011 | PAA2011117132              | 63.24716           | -60.16543           | 63.26452         | -60.19422         | 107.525                  |
| 2011 | PAA2011117119              | 62.06004           | -61.74539           | 62.03883         | -61.72220         | 107.149                  |
| 2013 | PAA2013008145              | 62.43510           | -59.78475           | 62.41438         | -59.77095         | 104.750                  |
| 2008 | PAA2008007049              | 66.82817           | -58.47145           |                  |                   | 100.000                  |
| 2000 | PAA2000002028              | 62.11000           | -60.85000           | 62.12000         | -60.86000         | 100.000                  |
| 2000 | PAA2000002030              | 62.20000           | -60.86000           | 62.23000         | -60.88000         | 100.000                  |
| 2011 | PAA2011117028              | 62.28608           | -59.91905           | 62.26182         | -59.91587         | 98.903                   |
| 1999 | PAA1999001012              | 66.82000           | -60.28000           | 66.84000         | -60.28300         | 98.590                   |
| 2014 | PAA2014007124              | 62.52203           | -59.39858           | 62.54528         | -59.40400         | 94.400                   |
| 1999 | PAA1999001004              | 66.29000           | -59.36000           | 66.31000         | -59.36200         | 90.500                   |
| 2011 | PAA2011117169              | 65.66646           | -57.76882           | 65.64293         | -57.76118         | 88.852                   |
| 2000 | PAA2000002016              | 62.09000           | -60.10000           | 62.06000         | -60.12000         | 88.250                   |
| 2013 | PAA2013008047              | 62.76543           | -61.43020           | 62.74237         | -61.44598         | 87.950                   |
| 2010 | PAA2010009168              | 66.42807           | -57.70140           | 66.40437         | -57.71060         | 85.943                   |
| 2006 | PAA2006008044              | 69.23160           | -64.35775           | 69.24890         | -64.39367         | 83.124                   |
| 2013 | PAA2013008141              | 62.05390           | -60.09182           | 62.03137         | -60.09517         | 83.030                   |

**Table A1.14.** Eastern Arctic Biogeographic Zone, Davis Strait: Details of the Location of Research Vessel Sponge Catches using Campelen Trawls used to identify the Significant Area Polygons. \*Set number is last 3 digits of the string.

|      | Mission Number | Start     | Start Long. | End Lat. | End Long. | Sponge      |
|------|----------------|-----------|-------------|----------|-----------|-------------|
| Year | and Set*       | Lat. (DD) | (DD)        | (DD)     | (DD)      | Weight (kg) |
| 2006 | BAL2006101090  | 61.27300  | -60.87200   | 61.27667 | -60.89833 | 2000.000    |
| 2005 | BAL2005100220  | 63.03700  | -60.60300   | 62.02333 | -60.61500 | 1500.000    |
| 2008 | BAL2008103076  | 61.57200  | -60.96000   | 61.56383 | -60.97267 | 1027.120    |
| 2008 | BAL2008103095  | 62.98200  | -60.61300   | 62.97133 | -60.62733 | 1000.000    |
| 2007 | BAL2007102104  | 63.02300  | -60.64200   | 63.01467 | -60.66667 | 900.000     |
| 2009 | BAL2009104254  | 63.02933  | -60.62983   | 63.02150 | -60.65283 | 800.000     |
| 2005 | BAL2005100236  | 61.76300  | -60.99300   | 61.76000 | -60.97000 | 800.000     |
| 2007 | BAL2007102083  | 61.64000  | -61.33200   | 61.64133 | -61.36017 | 550.700     |
| 2008 | BAL2008103158  | 64.58500  | -58.89800   | 64.57167 | -58.91033 | 504.130     |
| 2008 | BAL2008103078  | 61.76700  | -62.27500   | 61.76817 | -62.25767 | 500.000     |
| 2007 | BAL2007102210  | 61.63000  | -63.33700   | 61.63333 | -63.30933 | 500.000     |
| 2008 | BAL2008103096  | 63.13800  | -60.66300   | 63.15117 | -60.67317 | 500.000     |
| 2006 | BAL2006101097  | 62.03000  | -60.86200   | 62.04000 | -60.87667 | 500.000     |
| 2010 | BAL2010105263  | 63.05415  | -60.42313   | 63.06728 | -60.41015 | 305.973     |
| 2006 | BAL2006101102  | 61.76500  | -62.31700   | 61.77167 | -62.29000 | 300.000     |
| 2006 | BAL2006101095  | 61.77000  | -61.22700   | 61.78167 | -61.22667 | 300.000     |
| 2007 | BAL2007102089  | 61.90200  | -62.37200   | 61.89250 | -62.39350 | 300.000     |
| 2007 | BAL2007102100  | 62.91200  | -61.07200   | 62.90267 | -61.09333 | 300.000     |
| 2010 | BAL2010105282  | 61.67685  | -61.12683   | 61.68637 | -61.10273 | 255.099     |
| 2010 | BAL2010105280  | 61.86642  | -60.77252   | 61.85375 | -60.78200 | 250.830     |
| 2008 | BAL2008103077  | 61.65000  | -60.81300   | 61.64317 | -60.82500 | 225.940     |
| 2005 | BAL2005100237  | 61.46300  | -61.51000   | 61.45333 | -61.52833 | 200.000     |
| 2007 | BAL2007102086  | 61.72800  | -61.96000   | 61.72100 | -61.98600 | 200.000     |
| 2005 | BAL2005100234  | 61.89300  | -61.22000   | 61.88167 | -61.20167 | 200.000     |
| 2012 | AQV2012107094  | 61.84818  | -60.89045   | 61.85788 | -60.90613 | 191.127     |
| 2010 | BAL2010105180  | 61.68970  | -63.07025   | 61.67440 | -63.06718 | 156.751     |
| 2007 | BAL2007102209  | 61.59800  | -63.72800   | 61.60650 | -63.70600 | 156.460     |
| 2007 | BAL2007102152  | 64.59200  | -58.77700   | 64.57883 | -58.79383 | 155.190     |
| 2009 | BAL2009104255  | 62.83983  | -60.74117   | 62.83317 | -60.72283 | 151.788     |
| 2013 | AQV2013108142  | 61.51842  | -63.50073   | 61.52433 | -63.48210 | 151.226     |
| 2006 | BAL2006101096  | 61.95200  | -61.29000   | 61.96333 | -61.27833 | 150.000     |
| 2007 | BAL2007102211  | 61.57700  | -63.30000   | 61.58217 | -63.27933 | 150.000     |
| 2005 | BAL2005100184  | 65.59200  | -58.81200   | 65.60167 | -58.83500 | 144.000     |
| 2011 | BAL2011106177  | 63.08680  | -60.64975   | 63.07665 | -60.66527 | 130.000     |
| 2011 | BAL2011106081  | 61.72250  | -60.78743   | 61.73640 | -60.79367 | 129.525     |
| 2013 | AQV2013108280  | 61.75342  | -62.51582   | 61.76013 | -62.49653 | 125.000     |
| 2008 | BAL2008103175  | 65.47300  | -57.97300   | 65.45867 | -57.97267 | 120.000     |
| 2005 | BAL2005100235  | 61.84800  | -61.23000   | 61.83500 | -61.21833 | 120.000     |

