
Image Analys·s for
·croscope-based Observa io s:

A expe sive Co fig ra io

s. E. Campana

Marine Fish Division
Biological Sciences Branch
Bedford Institute of Oceanography
Department of Fisheries and Oceans
P. O. Box 1006, Dartmouth,
Nova Scotia, Canada
B2Y 4A2

September 1987

Canadia echnical Rep-or of
F·sher·es a d Aquat·c Sc·ences

o. 1569

Fisheries Ptkhes
and Oceans et oceans

Canadian Technical Report of
Fi herie and quatic cience

Te hni al report contain cientifi and technical information that ontribute to
xi ting kno\\ ledge but v. hich i not normally appropriat for primar~ literature.

Technical r port are directed primaril~ tov.ard a \\orld~ide audience and ha\e an
international di tribution.. Tore triction i pia ed on ubject matter and the erie
reOect the broad intere t and policie of the Department of Fi herie and Ocean,
namel). fi herie and aquatic ci nce .

T hni al r p rt rna) be ited a full pu bli at ion . The orr t itation app ar
above the ab tract of ea h report. Each rep rt i ab tra ted in qUalic ciellce and
Fi h rie.\ Ab. traCT. and indexed in the Department' annual index to cientific and
techni al publication .

. 'umber I 6 in thi erie were i ued a
Re ar h Board of Canada.
Em ir nment. i herie and
Techni al Report .. 'umber
Em ironm nt, Fi heri and arine en ice T chni al Report. The curr nt erie
name wa changed \\ ith report number 9_

Technical report are produ ed regionall) but are numbered nationally. Reque t
for indi\ idual r port \\ ill b filled b~ the i uing e tabli hment Ii ted on the front 0\ er
and title page. Out- f- tock report \\ ill be upplied for a fee b~ ommer ial agent.

Rapport technique canadien de
cience halieutique et aquatique

Le rapport technique contiennent de ren eignement ientifique et techni-
que qui con tituent une ntribution au. connai ance actuelle, mai qui ne ont
pa normalement approprie pour la publication dan un journal cientifique. Le
rapport technique ont de tine e entiellement a un publi international et il ont
di tribue a cet echelon. II n'y a aucune re triction quant au ujet; de fait, la erie reOete
laa t gamme d inter~t t de politique· du mini tere de Peche et de 0 ean ,
c'e-t-a-dire Ie i n e halieutique et aquatiqu .

Le rapport te hnique peu\ent etre cite comme de
titre exact parait au-de u du re ume de chaqtle rapport.
re ume dan la re\ue Re. ume de science aquatique et halieurique , et il
la . dan l'index annual de publication ientifique et t hnique du 1m tere.

Le numer I a 456 de ett erie ont ete publi' a titre de rapport te hnique de
I'Office de recherche ur Ie pecherie du Canada. Le numero 4 a 14 ont paru a
titr de rapp rt te hniqu d la Dire ti n gen' rale d I r her h et du de\el pp ­
m nt,. enice de pe he t de la mer, mini t' re de l'Em ironnement. Le numer I a
924 nt ete publie a titre de rapport technique du en'ice de peche et de la mer,
mini ter de Pe h et d I Em ironn ment. Le nom actuel d la en a ete etabli lor
d la parution du numero 9 5.

Le rapport technique nt pr duit a l'echel n regi naL mai numerote a
I echel n national. e demande de rapport er nt atl faite par l'etabli ement
aut ur dont Ie nom igure ur la coU\erture et la page du titre. Le rapport epui e

r nt lourni contre retribution par de agent ommer iau '.

i

Canadian Technical Report of Fisheries and Aquatic Sciences No. 1569

September 1987

IMAGE ANALYSIS FOR MICROSCOPE-BASED
OBSERVATIONS: AN INEXPENSIVE CONFIGURATION

by

S.E. Campana

Fisheries and Oceans
Scotia-Fundy Region

Biological Sciences Branch
Marine Fish Division

Bedford Institute of Oceanography
P.O. Box 1006, Dartmouth

Nova Scotia, B2Y 4A2

; ;

PREFACE

The use of proprietary names does not imply endorsement of any product or compliance. No reference
to Department of Fisheries &Oceans or to this publication shall be made in any advertisement or
sales promotion.which would indicate or imply endorsement of any product.

~ Minister of Supply &Services Canada 1987
Cat. No. Fs 97-6/0000E ISSN 0706-6457

Correct citation for this publication:

Campana, S.E. 1987.
configuration.

Image analysis for microscope-based observations: An inexpensive
Can. Tech. Rep. Fish. Aquat. Sci. 1569: iv + 20 pp.

iii

TABLE OF CONTENTS

Abstract.. iv
Introduction... 1
Hardware, Conf i gurat i on and Software 1

- Hardware Specifications... 2
- Configuration... 3
- Software 4

Basic Principles of Operation... 4
Imaging Capabil ities 5
Appl ications 6
Summary.. 8
Literature Cited... 9
Acknowl edgements 9
Appendix I 10
Appendix II 15

iv

ABSTRACT

Campana, S.E. 1987.
Configuration.

Image Analysis For Microscope-based Observations: An Inexpensive
Can. Tech. Rep. Fish. Aquat. Sci. 1569: iv + 20 pp.

Image analysis systems allow for image enhancement, manipulation, storage and quantification. They
are of particular benefit to those conducting microscopic examinations, since they can display
detail and quantify features that would not otherwise be possible. The image analysis system
described here is a state-of-the-art microcomputer-based system that operates in real-time. Its
substantial price advantage «$7000 includes software and hardware) over commercially-available
systems derives from the requirement for user configuration and some basic programming in the C
language. This paper details one such configuration, provides an overview of system capabilities,
presents some fisheries applications and provides examples of two commonly-used programs. The
intent is to provide enough of a system overview to allow those unfamiliar with the technology to
decide if it may meet their needs. The financial and logistic hurdles can be circumnavigated by
researchers with a modest budget and a modicum of microcomputer background.

RESUME

Campana, S.E., 1987. Analyse d'image en microscopie: une configuration Aconomique. Can. Tech.
Rep. Fish. Aquat. Sci. 1569: iv + 20 pp.