| Year | Mission Number<br>and Set* | Start<br>Lat. (DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sponge<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|-----------------------|
| 2007 | BAL2007102150              | 64.25500           | -59.15500           | 64.24067         | -59.15100         | 117.330               |
| 2007 | BAL2007102125              | 63.70700           | -60.31800           | 63.69383         | -60.32867         | 115.520               |
| 2010 | BAL2010105276              | 61.77282           | -61.64453           | 61.77517         | -61.61680         | 110.891               |
| 2010 | BAL2010105275              | 61.83857           | -62.30048           | 61.84452         | -62.27562         | 110.205               |
| 2005 | BAL2005100112              | 61.92800           | -62.81500           | 61.91333         | -62.81500         | 108.920               |
| 2005 | BAL2005100226              | 62.63300           | -61.20800           | 62.62333         | -61.19000         | 102.000               |
| 2010 | BAL2010105181              | 61.70067           | -63.21193           | 61.69040         | -63.23290         | 101.521               |
| 2008 | BAL2008103179              | 66.15000           | -59.87200           | 66.16317         | -59.87717         | 101.240               |
| 2013 | AQV2013108281              | 61.73862           | -61.74940           | 61.73373         | -61.73178         | 100.013               |
| 2007 | BAL2007102149              | 64.20700           | -59.09000           | 64.19417         | -59.10650         | 100.000               |
| 2006 | BAL2006101089              | 61.20200           | -61.38800           | 61.21333         | -61.38000         | 100.000               |
| 2006 | BAL2006101241              | 61.94200           | -63.58000           | 61.95333         | -63.56833         | 100.000               |
| 2006 | BAL2006101091              | 61.37700           | -61.34500           | 61.39000         | -61.33833         | 100.000               |
| 2008 | BAL2008103094              | 62.98700           | -60.95000           | 63.00067         | -60.94683         | 100.000               |
| 2005 | BAL2005100232              | 62.11300           | -61.45200           | 62.10500         | -61.47500         | 97.200                |
| 2008 | BAL2008103161              | 64.96500           | -58.53300           | 64.95317         | -58.54783         | 90.370                |
| 2008 | BAL2008103080              | 61.93800           | -62.58500           | 61.93300         | -62.56583         | 90.000                |
| 2012 | AQV2012107128              | 61.63120           | -63.56428           | 61.63842         | -63.55283         | 81.892                |
| 2013 | AQV2013108275              | 62.21497           | -60.97392           | 62.20260         | -60.96267         | 80.968                |
| 2014 | KIN2014109227              | 65.10053           | -58.03595           | 65.09007         | -58.05082         | 76.533                |
| 2013 | AQV2013108147              | 61.85337           | -63.64582           | 61.85857         | -63.62120         | 76.337                |
| 2014 | KIN2014109322              | 61.64850           | -63.39537           | 61.65008         | -63.37752         | 75.566                |
| 2010 | BAL2010105279              | 62.11082           | -60.87435           | 62.09663         | -60.87160         | 75.000                |
| 2009 | BAL2009104267              | 61.95067           | -61.09050           | 61.94483         | -61.11550         | 72.000                |
| 2013 | AQV2013108145              | 61.77457           | -63.44222           | 61.77690         | -63.42167         | 70.626                |
| 2012 | AQV2012107129              | 61.59720           | -63.44695           | 61.58620         | -63.45150         | 68.445                |
| 2012 | AQV2012107112              | 61.83763           | -62.60432           | 61.82493         | -62.60127         | 67.450                |
| 2005 | BAL2005100188              | 65.70200           | -59.07200           | 65.68833         | -59.06167         | 65.000                |
| 2010 | BAL2010105278              | 62.17430           | -61.06937           | 62.16078         | -61.06268         | 62.030                |
| 2014 | KIN2014109327              | 61.98615           | -63.52990           | 61.98562         | -63.55547         | 60.755                |
| 2012 | AQV2012107093              | 61.87795           | -61.37597           | 61.88265         | -61.35173         | 60.061                |
| 2008 | BAL2008103160              | 64.95200           | -58.31800           | 64.93917         | -58.33333         | 60.020                |
| 2006 | BAL2006101226              | 61.70800           | -63.15300           | 61.70000         | -63.13167         | 60.000                |
| 2010 | BAL2010105283              | 61.60972           | -61.39430           | 61.62113         | -61.37622         | 55.316                |
| 2013 | AQV2013108148              | 61.94148           | -63.53653           | 61.93975         | -63.56218         | 55.122                |
| 2010 | BAL2010105119              | 65.81220           | -57.79882           | 65.82828         | -57.82098         | 54.748                |
| 2011 | BAL2011106082              | 61.85785           | -61.16688           | 61.86450         | -61.19130         | 54.351                |
| 2007 | BAL2007102205              | 61.92800           | -63.48500           | 61.92600         | -63.51267         | 52.900                |
| 2006 | BAL2006101124              | 65.12500           | -58.46000           | 65.13667         | -58.44333         | 51.440                |
| 2011 | BAL2011106209              | 61.65390           | -63.24807           | 61.64677         | -63.27683         | 51.082                |
| 2013 | AQV2013108146              | 61.82147           | -63.45443           | 61.82335         | -63.43530         | 50.534                |

| Year | Mission Number<br>and Set* | Start<br>Lat. (DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sponge<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|-----------------------|
| 2009 | BAL2009104265              | 61.71700           | -62.05250           | 61.71833         | -62.07983         | 50.000                |
| 2007 | BAL2007102207              | 61.90700           | -63.51700           | 61.91933         | -63.52300         | 50.000                |
| 2007 | BAL2007102136              | 64.65500           | -60.86700           | 64.64183         | -60.86883         | 49.900                |
| 2013 | AQV2013108278              | 61.83920           | -62.87523           | 61.84065         | -62.89378         | 48.564                |
| 2006 | BAL2006101123              | 65.09700           | -58.19800           | 65.11000         | -58.18667         | 48.240                |
| 2014 | KIN2014109326              | 61.94608           | -63.24693           | 61.95503         | -63.26385         | 46.505                |
| 2007 | BAL2007102163              | 65.84200           | -60.16500           | 65.82850         | -60.16733         | 45.000                |
| 2012 | AQV2012107091              | 61.59868           | -61.40358           | 61.61232         | -61.40747         | 44.250                |
| 2009 | BAL2009104142              | 61.80667           | -63.27900           | 61.80083         | -63.30233         | 43.450                |
| 2014 | KIN2014109228              | 65.16237           | -58.18915           | 65.15158         | -58.20615         | 43.130                |
| 2012 | AQV2012107130              | 61.62578           | -63.27643           | 61.61315         | -63.27718         | 41.164                |
| 2011 | BAL2011106085              | 61.90190           | -62.53327           | 61.91340         | -62.54883         | 40.713                |
| 2009 | BAL2009104143              | 61.95217           | -63.20067           | 61.94017         | -63.20650         | 40.000                |
| 2006 | BAL2006101092              | 61.48700           | -61.80500           | 61.48833         | -61.83333         | 40.000                |
| 2007 | BAL2007102103              | 62.96800           | -60.91800           | 62.95883         | -60.94200         | 40.000                |
| 2007 | BAL2007102170              | 65.46500           | -57.77800           | 65.45433         | -57.78567         | 40.000                |
| 2011 | BAL2011106211              | 61.64957           | -63.28268           | 61.63992         | -63.29675         | 39.818                |
| 2013 | AQV2013108282              | 61.63312           | -61.39322           | 61.62663         | -61.37905         | 39.428                |
| 2012 | AQV2012107162              | 61.93382           | -63.54263           | 61.92348         | -63.52807         | 38.172                |
| 2005 | BAL2005100109              | 62.17300           | -63.55300           | 62.16500         | -63.53500         | 38.170                |
| 2005 | BAL2005100096              | 61.91700           | -63.78800           | 61.96167         | -63.79667         | 38.000                |
| 2009 | BAL2009104094              | 61.44767           | -63.78283           | 61.44517         | -63.80683         | 37.920                |
| 2013 | AQV2013108143              | 61.68915           | -63.25678           | 61.69895         | -63.23732         | 37.330                |
| 2005 | BAL2005100111              | 62.18500           | -62.79300           | 62.18167         | -62.82167         | 36.720                |
| 2011 | BAL2011106083              | 61.93805           | -61.22777           | 61.93783         | -61.25597         | 36.613                |
| 2005 | BAL2005100219              | 63.23300           | -60.41200           | 63.22000         | -60.41833         | 35.800                |
| 2014 | KIN2014109328              | 62.07612           | -63.45265           | 62.07938         | -63.42868         | 35.703                |
| 2008 | BAL2008103162              | 64.91800           | -58.97300           | 64.90717         | -58.98767         | 35.630                |
| 2006 | BAL2006101249              | 62.04800           | -65.54200           | 62.04500         | -65.57167         | 35.490                |
| 2013 | AQV2013108187              | 65.14513           | -58.46183           | 65.15052         | -58.43057         | 35.478                |
| 2010 | BAL2010105190              | 61.05393           | -63.50533           | 61.06978         | -63.51442         | 35.332                |
| 2008 | BAL2008103178              | 66.14000           | -58.75200           | 66.15167         | -58.73650         | 35.310                |
| 2006 | BAL2006101119              | 64.73700           | -58.80700           | 64.74167         | -58.78333         | 35.000                |
| 2006 | BAL2006101100              | 62.15700           | -61.54500           | 62.16667         | -61.52833         | 35.000                |
| 2007 | BAL2007102141              | 64.65700           | -59.20500           | 64.64283         | -59.20250         | 35.000                |
| 2014 | KIN2014109296              | 62.82545           | -61.01403           | 62.81982         | -61.03055         | 34.981                |
| 2010 | BAL2010105179              | 61.84830           | -63.41650           | 61.84480         | -63.44587         | 33.307                |
| 2011 | BAL2011106214              | 62.03220           | -63.56828           | 62.01968         | -63.59543         | 32.994                |
| 2007 | BAL2007102203              | 62.12200           | -63.51000           | 62.11000         | -63.49433         | 32.730                |
| 2013 | AQV2013108144              | 61.76610           | -63.13112           | 61.77300         | -63.11617         | 32.023                |
| 2010 | BAL2010105182              | 61.65632           | -63.90457           | 61.64277         | -63.90173         | 32.000                |

| Year | Mission Number<br>and Set* | Start<br>Lat. (DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sponge<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|-----------------------|
| 2008 | BAL2008103086              | 62.18700           | -61.31800           | 62.17367         | -61.32000         | 31.780                |
| 2009 | BAL2009104229              | 64.65683           | -58.67217           | 64.64450         | -58.67283         | 31.170                |
| 2007 | BAL2007102171              | 65.72300           | -57.72200           | 65.73667         | -57.71233         | 30.000                |
| 2006 | BAL2006101099              | 62.29800           | -61.13300           | 62.30833         | -61.15667         | 30.000                |
| 2011 | BAL2011106178              | 63.12572           | -60.52065           | 63.14502         | -60.51268         | 29.620                |
| 2005 | BAL2005100218              | 63.29500           | -60.25200           | 63.28167         | -60.25333         | 29.400                |
| 2005 | BAL2005100175              | 64.83000           | -58.56300           | 64.81500         | -58.57167         | 29.060                |
| 2013 | AQV2013108150              | 62.01840           | -63.53528           | 62.03017         | -63.52385         | 28.817                |
| 2012 | AQV2012107092              | 61.73517           | -61.70585           | 61.74272         | -61.68183         | 28.460                |
| 2014 | KIN2014109323              | 61.68208           | -63.28177           | 61.67958         | -63.26197         | 27.872                |
| 2014 | KIN2014109220              | 66.17215           | -59.96897           | 66.16020         | -59.96252         | 27.868                |
| 2005 | BAL2005100094              | 61.74000           | -63.40200           | 61.74833         | -63.37667         | 26.590                |
| 2014 | KIN2014109325              | 61.81207           | -63.27278           | 61.82170         | -63.25645         | 26.500                |
| 2011 | BAL2011106181              | 63.38635           | -60.25640           | 63.40647         | -60.24525         | 26.476                |
| 2006 | BAL2006101118              | 64.64500           | -58.66700           | 64.65833         | -58.65333         | 26.000                |
| 2013 | AQV2013108279              | 61.66170           | -62.75550           | 61.66228         | -62.73485         | 25.695                |
| 2005 | BAL2005100231              | 62.17700           | -61.33800           | 62.16333         | -61.34667         | 25.600                |
| 2011 | BAL2011106176              | 62.92792           | -60.75652           | 62.92450         | -60.78548         | 25.338                |
| 2009 | BAL2009104141              | 61.64617           | -63.29183           | 61.64800         | -63.26717         | 25.000                |
| 2007 | BAL2007102090              | 61.95800           | -62.61500           | 61.95383         | -62.64250         | 25.000                |
| 2008 | BAL2008103111              | 63.36000           | -60.77200           | 63.36733         | -60.75050         | 25.000                |
| 2007 | BAL2007102085              | 61.94300           | -62.15800           | 61.94000         | -62.17867         | 24.490                |
| 2014 | KIN2014109251              | 64.74195           | -58.52618           | 64.72930         | -58.53008         | 24.428                |
| 2008 | BAL2008103151              | 63.77200           | -59.72200           | 63.77100         | -59.75267         | 24.100                |
| 2005 | BAL2005100229              | 62.39800           | -61.54300           | 62.40000         | -61.51500         | 24.000                |
| 2007 | BAL2007102084              | 61.82800           | -60.87800           | 61.83100         | -60.90700         | 23.760                |
| 2011 | BAL2011106084              | 61.72997           | -62.61718           | 61.72807         | -62.64845         | 22.665                |
| 2014 | KIN2014109158              | 62.20405           | -62.22047           | 62.21132         | -62.19990         | 22.500                |
| 2006 | BAL2006101120              | 64.89500           | -58.40300           | 64.90833         | -58.40667         | 22.500                |
| 2005 | BAL2005100114              | 62.10800           | -62.14200           | 62.12167         | -62.13500         | 21.780                |
| 2008 | BAL2008103153              | 64.20800           | -59.42200           | 64.19517         | -59.42967         | 21.300                |
| 2005 | BAL2005100185              | 65.38700           | -59.11800           | 65.37333         | -59.11000         | 21.200                |
| 2012 | AQV2012107174              | 63.06620           | -60.46115           | 63.08075         | -60.45282         | 21.000                |
| 2013 | AQV2013108149              | 62.08545           | -63.44520           | 62.09708         | -63.43630         | 20.981                |
| 2008 | BAL2008103176              | 65.65500           | -58.11700           | 65.64233         | -58.09933         | 20.880                |
| 2009 | BAL2009104262              | 61.91633           | -62.94850           | 61.92867         | -62.94400         | 20.000                |
| 2009 | BAL2009104268              | 61.68450           | -61.85283           | 61.68267         | -61.88050         | 20.000                |
| 2007 | BAL2007102213              | 61.36800           | -64.02200           | 61.35883         | -64.04500         | 20.000                |
| 2006 | BAL2006101239              | 62.14200           | -63.45300           | 62.13500         | -63.42833         | 20.000                |

**Table A1.15.** Eastern Arctic Biogeographic Zone, Davis Strait: Details of the Location of Research Vessel Sponge Catches with Cosmos Trawls used to identify the Significant Area Polygons. \*Set number is the last 3 digits of the string.

| Year | Mission Number<br>and Set* | Start<br>Lat. (DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sponge<br>Weight<br>(kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|--------------------------|
| 2006 | PAA2006005100              | 66.29000           | -58.42350           | 66.29617         | -58.40617         | 603.800                  |
| 2006 | PAA2006005093              | 66.41777           | -59.23245           | 66.40853         | -59.22227         | 195.900                  |
| 2010 | PAA2010009104              | 67.03782           | -60.50720           | 67.02837         | -60.50612         | 168.100                  |
| 2008 | PAA2008007066              | 67.13367           | -60.71033           | 67.12432         | -60.69650         | 147.600                  |
| 2008 | PAA2008007048              | 66.61433           | -58.83467           | 66.62427         | -58.82730         | 139.400                  |
| 2008 | PAA2008007035              | 66.47083           | -59.12767           | 66.45945         | -59.11825         | 76.500                   |
| 2006 | PAA2006005092              | 66.43463           | -59.57798           | 66.42828         | -59.55770         | 70.315                   |
| 2006 | PAA2006005089              | 67.12583           | -60.56483           | 67.11567         | -60.56217         | 53.145                   |
| 2010 | PAA2010009167              | 66.39263           | -57.82317           | 66.38230         | -57.81568         | 43.121                   |
| 2008 | PAA2008007040              | 66.40765           | -58.71933           | 66.39547         | -58.71592         | 40.850                   |

**Table A1.16.** Eastern Arctic Biogeographic Zone: Details of the Location of Research Vessel Sea Pen Catches with Alfredo Trawls used to identify the Significant Area Polygons. \*Set number is the last 3 digits of the string.