Les systemes d!analyse d'image autorisent 1 'amAlioration, la manipulation, la mise en mAmoire et le
traitement quantitatif des images. Ils sont tout indiques pour les observations au microscope
puisqu'ils permettent de visualiser des details et de quantifier les caracteristiques observees.
Autant de possibilites qui ne sont pas donnees au microscope proprement dit. Nous decrivons dans
ce rapport un systeme de technologie de pointe gere par.micro-ordinateur et exploite en temps reel.
Ce systeme est offert a un prix nettement avantageux (moins de $7,000 pour le materiel et le
1ogi ci e1) par rapport aux systemes que l' on trouve sur 1e marc he . Par contre, l' ut i1i sateur doit
en realiser lui-m~me la configuration et Alaborer certains programmes de base en C (language
informatique). Nous presentons un modele de configuration, un aper~u des possibilites du systeme,
quelques applications dans le domaine des p~ches et, a titre d'exemple, deux programmes qui sont
couramment utilises. Ce survol du systeme se veut suffisamment complet pour que les non-inities
puissent determiner si le systeme est a m~me de repondre a leurs besoins. Les chercheurs qui ont
un budget raisonnable et une certaine connaissance des micro-ordinateurs pourront ainsi contourner
les difficultes financieres et logistiques inherentes a 1'acquisition de materiel de ce genre.

INTRODUCTION

Image analysis is a generic term used to
refer to the digitization and manipulation of
visual images, usually by a computer. In its
simplest form, an image analysis system (lAS)
can store a picture in memory and allow for its
subsequent recall and display upon command.
Such a system is capable of reproducing the
original image, unaltered. In practise
however, images entered into an lAS are
generally enhanced and/or quantified before
re-display; therein lies their advantage over
visual examination. The end product is
invariably an image (or data) which can be more
easily interpreted than the original.
Interpretation can be computer-assisted or
visual, depending upon the application.

The applications of an lAS are diverse,
but most systems can be aggregated into one of
two groups on the basis of the type and volume
of input data they process. Satellite images
(ie. Landsat, Seasat) generally reach an lAS in
the form of digital data on magnetic tape.
Systems devoted to the analysis of these images
usually require rather complex software and
large memory storage capabilites, due to the
volume and format of data being processed. As
a result such systems tend to be associated
with a mini- or mainframe computer. In
contrast, systems not associated with remote
sensing applications are often designed to
process images derived directly from a video
camera. Since the data flow of such systems is
generally lower, the system itself can be
smaller. Industrial centres often make use of
this type of configuration for automated
quality control. At the biological end of the
spectrum, analogous configurations are common,
although an interface between the video camera
and a microscope allows smaller objects to be
examined.

lAS-microscope combinations offer a
considerable advantage over simple microscopic
observations. Procedures such as shape
analysis and automated object measurement/
classification are impossible without an lAS.
However, even manual measurements are
simplified, since an electronic cursor is easier
to position on a TV monitor than is an ocular
micrometer within a field of view. Further, the
measurement can be recorded automatically in
memory, rather than recorded manually. Finally,
the image enhancement capabilities of an lAS can
bring out detail in a field of view that is not
otherwise visible through the microscope. All
of these capabilities have existed in image

1

analysis systems since the 1970's. However,
recent technological advances in image
analysis and microcomputer hardware have
brought microcomputer-based systems with these
and other capabilities within the financial
reach of an individual researcher. Such
systems are currently available from a variety
of commercial sources, although the price
might deter some. With the willingness to do
some simple programming and to configure one's
own system, substantial savings over a
commercial system are possible. The objective
of this paper is to outline how this can be
accomplished.

The lAS described here consists of a
microcomputer, video camera, TV monitor and
image analysis software/hardware, and is
interfaced with a microscope. The system is
as powerful and more flexible than most
microcomputer-based systems now on the market,
but can be configured for less then $7000
(Canadian 1987 dollars, not including the
microscope). The system is relatively easy to
use, does not require special training or an
inordinate amount of time to configure and can
be used as a stand-alone microcomputer at any
time without any configuration changes. What
follows is not meant to be an exhaustive
description of this system. The intent is
merely to provide enough of an overview of the
capabilities and configuration to allow those
unfamiliar with the technology to decide if it
may meet their needs. If it does, this report
should convince them that the financial and
logistic hurdles can be circumnavigated by
those with a modicum of microcomputer
background.

HARDWARE, CONFIGURATION AND SOFTWARE

NOTE: The system description that follows is
by no means the only, or even the best,
configuration. While brand names will be
mentioned in the text, I make no endorsement,
implicit or otherwise, as to their quality or
price. Brand names are presented solely as a
means for comparison of specifications and
because they have been tested and found
suitable for the job.

The basic configuration is presented in
Fig. 1. The video camera and video monitor
are black and white, each with medium to high
resolution. The microscope can be of any
type, compound or dissecting, and is
interfaced with the camera through a standard
photoadaptor tube. The microcomputer is
IBM-compatible with a 20 Mb hard disk and a
standard monitor. The microcomputer also

2

SYNCH, STRIPPER

VIDEO

CAMERA

PHOTO ADAPTOR
TUBE

MONITOR

DIGITIZER

BOARD

VIDEO MONITOR

Figure 1. Basic orientation of image analysis system hardware described in the text.

contains an image analysis card in one of its
expansion slots.

Hardware Specifications

Microcomputer: IBM-compatible with an 8 MHz
clock, 20 Mb hard disk, 640Kb RAM, 1 floppy
disk drive, standard keyboard, standard monitor
This is a common microcomputer (=PC)
configuration suitable for many non-lAS
procedures. Some image analysis programs
require a colour graphics adaptor (video card).
If high resolution graphics capabilities are
desired for the non-lAS functions of the PC, an
ATI Graphics Solution Card provides either mode
upon command.

*Price - $1800

lAS Hardware: Coreco's Oculus-200
Framegrabber video digitizer board. This is
a real-time video digitizer board; it and its
analogs are called framegrabbers because of
the speed with which they write the image
into memory_ Not to be confused with a
digitizing pad which sits on a desk, the
Oculus board is a card which is inserted into
the PC. It converts a standard RS-170 video
image into an array of 480x512 points at the
rate of 30 images per second. The digitized
image is written into 256K bytes of RAM on
the board which is subsequently accessed by
the PC.