|      | Mission Number | Start Lat. | Start      | End Lat. | End Long. | Sea Pen     |
|------|----------------|------------|------------|----------|-----------|-------------|
| Year | and Set*       | (DD)       | Long. (DD) | (DD)     | (DD)      | Weight (kg) |
| 2000 | PAA2000002     | 65.38000   | -57.95000  | 65.37000 | -57.91000 | 5.000       |
| 2012 | PAA2012007     | 67.81010   | -62.79388  | 67.82403 | -62.81360 | 3.201       |
| 2011 | PAA2011007     | 65.19384   | -57.71988  | 65.17259 | -57.69835 | 3.150       |
| 2000 | PAA2000002     | 64.28000   | -58.32000  | 64.26000 | -58.31000 | 3.000       |
| 2010 | PAA2010009     | 74.65587   | -75.00450  | 74.66215 | -75.05523 | 2.385       |
| 2000 | PAA2000002     | 65.49000   | -58.92000  | 64.00000 | -58.76000 | 2.000       |
| 2000 | PAA2000002     | 63.97000   | -58.78000  | 65.47000 | -58.91000 | 2.000       |
| 2006 | PAA2006008     | 68.55854   | -59.37512  | 68.57033 | -59.36755 | 1.790       |
| 2008 | PAA2008007     | 68.46967   | -59.43933  | 68.49353 | -59.42368 | 1.782       |
| 2000 | PAA2000002     | 65.48000   | -58.73000  | 65.48000 | -58.66000 | 1.500       |
| 2000 | PAA2000002     | 65.36000   | -58.24000  | 65.35000 | -58.19000 | 1.500       |
| 2010 | PAA2010009     | 75.30722   | -75.25663  | 75.32952 | -75.21998 | 1.386       |
| 2012 | PAA2012007     | 74.84357   | -75.02408  | 74.86072 | -75.05397 | 1.132       |
| 2010 | PAA2010009     | 75.53365   | -73.96020  | 75.53740 | -73.86885 | 1.119       |
| 2012 | PAA2012007     | 74.98952   | -78.48975  | 74.96445 | -78.46423 | 1.051       |
| 2012 | PAA2012007     | 68.88413   | -65.37500  | 68.87165 | -65.42833 | 0.960       |
| 2012 | PAA2012007     | 73.40008   | -73.70258  | 73.37697 | -73.70988 | 0.900       |
| 2008 | PAA2008007     | 68.62585   | -59.45592  | 68.64652 | -59.42268 | 0.883       |
| 2010 | PAA2010009     | 75.47390   | -74.69687  | 75.48268 | -74.61155 | 0.815       |
| 2012 | PAA2012007     | 74.58103   | -74.74010  | 74.59807 | -74.79483 | 0.805       |
| 2010 | PAA2010009     | 74.93317   | -75.05700  | 74.94053 | -75.02583 | 0.800       |
| 2010 | PAA2010009     | 75.10010   | -75.32772  | 75.12150 | -75.37388 | 0.769       |

| Voar | Mission Number | Start Lat.           | Start     | End Lat. | End Long. | Sea Pen                     |
|------|----------------|----------------------|-----------|----------|-----------|-----------------------------|
| 2010 |                | 75 22220             | Z2 96025  | 75 20060 |           |                             |
| 2010 | PAA2010009     | 10.00200<br>60 00005 | -73.00923 | 75.30900 | -13.03002 | 0.710                       |
| 2014 | FAA2014007     | 67 79205             | -03.01200 | 67 76007 | -00.00002 | 0.090                       |
| 2012 | PAA2012007     | 71 721/2             | 70 92940  | 71 71262 | -02.00000 | 0.000                       |
| 2014 | PAA2014007     | 72 25140             | 72 64469  | 71.71302 | -70.70040 | 0.000                       |
| 2012 | PAA2012007     | 75.01262             | -72.04400 | 75 02595 | -12.30470 | 0.590                       |
| 2012 | PAA2012007     | 67 50070             | -13.30221 | 67 56602 | -75.54005 | 0.383                       |
| 2000 | PAA2000007     | 7/ 61217             | -03.52075 | 74 50593 | -03.33620 | 0.441                       |
| 2012 | PAA2012007     | 74.01217             | 76 22752  | 74.39307 | 76 24725  | 0.411                       |
| 2012 | PAA2012007     | 69 40102             | -70.32732 | 69 51/00 | -70.34735 | 0.400                       |
| 2010 | PAA2010009     | 72 40210             | -39.31073 | 72 50942 | -09.01200 | 0.397                       |
| 2012 | PAA2012007     | 74.09495             | -72.00040 | 72.50645 | -12.19293 | 0.364                       |
| 2012 | PAA2012007     | 74.00400<br>67 50020 | -74.55025 | 74.09360 | -74.01137 | 0.300                       |
| 2012 | PAA2012007     | 01.00900             | -03.31990 | 74 50177 | -03.32440 | 0.304                       |
| 2010 | PAA2010009     | 72 64110             | -74.43100 | 74.00177 | -74.40012 | 0.004                       |
| 2012 | PAA2012007     | 67 00162             | -75.02295 | 72.03040 | -74.94120 | 0.000                       |
| 2014 | PAA2014007     | 69 40000             | -02.70000 | 69 51000 | -02.75695 | 0.331                       |
| 1999 | PAA 1999001    | 71 10022             | -59.94000 | 71 19190 | -59.94200 | 0.330                       |
| 2014 | PAA2014007     | 69 52000             | -00.02155 | 71.10100 | -07.90000 | 0.324                       |
| 2014 | PAA 1999001    | 60.00015             | -59.94000 | 60.01260 | -39.92300 | 0.320                       |
| 2014 | PAA2014007     | 62 60600             | -03.11900 | 62 67259 | -00.10003 | 0.302                       |
| 2013 | PAA2013000     | 66 27150             | -00.77010 | 66 24012 | -30.79937 | 0.290                       |
| 2000 | PAA2000007     | 66 55/12             | -59.17555 | 66 52022 | -09.17090 | 0.294                       |
| 2010 | PAA2010009     | 74 25042             | -56.90755 | 74 26950 | -30.90213 | 0.200                       |
| 1000 | PAA2012007     | 68 10000             | -70.07012 | 68 42000 | -70.00220 | 0.201                       |
| 1000 | PAA1999001     | 71 25000             | -68 14000 | 71 26000 | -68 14800 | 0.200                       |
| 2012 | PAA1999001     | 66 70117             | -50 00008 | 66 72455 | -50 00708 | 0.200                       |
| 2012 | PAA2012007     | 72 30807             | -73 27557 | 72 41617 | -73 32800 | 0.200                       |
| 2012 | PAA2012007     | 66 82025             | -58 50355 | 66 83135 | -73.32000 | 0.270                       |
| 2012 | PAA2012007     | 7/ 1//80             | -77 74403 | 7/ 12582 | -30.30127 | 0.274                       |
| 2012 | PAA2012007     | 66 43538             | -59 84717 | 66 44628 | -59 85102 | 0.257                       |
| 2000 | PAA2000000     | 66 70383             | -58 03158 | 66 68167 | -58 03720 | 0.232                       |
| 2010 | PAA2010003     | 67 93475             | -62 78317 | 67 94400 | -62 80317 | 0.240                       |
| 2000 | PAA2006008     | 68 45698             | -59 35718 | 68 49567 | -59 36267 | 0.2 <del>-</del> 0<br>0.240 |
| 2012 | PAA2012007     | 74 44627             | -78 43235 | 74 44770 | -78 51802 | 0.2 <del>4</del> 0<br>0 221 |
| 2012 | PAA2012007     | 74 42153             | -77 62690 | 74 42537 | -77 71058 | 0.221                       |
| 2012 | PAA2012007     | 75 10380             | -79 05275 | 75 08118 | -79 08113 | 0.220                       |
| 2010 | PAA2010009     | 74,51815             | -73 74495 | 74 49935 | -73,74788 | 0.203                       |
| 2014 | PAA2014007     | 71.90353             | -70.75372 | 71.88498 | -70.69808 | 0.201                       |

**Table A1.17.** Eastern Arctic Biogeographic Zone: Details of the Location of Research Vessel Sea Pen Catches with Campelen Trawls used to identify the Significant Area Polygons. \*Set number is the last 3 digits of the string.

| Year | Mission Number<br>and Set* | Start Lat.<br>(DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sea Pen<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|------------------------|
| 2007 | BAL2007102099              | 62.63017           | -61.22600           | 62.64233         | -61.24167         | 0.840                  |
| 2014 | KIN2014109223              | 65.93757           | -58.62283           | 65.92753         | -58.60342         | 0.720                  |
| 2013 | AQV2013108198              | 65.92978           | -58.94392           | 65.91648         | -58.95840         | 0.450                  |
| 2012 | AQV2012107187              | 63.94058           | -59.00437           | 63.95277         | -58.99335         | 0.250                  |
| 2014 | KIN2014109225              | 65.53643           | -58.18128           | 65.52528         | -58.17115         | 0.250                  |
| 2012 | AQV2012107189              | 64.58932           | -58.30567           | 64.60140         | -58.29512         | 0.246                  |
| 2005 | BAL2005100184              | 65.59167           | -58.81167           | 65.60167         | -58.83500         | 0.230                  |
| 2008 | BAL2008103151              | 63.77083           | -59.72167           | 63.77100         | -59.75267         | 0.200                  |
| 2013 | AQV2013108180              | 64.79022           | -58.47428           | 64.80283         | -58.46762         | 0.181                  |
| 2008 | BAL2008103173              | 65.53050           | -58.80200           | 65.51800         | -58.79050         | 0.180                  |
| 2009 | BAL2009104263              | 62.07617           | -62.58033           | 62.08583         | -62.56100         | 0.160                  |
| 2010 | BAL2010105124              | 66.17960           | -60.61675           | 66.16695         | -60.62358         | 0.150                  |
| 2014 | KIN2014109224              | 65.58023           | -58.35412           | 65.56937         | -58.33823         | 0.150                  |
| 2005 | BAL2005100212              | 63.80833           | -59.61667           | 63.80333         | -59.58833         | 0.140                  |
| 2010 | BAL2010105117              | 65.84233           | -58.20957           | 65.83007         | -58.22080         | 0.140                  |
| 2006 | BAL2006101094              | 61.67167           | -61.16167           | 61.68500         | -61.15667         | 0.137                  |
| 2008 | BAL2008103176              | 65.65467           | -58.11733           | 65.64233         | -58.09933         | 0.130                  |
| 2013 | AQV2013108179              | 64.72523           | -58.23185           | 64.73892         | -58.23940         | 0.110                  |
| 2007 | BAL2007102154              | 64.82800           | -58.20467           | 64.81433         | -58.21133         | 0.110                  |
| 2005 | BAL2005100176              | 64.77167           | -58.24500           | 64.76833         | -58.21500         | 0.100                  |
| 2005 | BAL2005100193              | 66.17333           | -58.04667           | 66.16500         | -58.02167         | 0.100                  |
| 2009 | BAL2009104144              | 62.03883           | -63.54367           | 62.02917         | -63.54467         | 0.100                  |
| 2011 | BAL2011106144              | 65.99653           | -58.98448           | 66.00747         | -58.96613         | 0.100                  |

**Table A1.18.** Eastern Arctic Biogeographic Zone: Details of the Location of Research Vessel Sea Pen Catches with Cosmos Trawls used to identify the Significant Area Polygons. \*Set number is the last 3 digits of the string.

| Year | Mission Number<br>and Set* | Start Lat.<br>(DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sea Pen<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|------------------------|
| 2008 | PAA2008007178              | 67.45488           | -62.43787           | 67.44733         | -62.41765         | 0.780                  |
| 2008 | PAA2008007168              | 68.31975           | -65.24255           | 68.31313         | -65.26900         | 0.603                  |
| 2008 | PAA2008007177              | 67.58698           | -63.51835           | 67.59750         | -63.51365         | 0.424                  |
| 2008 | PAA2008007002              | 68.58700           | -59.41783           | 68.59717         | -59.40950         | 0.382                  |
| 2010 | PAA2010009157              | 66.74613           | -57.92630           | 66.73622         | -57.93393         | 0.240                  |
| 2008 | PAA2008007179              | 67.19417           | -62.06750           | 67.20033         | -62.09008         | 0.217                  |
| 2008 | PAA2008007169              | 68.32315           | -65.29628           | 68.32547         | -65.26808         | 0.184                  |
| 2008 | PAA2008007183              | 67.79115           | -62.84827           | 67.78270         | -62.83172         | 0.137                  |
| 2006 | PAA2006005056              | 70.51923           | -66.58125           | 70.51262         | -66.56238         | 0.129                  |
| 2006 | PAA2006005065              | 69.00732           | -65.07908           | 69.01463         | -65.09782         | 0.122                  |

| Year | Mission Number<br>and Set* | Start Lat.<br>(DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Sea Pen<br>Weight (kg) |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|------------------------|
| 2006 | PAA2006005021              | 69.07450           | -65.68300           | 69.06700         | -65.69900         | 0.118                  |
| 2010 | PAA2010009147              | 67.38282           | -57.92137           | 67.39148         | -57.93733         | 0.114                  |
| 2006 | PAA2006005068              | 68.77447           | -64.55833           | 68.78333         | -64.54683         | 0.112                  |
| 2008 | PAA2008007043              | 66.57533           | -57.77705           | 66.58362         | -57.76262         | 0.105                  |
| 2006 | PAA2006005042              | 71.54143           | -69.67102           | 71.53887         | -69.63908         | 0.104                  |

**Table A1.19.** Eastern Arctic Biogeographic Zone, Davis Strait: Details of the Location of Research Vessel Large Gorgonian Coral Catches from Alfredo Trawls used to identify the Significant Area Polygons. \*Set number is the last 3 digits of the string.

|      |                            |                    |                     |                  |                   | Large<br>Gorgonian   |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|----------------------|
| Year | Mission Number<br>and Set* | Start Lat.<br>(DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Coral<br>Weight (kg) |
| 1999 | PAA1999001                 | 67.98000           | -59.51000           | 67.96000         | -59.49500         | 2000.000             |
| 2011 | PAA2011007                 | 61.88867           | -61.93881           | 61.87287         | -61.97377         | 139.800              |
| 2013 | PAA2013008                 | 61.76735           | -61.72832           | 61.74850         | -61.70205         | 120.250              |
| 2013 | PAA2013008                 | 61.87438           | -63.37695           | 61.85992         | -63.40908         | 19.800               |
| 2013 | PAA2013008                 | 62.04287           | -61.47677           | 62.02062         | -61.50008         | 19.550               |
| 2013 | PAA2013008                 | 61.70485           | -60.65048           | 61.71987         | -60.65288         | 6.400                |
| 2011 | PAA2011007                 | 61.94133           | -61.27989           | 61.92167         | -61.26488         | 5.100                |
| 2013 | PAA2013008                 | 62.11742           | -63.68068           | 62.12995         | -63.72565         | 2.498                |
| 2014 | PAA2014007                 | 64.65027           | -57.82775           | 64.66595         | -57.87232         | 1.900                |
| 2013 | PAA2013008                 | 61.68727           | -61.12232           | 61.68443         | -61.08505         | 1.809                |
| 2011 | PAA2011007                 | 61.63815           | -61.10504           | 61.63938         | -61.14792         | 1.720                |

**Table A1.20.** Eastern Arctic Biogeographic Zone, Davis Strait: Details of the Location of Research Vessel Large Gorgonian Coral Catches from Campelen Trawls used to identify the Significant Area Polygons. \*Set number is the last 3 digits of the string.