*Price - $2400

*Approximate price in 1987 Canadian dollars

Video Camera: Hitachi HV-730C closed-circuit TV
(CCTV) camera. This is a medium to high
resolution, black and white surveillance-type
camera which can either be interfaced with a
microscope through a microscope photoadaptor
tube (camera lens not required) or used by
itself (with a lens). Synchronization can be
either external (recommended: see below) or
internal, as desired. It uses a 2/3" vidicon
tube with 650 lines of horizontal and 350 lines
of vertical resolution. Alternatively, a video
signal can be supplied from a VTR in which case
a camera is not required.

*Price - $500

Video Monitor: Hitachi VM-129 12" video
monitor. This is a standard black and white TV
monitor with medium-high resolution. It has 700
lines of horizontal and 350 lines of vertical
resolution.

*Price - $500

"Synch Stripper": Custom-made. This small box
strips the synchronization signal from the
coaxial cable entedng the video camera through
the external connector. The remaining video
signal is dumped to ground (see synchronization
below). If the camera has a separate
synchronization connector, the synch stripper is
not required.

*Price - $250

3

Configuration

The basic configuration is displayed in
Fig.l. With the possible exception of the synch
stripper, the signal flow is straightforward.
The video signal (composite video, RS-170)
leaves the camera and travels to the digitizer
board in the PC, where it is digitized. The
digitized image is then reconstituted and sent
to the monitor for display. The entire process
takes 1/30th second and can be placed in
continuous mode such that the image is displayed
in what is effectively real-time. The
potentially confusing factor is the
synchronization signal. The synchronization
signal ensures that the video camera, digitizer
board and monitor all operate in phase at the
same frequency. Deviations from full
synchronization will distort the image, although
small deviations may produce only slight waves.

Most image analysis systems can be
synchronized in one of two ways: the digitizer
board will attempt to synchronize to the camera,
or the board will provide the synchronization
signal that drives both the camera and the
monitor. The former mode, of which there are
several variations, requires a good RS-170
camera signal. In my experience, the variation
known as digital synchronization can produce
good image quality. However, for total image

4-
~

Video

-
VIDEO

CAMERA

MICROCOMPUTER

SYNCH.
STRIPPER

~
Hor. OutputGenll~Ck"",-

12V

v~
Input

- "-l lnl.
Ext.

~1
Dig.
VCO.

VIDEO

MONITOR

D
Video • • • • Video

Out In

Figure 2. Schematic diagram of cable connections required for the image analysis system described in
the text. Connections may differ with other system configurations. Note the orientation of
the microcomputer, which faces backwards in order to demonstrate the ports on the digitizer
boards.

stability, digitizer-driven synchronization
(known as external Genlock) is to be preferred.
The lAS described here is configured for
external Genlock. Since the synchronization
input port on the camera is designed for a
composite video-synchronization signal, a "synch
stripper" (described above) has been introduced
between the digitizer board and the camera.
However, there are cameras available (slightly
higher-priced) which have a separate
synchronization port. With such cameras, the
synch stripper is not required.

The connections required for the complete
lAS, including synch stripper, are presented in
the schematic diagram of Fig. 2. Note that full
assembly and configuration, including insertion
of the digitizer board into the microcomputer,
requires less than 10 minutes.

Software

One of the primary reasons for the
substantial price advantage of this particular
system over commercially available systems is
the state of the software. Commercial systems
generally corne complete with ready-to-use
software applications packages; this one does
not. Software for this system comes in the form
of a library of 74 image analysis functions
(Coreco's Gray Library). These "black box"
fun~tions perform all of the basic, and many of
the sophisticated procedures that one would ever
use in an lAS. However, the final applications
package requires programming in the C language,
through which the required Gray Library
functions are called up. Since the functions
handle all of the lAS manipulations (which can
be complex), the degree of C programming
expertise that is required is minimal - a
welcome feature to those who are not avid
programmers. However, it is not possible to use
the functions without a surrounding program.

The Gray Library provides all of the lAS
functions required for programming. It also
comes with an all-purpose Utility program, which
is menu-driven and ready for immediate
application to a variety of lAS situations.
Where custom programs are being developed, the
user will also require a compiler for the source
code. Lattice C is the compiler recommended by
Coreco for the Gray Library. Of course, the PC
also requires OOS for operation, independent of
any image analysis programs.

*Price - Gray Library - $800
- Lattice C compiler - $500

4

BASIC PRINCIPLES OF OPERATION

The basis of operation for all image
analysis systems in the conversion of images
into arrays of numbers - in other words, image
digitization. This is accomplished at the
digitizer board once the video signal has
arrived from the camera. At the board, the
image is treated as a grid of 512 columns x 480
rows, with each resulting square termed a pixel.
The light intensity of each pixel is quantified
and assigned to an integer scale of 0-255.
Pixels with an intensity of 0 are black while
those with an intensity of 255 are white.
Pixels in the intermediate range are various
shades of gray; hence the levels between 0 and
255 are known as gray levels. Since the number
of gray levels displayed is under operator
control, images can be viewed with as few levels
as desired, even though the incoming video image
has the full suite of gray levels. In the most
extreme case, a threshold gray level can be
defined, below which all pixels are displayed as
black and above which all are white. Not
surprisingly, the resulting black and white
image is known as a binary image.

Each pixel stores its video information in
a I-byte word (1 byte= 8 bits =256 values); the
resulting memory requirement is met in the 256 K
RAM on the digitizer board. Despite the
relatively large amount of data being stored, an
entire image can be stored (and redisplayed on
the video monitor) 30 times per second.
Clearly, th~ term "framegrabber" is an
appropriate one. It also demonstrates the
real-time capability of the system.

While it is possible to use all 256 gray
levels in digitizing an image, the 8th bit of
each 8-bit pixel word is generally reserved as a
"graphics plane". Use of the graphics plane
enables the display of graphics features (such
as cursors, windows, etc.) with the brightest
possible gray level. Since the upper 128 gray
levels contribute little to our visual
impression of an image, use of the graphics
plane has a negligible impact upon image
quality. Accordingly images are generally
displayed with 128 gray levels and a graphics
plane.

The flexibility and power of an image
analysis system becomes more clear when thought
is given to the basic underlying processes. The
system converts an image into an array of
numbers, with each position in the array
representing a pixel in the image, and each
numerical value representing a gray level for
that pixel. Therefore, anything that can be

done with a matrix of numbers can be done to an
image. For example, creating the inverse of an
image is merely a matter of subtracting each
pixel's gray level from 256 (or 128 as the case
may be). Image contrast can be doubled by
doubling all gray level values. Since the
result of a matrix manipulation is seen
immediately on the monitor, image manipulations
can be as interactive or as automated as
desired.