|      | Mission Number | Start     | Start Long | End Lat  | Endlong   | Large<br>Gorgonian<br>Coral |
|------|----------------|-----------|------------|----------|-----------|-----------------------------|
| Year | and Set*       | Lat. (DD) | (DD)       | (DD)     | (DD)      | Weight (kg)                 |
| 2006 | BAL2006101094  | 61.67167  | -61.16167  | 61.68500 | -61.15667 | 500.059                     |
| 2007 | BAL2007102086  | 61.72750  | -61.95933  | 61.72100 | -61.98600 | 500.030                     |
| 2011 | BAL2011106084  | 61.72997  | -62.61718  | 61.72807 | -62.64845 | 409.940                     |
| 2009 | BAL2009104265  | 61.71700  | -62.05250  | 61.71833 | -62.07983 | 385.490                     |
| 2013 | AQV2013108280  | 61.75342  | -62.51582  | 61.76013 | -62.49653 | 375.440                     |
| 2012 | AQV2012107126  | 61.24570  | -63.79993  | 61.24343 | -63.82497 | 300.000                     |
| 2006 | BAL2006101091  | 61.37667  | -61.34500  | 61.39000 | -61.33833 | 260.000                     |
| 2013 | AQV2013108142  | 61.51842  | -63.50073  | 61.52433 | -63.48210 | 240.900                     |
| 2006 | BAL2006101090  | 61.27333  | -60.87167  | 61.27667 | -60.89833 | 225.000                     |
| 2013 | AQV2013108281  | 61.73862  | -61.74940  | 61.73373 | -61.73178 | 175.150                     |
| 2010 | BAL2010105181  | 61.70067  | -63.21193  | 61.69040 | -63.23290 | 139.060                     |

|   |      |                |           |             |          |           | Large<br>Gorgonian |
|---|------|----------------|-----------|-------------|----------|-----------|--------------------|
|   |      | Mission Number | Start     | Start Long. | End Lat. | End Long. | Coral              |
|   | Year | and Set*       | Lat. (DD) | (DD)        | (DD)     | (DD)      | Weight (kg)        |
| 2 | 2006 | BAL2006101089  | 61.20167  | -61.38833   | 61.21333 | -61.38000 | 120.146            |
| 2 | 2011 | BAL2011106085  | 61.90190  | -62.53327   | 61.91340 | -62.54883 | 103.300            |
| 2 | 2013 | AQV2013108147  | 61.85337  | -63.64582   | 61.85857 | -63.62120 | 101.720            |
| 2 | 2006 | BAL2006101096  | 61.95167  | -61.29000   | 61.96333 | -61.27833 | 100.000            |
| 2 | 2008 | BAL2008103078  | 61.76683  | -62.27483   | 61.76817 | -62.25767 | 100.000            |
| 2 | 2009 | BAL2009104141  | 61.64617  | -63.29183   | 61.64800 | -63.26717 | 100.000            |
| 2 | 2012 | AQV2012107092  | 61.73517  | -61.70585   | 61.74272 | -61.68183 | 90.100             |
| 2 | 2010 | BAL2010105283  | 61.60972  | -61.39430   | 61.62113 | -61.37622 | 82.470             |
| 2 | 2007 | BAL2007102087  | 61.76883  | -62.29983   | 61.76300 | -62.32533 | 76.000             |
| 2 | 2010 | BAL2010105180  | 61.68970  | -63.07025   | 61.67440 | -63.06718 | 57.740             |
| 2 | 2005 | BAL2005100239  | 61.38500  | -61.18500   | 61.37333 | -61.17167 | 50.000             |
| 2 | 2011 | BAL2011106082  | 61.85785  | -61.16688   | 61.86450 | -61.19130 | 41.101             |
| 2 | 2009 | BAL2009104142  | 61.80667  | -63.27900   | 61.80083 | -63.30233 | 39.670             |
| 2 | 2012 | AQV2012107112  | 61.83763  | -62.60432   | 61.82493 | -62.60127 | 38.240             |
| 2 | 2011 | BAL2011106083  | 61.93805  | -61.22777   | 61.93783 | -61.25597 | 35.635             |
| 2 | 2011 | BAL2011106208  | 61.76455  | -63.27865   | 61.75598 | -63.31055 | 32.220             |
| 2 | 2010 | BAL2010105275  | 61.83857  | -62.30048   | 61.84452 | -62.27562 | 32.000             |
|   | 2014 | KIN2014109322  | 61.64850  | -63.39537   | 61.65008 | -63.37752 | 31.360             |

**Table A1.21.** Eastern Arctic Biogeographic Zone, Davis Strait: Details of the Location of Research Vessel Small Gorgonian Coral Catches from Alfredo Trawls used to identify the Significant Area Polygons. \*Set number is the last 3 digits of the string.

|      | Mission Number | Start     | Start Long | Fnd Lat. | End Long  | Small<br>Gorgonian<br>Coral |
|------|----------------|-----------|------------|----------|-----------|-----------------------------|
| Year | and Set*       | Lat. (DD) | (DD)       | (DD)     | (DD)      | Weight (kg)                 |
| 2011 | PAA2011007005  | 65.19384  | -57.71988  | 65.17259 | -57.69835 | 0.240                       |
| 2013 | PAA2013008005  | 64.52757  | -58.66903  | 64.55183 | -58.66767 | 0.104                       |
| 2013 | PAA2013008157  | 63.62998  | -58.82358  | 0.00000  | 0.00000   | 0.081                       |
| 2011 | PAA2011007144  | 64.81870  | -58.86771  | 64.84048 | -58.88082 | 0.076                       |
| 2014 | PAA2014007155  | 65.31822  | -58.17720  | 65.33980 | -58.20542 | 0.069                       |
| 2011 | PAA2011007169  | 65.66646  | -57.76882  | 65.64293 | -57.76118 | 0.066                       |
| 2014 | PAA2014007150  | 64.35795  | -58.92525  | 64.37662 | -58.88850 | 0.064                       |
| 2013 | PAA2013008158  | 63.69600  | -58.77515  | 63.67358 | -58.79937 | 0.053                       |
| 2011 | PAA2011007021  | 62.69001  | -58.94275  | 62.66701 | -58.95473 | 0.052                       |
| 2014 | PAA2014007156  | 65.76307  | -57.89552  | 65.78340 | -57.86378 | 0.052                       |
| 2013 | PAA2013008159  | 63.97803  | -58.84367  | 63.95478 | -58.85777 | 0.051                       |
| 2013 | PAA2013008035  | 63.84002  | -59.20585  | 63.81870 | -59.18218 | 0.044                       |
| 2013 | PAA2013008008  | 65.02363  | -58.17635  | 65.04692 | -58.16848 | 0.044                       |
| 2013 | PAA2013008009  | 65.21562  | -57.90177  | 65.21527 | -57.95778 | 0.040                       |
|      |                |           |            |          |           |                             |

|      |                            |                    |                     |                  |                   | Small                |
|------|----------------------------|--------------------|---------------------|------------------|-------------------|----------------------|
| Year | Mission Number<br>and Set* | Start<br>Lat. (DD) | Start Long.<br>(DD) | End Lat.<br>(DD) | End Long.<br>(DD) | Coral<br>Weight (kg) |
| 2011 | PAA2011007037              | 61.75708           | -63.17784           | 61.74090         | -63.18217         | 0.037                |
| 2013 | PAA2013008010              | 65.44800           | -58.18323           | 65.46518         | -58.20398         | 0.035                |
| 2014 | PAA2014007151              | 64.56132           | -58.68083           | 64.54835         | -58.70443         | 0.033                |
| 2014 | PAA2014007161              | 66.52778           | -57.81260           | 66.50298         | -57.79922         | 0.029                |
| 2011 | PAA2011007032              | 62.17080           | -60.78182           | 62.14774         | -60.77752         | 0.026                |
| 2006 | PAA2006008069              | 68.55854           | -59.37512           | 68.57033         | -59.36755         | 0.025                |
| 2013 | PAA2013008006              | 64.71255           | -58.72272           | 64.73360         | -58.69530         | 0.022                |
| 2011 | PAA2011007022              | 62.52859           | -59.20289           | 62.54439         | -59.23940         | 0.021                |
| 2013 | PAA2013008011              | 65.65702           | -58.14032           | 65.67890         | -58.12725         | 0.021                |

**Table A1.22.** Eastern Arctic Biogeographic Zone, Davis Strait: Details of the Location of Research VesselSmall Gorgonian Coral Catches from Campelen Trawls used to identify the Significant Area Polygons.\*Set number is the last 3 digits of the string.- indicates unknown value

|      |                |           |            |          |           | Small       |
|------|----------------|-----------|------------|----------|-----------|-------------|
|      | Mission Number | Start     | Start Long | End Lat  | Endlong   | Gorgonian   |
| Year | and Set*       | Lat. (DD) | (DD)       | (DD)     | (DD)      | Weight (kg) |
| 2007 | BAL2007102152  | 64.59100  | -58.77683  | 64.57883 | -58.79383 | 1.500       |
| 2007 | BAL2007102149  | 64.20617  | -59.09017  | 64.19417 | -59.10650 | 0.340       |
| 2010 | BAL2010105119  | 65.81220  | -57.79882  | 65.82828 | -57.82098 | 0.270       |
| 2009 | BAL2009104210  | 65.74317  | -57.92983  | 65.75450 | -57.94433 | 0.140       |
| 2006 | BAL2006101094  | 61.67167  | -61.16167  | 61.68500 | -61.15667 | 0.122       |
| 2006 | BAL2006101124  | 65.12500  | -58.46000  | 65.13667 | -58.44333 | 0.110       |
| 2013 | AQV2013108197  | 66.20552  | -58.20248  | 66.21768 | -58.19113 | 0.090       |
| 2008 | BAL2008103175  | 65.47283  | -57.97383  | 65.45867 | -57.97267 | 0.080       |
| 2013 | AQV2013108198  | 65.92978  | -58.94392  | 65.91648 | -58.95840 | 0.070       |
| 2006 | BAL2006101119  | 64.73667  | -58.80667  | 64.74167 | -58.78333 | 0.050       |
| 2010 | BAL2010105150  | 64.66138  | -58.68850  | 64.66753 | -58.66127 | 0.050       |
| 2008 | BAL2008103095  | 62.98217  | -60.61400  | 62.97133 | -60.62733 | 0.040       |
| 2008 | BAL2008103151  | 63.77083  | -59.72167  | 63.77100 | -59.75267 | 0.040       |
| 2010 | BAL2010105120  | 66.20172  | -58.20583  | 66.19037 | -58.21910 | 0.040       |
| 2008 | BAL2008103117  | 63.51667  | -60.31050  | -        | -         | 0.039       |
| 2008 | BAL2008103176  | 65.65467  | -58.11733  | 65.64233 | -58.09933 | 0.030       |
| 2013 | AQV2013108196  | 65.95875  | -58.10960  | 65.96787 | -58.12153 | 0.025       |
| 2006 | BAL2006101101  | 62.07000  | -61.84833  | 62.07833 | -61.82667 | 0.020       |
| 2006 | BAL2006101121  | 64.95000  | -57.91000  | 64.96167 | -57.90500 | 0.020       |
| 2007 | BAL2007102210  | 61.63050  | -63.33600  | 61.63333 | -63.30933 | 0.020       |
| 2007 | BAL2007102211  | 61.57683  | -63.29967  | 61.58217 | -63.27933 | 0.020       |

## APPENDIX 2. AT-SEA IDENTIFICATIONS OF SPECIES WITHIN EACH OF THE FOUR TAXONOMIC GROUPS ANALYZED.

The at-sea identifications of species within each of the four groups analyzed, that is, sponges, sea pens, large and small gorgonian corals, have not been validated consistently within and across regions. The Quebec and Gulf Regions have undertaken identification of all benthic invertebrates in the RV trawls as part of ecosystem surveys (Nozères et al., 2015) and Newfoundland and Labrador Region have put significant effort into identifying corals. The latter has provided taxonomic identifications in their own region and in Central and Arctic Region which should make those regions consistent with each other. Maritimes Region has identified the sponges collected during the Central and Arctic Region surveys of Davis Strait and southern Baffin Bay (not yet in the coding system) and the (southern) Gulf Region have codes for a number of sponge taxa, but in general, identification of the sponge fauna is poor. Consequently we did not perform the SDMs at the species level. Nevertheless the codes provided below (Tables A2.1-A2.4) allow users to extract the same data that we did from the surveys and to get a sense of the types of species that may be present within each taxonomic group within each region. Note that these same data and codes were used for the KDE analyses (Kenchington et al., 2016).

| Taxonomic Group         | Species/Taxon             | VDC Taxon Code |
|-------------------------|---------------------------|----------------|
| Sponges (Porifera)      | Phylum Porifera           | 8600           |
|                         | Geodia spp.               | 8364           |
|                         | Polymastia sp.            | 8610           |
|                         | Rhizaxinella sp.          | 8356           |
|                         | Vazella pourtalesi        | 8601           |
| Sea Pens (Pennatulacea) | Order Pennatulacea        | 8318           |
|                         | Anthoptilum grandiflorum  | 8361           |
|                         | Funiculina quadrangularis | 8359           |
|                         | <i>Halipteris</i> sp.     | 8363           |
|                         | Pennatula borealis        | 8360           |
| Large Gorgonian Corals  | Acanthogorgia armata      | 8326           |
|                         | Keratoisis ornata         | 8325           |
|                         | Paragorgia arborea        | 8323           |
|                         | Primnoa resedaeformis     | 8322           |
| Small Gorgonian Corals  | Acanella arbuscula        | 8329           |
|                         | Chrysogorgia agassizii    | 8338           |
|                         | Radicipes gracilis        | 8330           |

**Table A2.1.** Species composition in each of the four taxonomic groups in Maritimes Region modelled using random forest and KDE. Also shown are the Virtual Data Centre (VDC) codes used for data entry into the VDC (after Beazley et al, 2016a).

| Taxonomic Group    | Region        | Taxon Name                               | Species Code |
|--------------------|---------------|------------------------------------------|--------------|
| Spangas (Darifara) | Northorn Culf | Doriforo                                 | 1101         |
| Sponges (Poniera)  | Northern Gull | Politera<br>Stude se redite, h e reselle | 1101         |
|                    |               | Stylocordila borealis                    | 1112         |
|                    | Southern Gulf | Asconema foliata                         | 8365         |
|                    |               | Biemna variantia                         | 8617         |
|                    |               | Geodia spp.                              | 8364         |
|                    |               | Halichondria panicea                     | 8623         |
|                    |               | Halichondria sitiens                     | 8620         |
|                    |               | Haliclona oculata                        | 8621         |
|                    |               | Haliclona sp.                            | 8618         |
|                    |               | lophon sp.                               | 8614         |
|                    |               | Mycale lingua                            | 8616         |
|                    |               | Phakellia spp.                           | 8366         |
|                    |               | Phakellia ventilabrum                    | 8624         |
|                    |               | Polymastia mammillaris                   | 8611         |
|                    |               | Polymastia sp.                           | 8610         |
|                    |               | Porifera                                 | 8600         |
|                    |               | Suberites ficus                          | 8613         |
|                    |               | Tentorium semisuberites                  | 8612         |
| Sea Pens           | Northern Gulf | Anthoptilum grandiflorum                 | 2218         |
| (Pennatulacea)     |               | Halipteris finmarchica                   | 2217         |
| (i official accou) |               | Pennatula aculeata                       | 2203         |
|                    |               | Pennatula grandis                        | 2210         |
|                    |               | Pennatulacea                             | 2201         |
|                    | Southorn Gulf | Anthontilum grandiflarum                 | 9621         |
|                    | Southern Gull | Poppatulacoa                             | 0031         |
|                    |               | rennatulacea                             | 0310         |

**Table A2.2.** Taxon name and species code included in each of the taxonomic groups modeled for SDM and KDE for the northern and southern Gulf regions (after Murillo et al., 2016).