IMAGING
CAPABILITIES

The capabilities of the image analysis
system described here can be summarized as those
associated with image manipulation and control.
Applications progams (discussed in a later
section) usually incorporate a number of these
capabilities. While the features discussed
below are characteristic of the Gray Library,
they are generic in nature and found in most
systems. What follows is the most cursory
examination of imaging capabilities; for a more
thorough treatment, the reader is referred to
other works (Ballard and Brown 1982; Gonzalez
and Wintz 1977; Hall 1979).

The most fundamental procedure of any lAS
application is the image digitization, or grab.
Grabs can be performed in continuous mode for
real-time (30/second) viewing, or made
individually. Virtually all lAS processes work
with a grabbed (frozen) image. However, a
variety of image manipulations are possible
while in continuous grab mode; examples would
include the display of reversed, high contrast,
reversed high contrast and binary images. In
most applications, the resulting image would be
adjusted for optimum focus, contrast, etc. and
then grabbed for subsequent processing.

Image control is possible at both the pixel
and whole-image level, as well as the
intermediate level of image windows. Simple
examples of pixel control would include a
reading of gray level (light intensity) at any
user-defined coordinate or the display of
graphics characters at any location on the video
monitor. Image control is exemplified by the
duplication and reduction of a grabbed image,
and its subsequent display on the monitor beside
the original.

Image enhancement is one of the most
important and widely-used features of an lAS. A
high contrast display can be viewed in
real-time. However, simple procedures allow the
operator to subtract an image background from

5

the entire image, average several noisy images
or use high or low-frequency filters to add or
remove detail. Gray level expansion, whereby
the gray levels in a poorly-contrasted image are
spread out over all 128 (or 256) levels, can
bring out detail that is totally invisible to
the unaided eye. All of these enhancement
procedures are effective because of the limited
capability of the human eye differentiation of
128 gray levels is well beyond our visual
capacities.

Alternate means of image enhancement
operate on the spatial gradients in gray level
that are present. Edge detection procedures
highlight objects by producing binary images
where edges are white and everything else is
black. Convolutions operate in an almost
inverse manner, eliminating noise and smoothing
contours. Convolutions, which are essentially
two-dimensional running means of image
brightness, are particularly useful in the
interpretation of noisy images.

While increased ease of visual
interpretation may be the sole objective of a
particular lAS application, other applications
rely upon the digital nature of the image for
quantification. Examples would include
procedures where the number of pixels at each
gray level are counted to provide a measure of
image brightness. Such procedures are
particularly useful in binary images, in which
objects are black and the background is white,
thus allowing for object quantification.
Intensity profiles across a user-defined axis
provide a graphical representation of image
brightness. A totally different form of
quantification is provided by a function which
displays the optical Fourier transform of an
image (this is one of the few procedures that
takes minutes rather than seconds to run).

While not strictly an lAS procedure, the
system described here also allows for storage of
images and image windows (segments of images) in
memory. A full image requires 256K bytes of
disk space for storage, so an image archive
would require large amounts of memory. However,
images can also be stored in their run-length
encoded form (a compressed format for image
storage, suitable only for binary images), which
requires considerably less memory. Of course,
image windows require even less memory.

The most sophisticated of the image
analysis functions are those associated with
object identification and classification. All
of them operate only on binary images. During

processing, each group of contiguous dark pixels
is classified as an object. Once so classified,
other functions can provide counts of the number
of objects in the image, as well as their
geometric features (length, width, area,
perimeter, number of holes, etc). Note that
both the identification and measurement
procedures are fully automated, although it is
possible to interactively select the objects of
interest for further processing.

At the apex of this group of "smart"
functions are those dealing with object
recognition. In this mode, it is possible to
train the system to recognize various classes of
objects, based upon the appropriate geometric
characteristics. Once the training has been
completed, the system can be used to
automatically categorize, count and measure each
object in a field of view. Such capabilities
are well beyond those of all but the most
expensive systems of a few years ago.

A summary of the lAS procedures available
from this system is presented in Table 1. Note
that the procedures available on the Utility
program are menu-driven and interactive,
allowing for immediate and real-time use. The

6

remalnlng functions must be called up from a
user-written program.

APPLICATIONS

Many of the potential applications of this
lAS are readily extrapolated from the list of
capabilities in Table 1. All are suited to
video images of any kind, not just those derived
from a microscope. However, microscope-based
observations generally take advantage of certain
operations more than others. Enhanced image
contrast is the most obvious of these
applications especially since, as mentioned
previously, details that would be invisible to
the unaided microscope user can be made clear
with an lAS. The increased size of the video
monitor image also facilitates microscopic
viewing.

Many microscope-based observations could
take advantage of a general-purpose application
package designed for interactive linear
measurements, either of individual objects or of
periodic features such as scale annuli or
otolith daily growth increments. The advantages
of this type of measurement over
microscope-based observations include:

Table 1. A summary of image analysis capabilities available from this (and many other) systems.
Those marked with * are available for real-time use in the Utility program; others must be
incorporated from the Gray Library into user-written programs.

Grab Mode*

normal
reverse

- high contrast
- reverse high contrast

Pixel Control

read or write
individual pixels*

- access adjacent pixels

Image Control

- image reduction
zoom*
add

- average
- subtract

Image Enhancement

background subtraction
edge detection*
histogram (=gray level)
expansion*

- convolutions
- high and low pass filters
- control of number of gray

levels*

Image Quantification

- optical fast Fourier
transform and inverse
intensity profile*

- pixel count

Image Storage*

- image/window to
buffer or disc

- memory to display

Graphics Plane Control

cursor*
- target*
- box*

test pattern
- alphanumerics

"Smart" Functions

- run-length encoding
- object counts and

highlighting
contour encoding
calculation of geometric
features of object
contour fi 11
object recognition
and classification

a) enhanced contrast

b) ease of measurement - a target under
cursor-arrow control is easier to
position on a video monitor than is an
ocular micrometer.

c) resolution - distances of less than l~m

are virtually impossible to measure
with an ocular micrometer. However,
interpixe1 distances of 0.16 ~m are
possible with the lAS.

d) data collection - measurements can be
stored directly in memory eliminating
the need (and error potential) of
handwritten transcription.