**Table A2.3.** Species composition in each of the four taxonomic groups modelled using random forest and KDE. Also shown are the species/taxon codes associated with data entry of the DFO multispecies and northern shrimp survey records (after Guijarro et al., 2016). \* Indicates taxon listed in Spanish/EU surveys.

| Taxon                   | Species/Taxon               | Taxon Code |
|-------------------------|-----------------------------|------------|
| Sponges                 | Porifera                    | 1101       |
| Sea Pens (Pennatulacea) | Anthoptilum*                | 5117       |
|                         | Anthoptilum grandiflorum    | 8937       |
|                         | Distichoptilum gracile      | 8932       |
|                         | Funiculinia quandrangularis | 8938       |
|                         | Halipteris finmarchica      | 8936       |
|                         | Pennatula aculeata          | 8934       |
|                         | Pennatula cf. aculeata      | 8934       |
|                         | Pennatula grandis           | 8935       |
|                         | Pennatula cf. grandis       | 8935       |
|                         | Pennatula phosphorea        | 8933       |
|                         | Pennatula cf. phosphorea    | 8933       |
|                         | <i>Pennatula</i> sp.        | 8954       |
|                         | Pennatulacea                | 8901       |
|                         | Sea pen sp.                 | 8901       |
|                         | <i>Umbellula</i> sp.        | 8972       |
| Large Gorgonian Corals  | Acanthogorgia*              | 5073       |
|                         | Acanthogorgia armata        | 8907       |
|                         | Acanthogorgia cf. armata    | 8907       |
|                         | Keratoisis*                 | 5070       |
|                         | Keratoisis grayi            | 8906       |
|                         | Paragorgia arborea          | 8903       |
|                         | Paragorgia cf. arborea      | 8903       |
|                         | Paramuricea sp.             | 8912       |
|                         | Paramuricea placomus        | 8940/5114  |
|                         | Paramuricea cf. placomus    | 8940       |
|                         | Plexauridae*                | 5054       |
|                         | Parastenella atlantica      | 8944       |
|                         | Primnoa resedaeformis       | 8902       |
| Small Gorgonian Corals  | Acanella arbuscula          | 8909       |
| -                       | Anthothela grandiflora      | 8915       |
|                         | Chrysogorgia cf. agassizii  | 8924       |
|                         | Chrysogorgia sp.            | 8965       |
|                         | Radicipes gracilis          | 8910       |
|                         | Swiftia sp.                 | 8959       |

**Table A2.4.** Species composition in each of the four taxonomic groups modelled using random forest and KDE (after Beazley et al., 2016c). The asterisk (\*) was used to indicate species/taxa recorded in both the Eastern Arctic and Hudson Strait – Ungava Bay Regions.

| Taxonomic Group         | Species/Taxon                | Taxon Code |
|-------------------------|------------------------------|------------|
| Sponges (Porifera)      | Porifera P.                  | 1101       |
| Sea Pens (Pennatulacea) | Pennatulacea O.              | 8901       |
|                         | Anthoptilum grandiflorum     | 8937       |
|                         | Halipteris finmarchica       | 8936       |
|                         | Pennatula grandis            | 8935       |
|                         | Pennatula sp.                | 8954       |
|                         | <i>Umbellula</i> sp.*        | 8972       |
|                         | Sea pen sp.                  | 8901       |
| Large Gorgonian Corals  | Acanthogorgia armata*        | 8907       |
|                         | Paragorgia arborea*          | 8903       |
|                         | Keratoisis ornata            | 8906       |
|                         | <i>Paramuricea</i> sp.       | 8912       |
|                         | Paramuricea placomus [28S-b] | 8940       |
|                         | Primnoa resedaeformis*       | 8902       |
| Small Gorgonian Corals  | Acanella arbuscula           | 8909       |
|                         | Anthothela cf. grandiflora   | 8915       |
|                         | Radicipes gracilis           | 8910       |

## APPENDIX 3. CONGRUENCE BETWEEN FISHERIES OBSERVER DATA AND SPECIES PREVALENCE.

During the National Advisory Process meeting held on March 8-10, 2016 to review the work presented above, Fisheries Observer Program Data (FOP) was provided to the meeting (for more details contact V. Wareham, DFO, NWAFC, St. John's, NL; pers. comm.) and those data were used to validate the prevalence maps where available. As they were part of the decision making process of the meeting they are presented here. However, this type of data requires considerable quality control evaluation and that was not done prior to the meeting. Therefore, the data should only be considered preliminary.

## Newfoundland and Labrador

The overlay of FOP data in Newfoundland and Labrador had showed good congruence with the presence prevalence of sponges (Figure A3.1), sea pens (Figure A3.2), large (Figure A3.3) and small (Figure A3.4) gorgonian corals. For sponges, several FOP records occurred in deep water off the Labrador Slope in an area considered extrapolated and may help to validate the presence prevalence there. FOP records for sea pens, and large and small gorgonians were concentrated along the slopes of Newfoundland and Labrador, particularly on the slope off southwest Grand Bank in the 30 Coral Protection Zone. Several large gorgonian coral records were also concentrated on the slope northeast of Newfoundland. This area was identified as an SBA (see Figure 95) based on the RF model results and the high presence probability predicted in this area.

## Eastern Arctic

The overlay of FOP data in the Eastern Arctic had remarkable congruence with the presence prevalence for sponges (Figure A3.5), sea pens (Figure A3.6), large (Figure A3.7) and small (Figure A3.8) gorgonian corals. In two areas the FOP showed catches that were not consistent with prevalence. This was seen for sea pens immediately north of the Hatton Basin Voluntary Closure Area (Figure A3.6). Closer examination of this area showed that the area was very patchy and that given the long tow lengths of the commercial fleets, it was feasible that they could overlap with nearby presence predictions. The other area was for small gorgonian corals (Figure A3.8). The FOP data showed small gorgonian catches in the absence area surrounding the Narwhal Overwintering and Deep Sea Coral Conservation Area.



**Figure A3.1.** Location of the start positions of commercial tows with sponge catches from the Fisheries Observer Program (1996-2015) in the Newfoundland and Labrador Region overlain on the sponge RF prevalence map. Also shown are the grey areas of model extrapolation, which appear dark red or blue when overlain on the presence-absence surface.



**Figure A3.2.** Location of the start positions of commercial tows with sea pen catches from the Fisheries Observer Program (2004-2013) in the Newfoundland and Labrador Region overlain on the sea pen RF prevalence map. Also shown are the grey areas of model extrapolation, which appear dark red or blue when overlain on the presence-absence surface.



**Figure A3.3.** Location of the start positions of commercial tows with large gorgonian coral catches from the Fisheries Observer Program (2004-2013) in the Newfoundland and Labrador Region overlain on the large gorgonian coral RF prevalence map. Also shown are the grey areas of model extrapolation, which appear dark red or blue when overlain on the presence-absence surface.



**Figure A3.4.** Location of the start positions of commercial tows with small gorgonian coral catches from the Fisheries Observer Program (2004-2013) in the Newfoundland and Labrador Region overlain on the small gorgonian coral RF prevalence map. Also shown are the grey areas of model extrapolation, which appear dark red or blue when overlain on the presence-absence surface.


**Figure A3.5.** Location of the start positions of commercial tows with sponge catches from the Fisheries Observer Program (1998-2013) in the Eastern Arctic overlain on the sponge RF prevalence map. Also shown are the grey areas of model extrapolation, which appear dark red or blue when overlain on the presence-absence surface.



**Figure A3.6.** Location of the start positions of commercial tows with sea pen catches from the Fisheries Observer Program (2004-2013) in the Eastern Arctic overlain on the sea pen RF prevalence map. The area immediately to the north of the Hatton Basin Voluntary Closure Area was the only area where the FOP data showed catches in areas where absence was prevalent. Also shown are the grey areas of model extrapolation, which appear dark red or blue when overlain on the presence-absence surface.



**Figure A3.7.** Location of the start positions of commercial tows with large gorgonian coral catches from the Fisheries Observer Program (2004-2013) in the Eastern Arctic overlain on the large gorgonian coral RF prevalence map. Also shown are the grey areas of model extrapolation, which appear dark red or blue when overlain on the presence-absence surface.



**Figure A3.8.** Location of the start positions of commercial tows with small gorgonian coral catches from the Fisheries Observer Program (2004-2013) in the Eastern Arctic overlain on the small gorgonian coral RF prevalence map. The records immediately around the Narwhal Overwintering and Deep Sea Coral Conservation Area was the only area where the FOP data showed catches in areas where absence was prevalent. Also shown are the grey areas of model extrapolation, which appear dark red or blue when overlain on the presence-absence surface.