As an example of this type of program, the
source code for a program designed to measure
periodic features on an otolith has been
appended (Appendix 1)1. The program prompts the
user at every stage of the procedure, beginning
with prompts for sample information such as
collection date, fish length, sample number,
etc. The next step is menu-driven, allowing the
user to enhance the image appropriately before
beginning data collection. Through use of a
keyboard-controlled target/cursor visible on the
video monitor, the user next moves the cursor
sequentially to each of the features of
interest, digitizing their coordinates with the
stroke of a key. When applied to a
microstructural preparation of an otolith, the
program allows the operator to move the cursor
quickly and accurately from one daily increment
to another, with the increment widths calculated
automatically upon digitization. Each
measurement is calibrated to the unit of choice.
The X-Y coordinates of the cursor are
continuously updated and displayed on the PC
monitor, along with a running count of
increments digitized and the coordinates of the
last-digitized increment. Upon completion, the
user has the option to digitize the start and
end points of the measurement radius, in the
event that increment widths must be standardized
to a pre-defined otolith radius. The program
ends by storing the number of increments
digitized, the increment width data, otolith
radius and sample information in a single-record
DOS file for subsequent analysis. The above
program is ideally suited for measuring up to
200 otolith increment widths, or, on a larger
scale, distances between scale/otolith annuli.
Both types of ~easurements are commonly used in
back-calculating growth rates or size at age.
While this particular program has been tailored
to the author's needs, those with a modicum of

7

C knowledge would require very little time to
modify the program for their own measurement
purposes.

Where more complex measurements are
required, and particularly when there is a
variety of distinct objects in the field of
view, an automated measurement scheme may be
preferable. An example of such a program is
presented in Appendix 21 • This program is
suited for histological examinations, such as
area measurements of oil globules, and is ideal
for certain types of ichthyoplankton samples.
The latter would include automated counts and
measurements of large numbers of sorted fish
eggs. Acting upon prompts, the operator first
converts the image into a binary image with an
appropriate threshold. Automatic output after
that point includes a count of the total number
of objects and sequential highlighting of each
object in turn. Any or all of the objects of
interest are further processed to provide 11
geometric measurements, including area, number
and area of holes, perimeter, coordinates of the
centroid, angles and length of the major and
minor axes, and dimensions of the smallest box
that would enclose the object. All measurements
are calibrated to the unit of choice. It should
be noted however, that this and analogous
programs are sensitive to the threshold selected
for the binary image: the threshold must be
high enough to ensure that all objects to be
measured are completely separated from each
other.

A surprisingly simple extension of the
above program can teach the system to recognize
and classify objects, based upon the mean and
variance of some (or all) of the geometric
measurements. Again, such an application is
well suited to samples of sorted fish eggs, at
least where species can be characterized solely
on the basis of diameter, oil globules, etc.
Note however, that automatic identification of
larvae and zooplankton can be difficult due to
the variety of postures that can be present; a
human can recognize if an appendage is curled up
beneath the body, but complex programming would
be required to teach that to an lAS.

An increasingly popular technique for
stock identification these days employs Fourier

1 - Upon request, the author can provide this
source code on a floppy disc. Note that the
user must compile this code in conjunction with
the Gray library to make it operative

analysis to convert scale or otolith shapes into
mathematically-tractable values. The lAS system
described here was originally configured for
that purpose. Note also that manual tracing
(with, for instance, a mouse) is not required
with this system.

A whole host of other biological
applications exist for image analysis systems.
While they will not be detailed here, it is
useful to note the existence of some prominent
examples:

a) Template matching - While more commonly
used in industrial quality control, biological
applications are possible where a "standard
object" exists. The system can be programmed to
alert the user when the unknown object and the
standard are sufficiently different.

b) Lipid concentration in larval scallops
- After application of an appropriate stain,
lipid concentration can be estimated through
pixel counts of a binary image.

c) Electronic cut and paste - Images and
sections of images can be reduced, zoomed, moved
and added to other images at will. Image copies
retain all of the quality and detail of the
original. This application is particularly
useful in preparation of AV aids and
publications.

d) Age determination - All of the
automated and semi-automated fish age
determination techniques on the market rely on a
process similar to the intensity profile
described earlier. After a profile of an
enhanced otolith/scale image is taken,
algorithms interpret the amplitude of the
profile in terms of the presence/absence of
annuli.

e) Morphometries - With or without a
microscope, fish can be centred under a video
camera and the image grabbed for subsequent
morphometric measurements. Of course, all
measurements can be recorded automatically in
memory.

f) False-colour images - False-colour
images can be helpful in image interpretation in
select instances. The lAS discussed here does
not have colour capabilities. However,
adaptation for colour is not a major
modification, at least from the point of view of
software. All colour image analysis systems
apply colour to designated gray levels;
therefore their operation is conceptually

8

similar to monochrome systems. Of course, a
colour system requires the purchase of a colour
camera and monitor.

While the potential applications of the lAS are
numerous, it is also important to note the
limitations. Most important of these is the
inability to handle remote sensing (satellite)
data; not only is the data flow too large, this
is one application where colour imaging is
desirable. A second limitation is that
associated with preparing printed images. The
latter are possible with MX-80 printers, but are
slow to produce and restricted to 16 gray
levels. High quality Laser printer output
should be possible, but this has not been
attempted for this system. A final constraint
concerns the amount of memory required for image
storage; image archives are quite possible, but
at 256K bytes per image, become major memory
users if stored without run-length encoding.

SUMMARY

Image analysis systems provide a
substantial advantage over unaided microscopic
observations, both in terms of image enhancement
and quantification of the features of interest.
Most of the microcomputer-based systems now
available provide enhancement, manipulation and
quantification capabilities. The advantages of
the system outlined here are primarily those of
price and flexibility; substantial savings over
commercially-available packages are possible if
the researcher is willing to configure his own
system. This paper outlines the ease with which
this can be done, resulting in a state-of-the­
art, high resolution system with real-time
processing. The system has the capability of
being as interactive or as automated as desired,
and can perform macroscopic image analysis as
well. It can also serve as a stand-alone PC
without modification. The disadvantage is the
requirement for some basic programming in the C
language, although the image analysis functions
are provided. While there is no question that
the pre-packaged applications software available
commercially is more convenient, this
convenience is a two-edged sword: what one gains
on one hand, one loses in terms of program and
hardware flexibility. The intention of this
paper is to provide enough of an overview of a
particular image analysis configuration to allow
an informed decision on whether or not it may
benefit perceived needs.

LITERATURE CITED

9

ACKNOWLEDGEMENTS

Ballard, D.H. and C.M. Brown. 1982. Computer
vision. Englewood Cliffs. Prentice-
Ha11, N. J. 523 pp.

Gonzalez, R.C. and P. Wintz. 1977. Digital
image processing. Addision - Wesley Publ.
Co., Don Mills: 431 pp.

Hall, E.L. 1979.
recognition.

Computer image processing and
Academic Press, NY: 584 pp.

I thank D. Heffler for having introduced me to
the Oculus board, and B. Topliss and L. Payzant
for an overview of remote sensing applications.
R. Stronach of Sigma Electronics provided
welcome technical assistance with the system.
P. Hurley provided helpful comments on the
manuscript. Thanks also to J. Simon for having
drafted the figures.

10

APPENDIX I

'include "math.h"
'include "oc200.h"
'include "stdio.h"

int stack=64500;
main-(argc,argv) /* prompt for targeted data file */
int argc;
char *argv [] ;
{
/********************* Variable declaration *****************************/

int i, gg, lut, setnum, fishnum,slide, age, z, nx, ny;
int ix[200], iy[200], curs;
register int x, y;
char ch, ch2, resp, res, cr, If, spec[4];
float tl, npdist;
long int date;
double npx, npy, px, py, magpn;
double calib, xxx, yyy, incwid[200], sumiwid, npcal;
FILE *fp;
if (argc != 2) (

printf("You forgot to enter the targeted data file name \n");
printf("on the command line\n");
exit(O);

screen(O);
printf("/**/
printf("/* INCWIDTH */
printf("/* Program to digitize and store widths of otolith daily increments */
printf("/* Version 1.2 - 18/08/87 */
printf("/* by Steven E. Campana */
printf(u/**/

/********************** Variable initialization *************************/
x=y=250;
tl=npdist=date=xxx=yyy=sumiwid=i=gg=lut=O;
setnum=fishnum=slide=age=z=nx=ny=magpn=npx=npy=px=py=O;
npcal=calib=6.26; /* pixel to urn conversion at 1250X */
ch=ch2='x' ;
cr='\r' ;
If='\n' ;
for (z=0;z<200;z++) incwid[z]=ix[z]=iy[z]=O;
curs=3;
grdeflut () ;
grcIo(lOO);
grtarg(x,y);
/********************** Enter header information ***********************/
printf ("Enter species (3 letters)\n");
scanf ("%s", spec);
printf ("Enter set number\n");
scanf ("%d", &setnum);
printf ("Enter fish number\n");
scanf ("%d", ~fishnum);

printf ("Enter slide number\n");
scanf ("%d", &slide);

11

printf ("Enter TL\n");
scanf ("%f", &tl);
printf ("Enter date of collection (ddmmyy) \n U

);

scanf ("%ld", &date);
printf ("Enter age\n");
scanf ("%d", &age);
printf ("Select procedure from menu\n");
printf ("Use cursor arrows to move cursor\n");

\n") ;

/* cursor left */

/* cursor up */

/* cursor down */

/* cursor right */

not recognized\n");

/* call for cursor */

72:
gretarg(x,y);
y=y-curs;
grtarg (x, y) ;
break;

case 80:
gretarg(x,y);
y=y+curs;
grtarg(x,y);
break;

case 75:
gretarg(x,y);
x""x-curs;
grtarg(x,y) ;
break;

case 77:
gretarg(x,y);
x=x+curs;
grtarg(x,y);
break;

default:
locate(l,l);
printf("Keystroke
break;

'\0' :
ch2=getch();
switch (ch2)

(
case

/********************** Menu for Procedures ******************************/
printf (" Menu Selection\n");
printf (" \n");
printf ("C: set cursor increment (default=3)\n");
printf ("F: finished\n");
printf (lOG: grab image\n");
printf ("I: digitize increment coordinates\n");
printf (10 M: reset magnification calibration (Default=lOOX objective)\n");
printf (ION: digitize nuclear coordinates\n");
printf (lOP: digitize peripheral coordinates\n U

);

printf (lOR: repeat last digitization on present image\n");
locate (1,1);
for (z=0;z<13;z++) printf ("

do
(
ch=getch () ;
switch (ch)

(
case

12

} /* end of cursor switch*/
locate (1, 60);
printf ("Cursor x: %d \n", x); /* indicate cursor location */
locate (2,60);
printf ("Cursor y: %d \n", y);
break;

case 'c':
case 'C':

10cate(1,1);
printf("Enter cursor increment\n");
scanf ("%d", &curs);
locate(l,l);
printf(" "I;
break;

case ' f' :
case 'F': /* finish */

break;
case ' g' :
case 'G': /* grab image */

locate (1,1);
printf ("Select lut: O-Normal I-Reverse 2-HC 3-Reverse HC\n");
scanf ("%d", &lut);
printf ("Hit key to grab image\n");
grgrab (lut, 0, 0, 0);
resp=getch () ;
if (resp='\O') resp=getch();
locate(l,l) ;
for (z=0;z<3;z++)

printf(" \n");
}

locate(l,l);
printf ("Redigitize last increment\n");
printf("Note that calibration default is set at 100X (use 'M' to chang
gg=i;
break;

case'm' :
case 'M': /* set pixel-measurement unit conversion */

10cate(1,1);
printf("Enter calibration coefficient (no. of horiz. pixels per unit m
scanf("%lf", &calib);
locate(l,l);
for (z=0;z<2;z++)
printf(" \n"

/* calculate increment width */

locate(l,l);
break;

case ' i' :
case ' I' :

++i;
if (gg == i-I && i>l)

ix[i-l]=x;
iy[i-l]=y;
update:
locate (3,60);

i=i-l; /* note that this makes ix and iy */
/* arrays somewhat inaccurate */

/* update digitization display */

/* nuclear coordinates */

/* peripheral coordinates */

13

printf ("X of last inc: %d \n", x);
locate (4,60);
printf ("Y of last inc: %d \n", y);
locate (5,60);
printf ("Increment number: %d \n", i);
if (i>l && ggl=i) { /* checks to see if this is 1st dig */

xxx=ix[i-1] - ix[i-Z]; /* after grabbing */
xxx=xxx*xxx;
yyy=«double) (iy[i-1] - iy[i-Z]))*0.8;
yyy=yyy*yyy;
incwid[i-Z]=(sqrt(xxx+yyy))/calib;
sumiwid=sumiwid+incwid[i-Z];
)

else --gg;
break;

case 'n':
case'N':

nx=x;
ny=y;
break;

case 'p':
case 'P':

px=x;
py=y;
locate(l,l); •
printf("Enter calibration coefficient (no. of horiz. pixels per unit m
printf ("for this objective \n");
scanf ("%If", &npcal);
locate(l,l);
for (z=O;z<Z;z++)

printf (" \n") ;

locate(l,l);
break;

case 'r': /* repeat last dig without new grab */
case ' R' :

ix[i-1]=x;
iy[i-l]=y;
goto update;

default:
locate(l,l);
printf ("Unrecognized keystroke\n");
break;

/* end of switch */
!= 'F'); /* end of do-while */

/* calculate nucleus to periphery distance */
!= 'f' && ch
nx-px;
(ny-py)*.8;

}

} while (ch
npx=(double)
npy=(double)

.xxx=npx*npx;
yyy=npy*npy;
npdist=(sqrt(xxx+yyy»/npcal;
fsave:
locate(l,l);
if «fp=fopen (argv[l], "a"» == NULL)

printf("Cannot open file\n");
. exit (0) ;

/* transfer data to file */

14

}

fprintf(fp, "%s %d %d %d %4.1f %ld %d %d %7.2f %7.2f ", spec,setnum,
fishnum,slide,tl,date,age,i,sumiwid,npdist);

for (z=O;z<i-l;z++) fprintf(fp,"%5.2f ", incwid[z]);
fprintf(fp, "%c%c", cr,lf);
fclose (fp) ;
printf("DOS file = %s\n", argv[l]);
}

15

APPENDIX II

itinclude nstdio.h"
itinclude noc200.h"

int stack=64500;
int matrix[480] [32];
main()
(
/******************* Variable declaration ******************************/
register int kk, k, cc;
int lastpg, nowpg, pg, numanc, numdes, ancl, anc2, desl, des2;
int xx, yy, curs;
int y3, x3, *line, *start, *length;
int imax, maxnb, nobji
int *object, *fgrp, *next, *panc, *pdes, *anc, *des;
int mode, thresh, luti
int i, xlen, ylen, xl, x2, yl, y2, xword, xadj;
int xmin,xmax,ymin,ymax,y;
int mask, er, respon, error;
int *jline, *jstart, *jlen, lastji
int nfeat[12];
float feat[12], calib;
char *malloc();
char ch, ch2;
unsigned int nbyte;

screen(O)i
printf(n/**/
printf(n/* FEATURES */
printf (" / * Program to automatically count and measure objects */
printf("/* Version 1.1 - 18/08/87 */
printf(n/* by Steven E. Campana */
printf(n/**/

/*-------------------------Memory Allocation----------------------*/
maxnb=15000;
nbyte=maxnb*2;

next=(int *)malloc(nbyte)i
if (next == NULL) {er=li goto end;}
object=(int *)malloc(nbyte);
if (object == NULL) {er=2i goto endi}
panc=(int *)malloc(nbyte)i
if (panc == NULL) (er=3i goto endi}
pdes=(int *)malloc(nbyte);
if (pdes == NULL) {er=4i goto end;}
line=(int *)malloc(nbyte)i
if (line == NULL) {er=5; goto end;}
start=(int *)malloc(nbyte)i
if (start == NULL) (er=6; goto end;}
length=(int *)malloc(nbyte)i
if (length == NULL) (er=7; goto end;}
fgrp=(int *)malloc(nbyte)i
if (fgrp == NULL) (er=8i goto end;}
jline=(int *)malloc(nbyte);
if (jline == NULL) {er=9; goto end;}

16

jstart=(int *)malloc(nbyte);
if (jstart == NULL) {er=IO; goto end;}
jlen=(int *)malloc(nbyte);
if (jlen == NULL) {er=ll; goto end;}

nbyte=maxnb*3*2;
anc=(int *)malloc(nbyte);
if (anc == NULL) {er=9; goto end;}
des=(int *)malloc(nbyte);
if (des == NULL) {er=IO; goto end;}

/*-------------------- Prepare binary image --------------------------*/

screen(O);
mode=O;
thresh=50;
grclo(IOO) ;
grdeflut () ;
ch=ch2='x' ;
do

increase/decrease threshold\n");
threshold selected\n");

/* loop for binary threshold control */

{
printf ("Image: O-Normal I-Reverse 2-HC
scanf ("%d", &lut);

if (lut == 0 I I lut == 2) mode=O;
else mode=l;

printf ("Use > and < to
printf("Type T when
do {

grgrab (lut,O,O,O);
ch=getch () ;
switch (ch)

{

case' " :
case ' <' :

3-Reverse HC\n");

thresh=thresh-5;
grthrs (lut,thresh,mode);
break;

case'.' :
case ' >' :

thresh=thresh+5;
grthrs (lut,thresh,mode);
break;

case ' t' :
case 'T':

break;
default:

printf("Unrecognized keystroke\n");
break;

/* end of switch */
&& ch != 'T'); /* end of do-while */
to adjust, any other key to continue\n");

}
} while (ch != 't'
printf ("Enter 'a'
ch=getch () ;

while (ch == ' a' I I ch == , A') ; /* end of do-while */

/*--------Window development in preparation for object encoding -------------*/

17

/* call for cursor */

/* interactive loop for box prep */

/* end of cursor switch */

/* cursor up */

/* cursor down */

/* cursor right */

/~ cursor left */

/* draw default box */

/* prepare own window */

/* update cursor location display */

72:
gretarg(xx,yy);
yy=yy-curs;
grtarg(xx,yy);
break;

case 80:
gretarg(xx,yy);
yy=yy+curs;
grtarg (xx, yy) ;
break;

case 75:
gretarg(xx,yy);
xx=xx-curs;
grtarg(xx,yy);
break;

case 77:
gretarg(xx,yy) ;
xx=xx+curs;
grtarg (xx, yy) ;
break;

default:
printf("Use arrows only\n");
break;

}
locate (1, 60);
printf("Cursor x: %d \n", xx);
locate(2,60);
printf("Cursor y: %d \n", yy);
break;

screen (0) ;
xl=yl=50;
x2=y2=450;
grbox(xl,yl,x2,y2);
printf ("Is window OK? Y/N\n");
ch=getch() ;
if (ch == ' n' I I ch == , N')
grebox(xl,yl,x2,y2);
ch=ch2=' x' ;
xx=yy=xl=x2=yl=y2=250;
curs=20;
grtarg(xx,yy);
printf ("Use cursor arrows to move monitor cursor\n");
printf("Type U to mark upper left corner of desired window\n");
printf("Type L to mark lower right corner of desired window\n");
printf ("Type 'F' to finish\n");
do

(
ch=getch() ;
switch (ch)

(
case' \0' :
ch2=getch();

switch (ch2)
(
case

18

case' u' :
case 'U': /* fix upper left box corner */

grebox(xl,yl,x2,y2);
xl=xx;
yl=yy;
grbox (xl, yl, x2, y2);
break;

case' I' :
case 'L': /* fix lower right box corner */

grebox(xl,yl,x2,y2) ;
x2=xx;
y2=yy;
grbox(xl,yl,x2,y2);
break;

case 'f':
case 'F': /* box finished */

grebox(xl,yl,x2,y2);
gretarg(xx,yy);
break;

default:
printf("Unrecognized keystroke\n");
break;

}
while (ch != 'f' && ch != 'F');

else grebox(xl,yl,x2,y2);

/* end of switch */
/* end of do-while */

/* end of if */

/*----------- Fine-tune window prep for object encoding-----------*/

/* from the box coordinates */
/* we calculate dimensions */
/* test if number is even */
/* adjust if not */
/* for encoding in the matrix*/
/* xadj is the number of emp-*/
/* ty bytes in the leftmost */
/* word to be tilled with 1 */

xadj=xword=xlen=ylen=O;
xlen=x2-xl+l;
ylen=y2-yl+l;
if (ylen &1) ylen-=l

xword=(int)xlen/16;
xadj=xlen-xword*16;
if (xadj!=O) xword+=l;

if (xword>32) xword=32;
x3=xword-l;
xadj=xword*16-xlen;
y3=ylen-l;
grwindo (matrix,xl,yl,xword,ylen);/* load the matrix */

if (xadj!=O) /* mask the unused bit with */
{ /* 1 in the window */
mask=Oxffff
mask= mask » (16-xadj)
for (y=O; 'y<=y3; y++)

matrix[i] [xword]=matrix[i] [xword] mask;
for (y=y3+l; y<=2*y3+l; y++)

matrix[i] [xword] =matrix [i] [xword] mask;
}

/*------------~-Encode objects in window ---------------------*/
. screen (0);

19

locate(1,1)i
printf ("Encode and link in progress ... \n")i
er=grencod(matrix,y3,x3,line,start,length,&imax,maxnb) i
if (er) goto endi
er=link(line,start,length,object,fgrp,next,imax,panc,pdes,anc,des,&nobj)i
if (er) goto end;
printf ("Completed ... \n") i
printf ("Number of objects=%d\n", nobj) i
printf("Enter calibration coefficient (no. Of horiz. pixels per unit measure)\n\
scanf("%f", &calib)i
screen(O)i

/* select object of interest */
for (k=1; k<=nobj i ++k) (

printf("Object %d: \n", k);
printf("Strike key to end display \n");
grcurs(xl,y1,line,start,length,fgrp[k],next,&xmin,&xmax,&ymin,&ymax)i
printf ("Enter 'c' to continue to next object\n")i
ch=getch();
if (ch == 'c' I I ch == 'C') continue;
nfeat [0] =11 i
for (kk=1ikk<12ikk++) nfeat[kk]=kki
er=features {fgrp[k],line,start,length,next,panc,pdes,anc,des,nfeat,feat,0.8
if (er) goto end;
printf ("feature # 1:area including holes: %f\n",feat[1]/(calib*calib));
printf ("feature # 2:number of holes: %f\n",feat[2])i
printf ("feature # 3:total area of holes: %f\n",feat[3]/(calib*calib))i
printf ("feature I 4:outer perimeter: %f \n",feat[4]/calib)i
printf ("feature I S:x coord of centroid: %f\n",feat[S]/calib)i
printf ("feature I 6:y coord of centroid: %f\n",feat[6]/calib);
printf ("feature # 7:angle of major axis w.r. to horiz.: %f \n",feat[7]);
printf ("feature I 8:length of major axis: %f\n",feat[8]/calib)i
printf ("feature I 9:length of minor axis: %f\n",feat[9]/calib)i
printf ("feature 1l0:width of smallest box enclosing: %f\n",feat[10j/calib)i
printf ("feature 111:height of smallest box enclosing: %f\n",feat[ll]/calib)
for (k=1;k<3ik++) printf(" \n");
printf("Enter 'c' to continue or 'F' to finish\n")i
ch=getch () i
if (ch == ' c' I I ch == , C') continue;
else break;

} /* end of for */
/**/
end:
if(er) /* error summary */

(
printf("error=%d\n",er);
while(lkbhit());
printf("Strike key to continue\n"}i
respon=getch() ;
}

/*--------------------- deallocation of dynamic memory ----------------------*/
if (free «char *) next) != 0)

sound (200,100)i
if (free «char *) object) != 0)

sound (200,100) ;
if (free ((char *) pane) !; 0)

sound (200,100) ;
if (free«char *)pdes) != 0)

sound (200,100) ;
if (free«char *)line) !; 0)

sound (200,100) ;
if (free«char *)start) != 0)

sound (200,100) ;
if (free«char *)length) != 0)

sound (200,100) ;
if (free«char *)fgrp) != 0)

sound (200,100) ;
if (free «char *) anc) != 0)

sound (200,100) ;
if (free «char *) des) != 0)

sound (200,100) ;
if (free«char *)jline) != 0)

sound (200,100) ;
if (free ((char *)jstart) != 0)

sound (200,100) ;
if (free«char *)jlen) != 0)

sound (200,100) ;

20

